blob: 8864abc16e4eee4ec755046c88da30194cf1be42 [file] [log] [blame]
Aneesh V2ae610f2011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
Sricharanbb772a52011-11-15 09:50:00 -050029#include <asm/emif.h>
Aneesh V2ae610f2011-07-21 09:10:09 -040030#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
SRICHARAN R25476382012-06-04 03:40:23 +000034#include <linux/compiler.h>
Aneesh V2ae610f2011-07-21 09:10:09 -040035
Lokesh Vutla86021142012-11-15 21:06:33 +000036static int emif1_enabled = -1, emif2_enabled = -1;
37
Lokesh Vutla38f25b12012-05-29 19:26:43 +000038void set_lpmode_selfrefresh(u32 base)
39{
40 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
41 u32 reg;
42
43 reg = readl(&emif->emif_pwr_mgmt_ctrl);
44 reg &= ~EMIF_REG_LP_MODE_MASK;
45 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
46 reg &= ~EMIF_REG_SR_TIM_MASK;
47 writel(reg, &emif->emif_pwr_mgmt_ctrl);
48
49 /* dummy read for the new SR_TIM to be loaded */
50 readl(&emif->emif_pwr_mgmt_ctrl);
51}
52
53void force_emif_self_refresh()
54{
55 set_lpmode_selfrefresh(EMIF1_BASE);
56 set_lpmode_selfrefresh(EMIF2_BASE);
57}
58
Sricharanbb772a52011-11-15 09:50:00 -050059inline u32 emif_num(u32 base)
Aneesh V2ae610f2011-07-21 09:10:09 -040060{
Sricharanbb772a52011-11-15 09:50:00 -050061 if (base == EMIF1_BASE)
Aneesh V2ae610f2011-07-21 09:10:09 -040062 return 1;
Sricharanbb772a52011-11-15 09:50:00 -050063 else if (base == EMIF2_BASE)
Aneesh V2ae610f2011-07-21 09:10:09 -040064 return 2;
65 else
66 return 0;
67}
68
Lokesh Vutla9ca8bfe2013-02-04 04:21:59 +000069/*
70 * Get SDRAM type connected to EMIF.
71 * Assuming similar SDRAM parts are connected to both EMIF's
72 * which is typically the case. So it is sufficient to get
73 * SDRAM type from EMIF1.
74 */
75u32 emif_sdram_type()
76{
77 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
78
79 return (readl(&emif->emif_sdram_config) &
80 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
81}
Sricharanbb772a52011-11-15 09:50:00 -050082
Aneesh V2ae610f2011-07-21 09:10:09 -040083static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
84{
85 u32 mr;
86 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
87
Sricharanbb772a52011-11-15 09:50:00 -050088 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh V2ae610f2011-07-21 09:10:09 -040089 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
90 if (omap_revision() == OMAP4430_ES2_0)
91 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
92 else
93 mr = readl(&emif->emif_lpddr2_mode_reg_data);
94 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
95 cs, mr_addr, mr);
Steve Sakoman55c12842012-05-30 07:38:07 +000096 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
97 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
98 ((mr & 0xff000000) >> 24) == (mr & 0xff))
99 return mr & 0xff;
100 else
101 return mr;
Aneesh V2ae610f2011-07-21 09:10:09 -0400102}
103
104static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
105{
106 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
107
Sricharanbb772a52011-11-15 09:50:00 -0500108 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh V2ae610f2011-07-21 09:10:09 -0400109 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
110 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
111}
112
113void emif_reset_phy(u32 base)
114{
115 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
116 u32 iodft;
117
118 iodft = readl(&emif->emif_iodft_tlgc);
Sricharanbb772a52011-11-15 09:50:00 -0500119 iodft |= EMIF_REG_RESET_PHY_MASK;
Aneesh V2ae610f2011-07-21 09:10:09 -0400120 writel(iodft, &emif->emif_iodft_tlgc);
121}
122
123static void do_lpddr2_init(u32 base, u32 cs)
124{
125 u32 mr_addr;
126
127 /* Wait till device auto initialization is complete */
128 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
129 ;
130 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
131 /*
132 * tZQINIT = 1 us
133 * Enough loops assuming a maximum of 2GHz
134 */
SRICHARAN Rf4010732012-03-12 02:25:37 +0000135
Aneesh V2ae610f2011-07-21 09:10:09 -0400136 sdelay(2000);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000137
138 if (omap_revision() >= OMAP5430_ES1_0)
139 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8);
140 else
141 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
142
Aneesh V2ae610f2011-07-21 09:10:09 -0400143 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000144
Aneesh V2ae610f2011-07-21 09:10:09 -0400145 /*
146 * Enable refresh along with writing MR2
147 * Encoding of RL in MR2 is (RL - 2)
148 */
Sricharanbb772a52011-11-15 09:50:00 -0500149 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
Aneesh V2ae610f2011-07-21 09:10:09 -0400150 set_mr(base, cs, mr_addr, RL_FINAL - 2);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000151
152 if (omap_revision() >= OMAP5430_ES1_0)
153 set_mr(base, cs, LPDDR2_MR3, 0x1);
Aneesh V2ae610f2011-07-21 09:10:09 -0400154}
155
156static void lpddr2_init(u32 base, const struct emif_regs *regs)
157{
158 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
159
160 /* Not NVM */
Sricharanbb772a52011-11-15 09:50:00 -0500161 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
Aneesh V2ae610f2011-07-21 09:10:09 -0400162
163 /*
164 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
165 * when EMIF_SDRAM_CONFIG register is written
166 */
Sricharanbb772a52011-11-15 09:50:00 -0500167 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh V2ae610f2011-07-21 09:10:09 -0400168
169 /*
170 * Set the SDRAM_CONFIG and PHY_CTRL for the
171 * un-locked frequency & default RL
172 */
173 writel(regs->sdram_config_init, &emif->emif_sdram_config);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000174 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
175
SRICHARAN R25476382012-06-04 03:40:23 +0000176 do_ext_phy_settings(base, regs);
Aneesh V2ae610f2011-07-21 09:10:09 -0400177
178 do_lpddr2_init(base, CS0);
Sricharanbb772a52011-11-15 09:50:00 -0500179 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
Aneesh V2ae610f2011-07-21 09:10:09 -0400180 do_lpddr2_init(base, CS1);
181
182 writel(regs->sdram_config, &emif->emif_sdram_config);
183 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
184
185 /* Enable refresh now */
Sricharanbb772a52011-11-15 09:50:00 -0500186 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh V2ae610f2011-07-21 09:10:09 -0400187
SRICHARAN R25476382012-06-04 03:40:23 +0000188 }
189
190__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
191{
Aneesh V2ae610f2011-07-21 09:10:09 -0400192}
193
Sricharanbb772a52011-11-15 09:50:00 -0500194void emif_update_timings(u32 base, const struct emif_regs *regs)
Aneesh V2ae610f2011-07-21 09:10:09 -0400195{
196 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
197
198 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
199 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
200 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
201 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
202 if (omap_revision() == OMAP4430_ES1_0) {
203 /* ES1 bug EMIF should be in force idle during freq_update */
204 writel(0, &emif->emif_pwr_mgmt_ctrl);
205 } else {
206 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
207 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
208 }
209 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
210 writel(regs->zq_config, &emif->emif_zq_config);
211 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
212 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V924eb362011-07-21 09:29:26 -0400213
Lokesh Vutla784ab7c2012-05-22 00:03:25 +0000214 if (omap_revision() >= OMAP5430_ES1_0) {
Sricharanbb772a52011-11-15 09:50:00 -0500215 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
216 &emif->emif_l3_config);
217 } else if (omap_revision() >= OMAP4460_ES1_0) {
Aneesh V924eb362011-07-21 09:29:26 -0400218 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
219 &emif->emif_l3_config);
220 } else {
221 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
222 &emif->emif_l3_config);
Aneesh V2ae610f2011-07-21 09:10:09 -0400223 }
224}
225
Lokesh Vutla784ab7c2012-05-22 00:03:25 +0000226static void ddr3_leveling(u32 base, const struct emif_regs *regs)
227{
228 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
229
230 /* keep sdram in self-refresh */
231 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
232 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
233 __udelay(130);
234
235 /*
236 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
237 * Invert clock adds an additional half cycle delay on the command
238 * interface. The additional half cycle, is usually meant to enable
239 * leveling in the situation that DQS is later than CK on the board.It
240 * also helps provide some additional margin for leveling.
241 */
242 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
243 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
244 __udelay(130);
245
246 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
247 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
248
249 /* Launch Full leveling */
250 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
251
252 /* Wait till full leveling is complete */
253 readl(&emif->emif_rd_wr_lvl_ctl);
254 __udelay(130);
255
256 /* Read data eye leveling no of samples */
257 config_data_eye_leveling_samples(base);
258
259 /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
260 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
261 __udelay(130);
262
263 /* Launch Incremental leveling */
264 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
265 __udelay(130);
266}
267
268static void ddr3_init(u32 base, const struct emif_regs *regs)
269{
270 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
271 u32 *ext_phy_ctrl_base = 0;
272 u32 *emif_ext_phy_ctrl_base = 0;
273 u32 i = 0;
274
275 /*
276 * Set SDRAM_CONFIG and PHY control registers to locked frequency
277 * and RL =7. As the default values of the Mode Registers are not
278 * defined, contents of mode Registers must be fully initialized.
279 * H/W takes care of this initialization
280 */
281 writel(regs->sdram_config_init, &emif->emif_sdram_config);
282
283 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
284
285 /* Update timing registers */
286 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
287 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
288 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
289
290 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
291 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
292
293 ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
294 emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
295
296 /* Configure external phy control timing registers */
297 for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
298 writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
299 /* Update shadow registers */
300 writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
301 }
302
303 /*
304 * external phy 6-24 registers do not change with
305 * ddr frequency
306 */
307 for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) {
308 writel(ddr3_ext_phy_ctrl_const_base[i],
309 emif_ext_phy_ctrl_base++);
310 /* Update shadow registers */
311 writel(ddr3_ext_phy_ctrl_const_base[i],
312 emif_ext_phy_ctrl_base++);
313 }
314
315 /* enable leveling */
316 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
317
318 ddr3_leveling(base, regs);
319}
320
Aneesh V095aea22011-07-21 09:10:12 -0400321#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
322#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
323
Aneesh V095aea22011-07-21 09:10:12 -0400324/*
325 * Organization and refresh requirements for LPDDR2 devices of different
326 * types and densities. Derived from JESD209-2 section 2.4
327 */
328const struct lpddr2_addressing addressing_table[] = {
329 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
330 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
331 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
332 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
333 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
334 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
335 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
336 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
337 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
338 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
339 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
340};
341
342static const u32 lpddr2_density_2_size_in_mbytes[] = {
343 8, /* 64Mb */
344 16, /* 128Mb */
345 32, /* 256Mb */
346 64, /* 512Mb */
347 128, /* 1Gb */
348 256, /* 2Gb */
349 512, /* 4Gb */
350 1024, /* 8Gb */
351 2048, /* 16Gb */
352 4096 /* 32Gb */
353};
354
355/*
356 * Calculate the period of DDR clock from frequency value and set the
357 * denominator and numerator in global variables for easy access later
358 */
359static void set_ddr_clk_period(u32 freq)
360{
361 /*
362 * period = 1/freq
363 * period_in_ns = 10^9/freq
364 */
365 *T_num = 1000000000;
366 *T_den = freq;
367 cancel_out(T_num, T_den, 200);
368
369}
370
371/*
372 * Convert time in nano seconds to number of cycles of DDR clock
373 */
374static inline u32 ns_2_cycles(u32 ns)
375{
376 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
377}
378
379/*
380 * ns_2_cycles with the difference that the time passed is 2 times the actual
381 * value(to avoid fractions). The cycles returned is for the original value of
382 * the timing parameter
383 */
384static inline u32 ns_x2_2_cycles(u32 ns)
385{
386 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
387}
388
389/*
390 * Find addressing table index based on the device's type(S2 or S4) and
391 * density
392 */
393s8 addressing_table_index(u8 type, u8 density, u8 width)
394{
395 u8 index;
396 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
397 return -1;
398
399 /*
400 * Look at the way ADDR_TABLE_INDEX* values have been defined
401 * in emif.h compared to LPDDR2_DENSITY_* values
402 * The table is layed out in the increasing order of density
403 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
404 * at the end
405 */
406 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
407 index = ADDR_TABLE_INDEX1GS2;
408 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
409 index = ADDR_TABLE_INDEX2GS2;
410 else
411 index = density;
412
413 debug("emif: addressing table index %d\n", index);
414
415 return index;
416}
417
418/*
419 * Find the the right timing table from the array of timing
420 * tables of the device using DDR clock frequency
421 */
422static const struct lpddr2_ac_timings *get_timings_table(const struct
423 lpddr2_ac_timings const *const *device_timings,
424 u32 freq)
425{
426 u32 i, temp, freq_nearest;
427 const struct lpddr2_ac_timings *timings = 0;
428
429 emif_assert(freq <= MAX_LPDDR2_FREQ);
430 emif_assert(device_timings);
431
432 /*
433 * Start with the maximum allowed frequency - that is always safe
434 */
435 freq_nearest = MAX_LPDDR2_FREQ;
436 /*
437 * Find the timings table that has the max frequency value:
438 * i. Above or equal to the DDR frequency - safe
439 * ii. The lowest that satisfies condition (i) - optimal
440 */
441 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
442 temp = device_timings[i]->max_freq;
443 if ((temp >= freq) && (temp <= freq_nearest)) {
444 freq_nearest = temp;
445 timings = device_timings[i];
446 }
447 }
448 debug("emif: timings table: %d\n", freq_nearest);
449 return timings;
450}
451
452/*
453 * Finds the value of emif_sdram_config_reg
454 * All parameters are programmed based on the device on CS0.
455 * If there is a device on CS1, it will be same as that on CS0 or
456 * it will be NVM. We don't support NVM yet.
457 * If cs1_device pointer is NULL it is assumed that there is no device
458 * on CS1
459 */
460static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
461 const struct lpddr2_device_details *cs1_device,
462 const struct lpddr2_addressing *addressing,
463 u8 RL)
464{
465 u32 config_reg = 0;
466
Sricharanbb772a52011-11-15 09:50:00 -0500467 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400468 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
Sricharanbb772a52011-11-15 09:50:00 -0500469 EMIF_REG_IBANK_POS_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400470
Sricharanbb772a52011-11-15 09:50:00 -0500471 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400472
Sricharanbb772a52011-11-15 09:50:00 -0500473 config_reg |= RL << EMIF_REG_CL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400474
475 config_reg |= addressing->row_sz[cs0_device->io_width] <<
Sricharanbb772a52011-11-15 09:50:00 -0500476 EMIF_REG_ROWSIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400477
Sricharanbb772a52011-11-15 09:50:00 -0500478 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400479
480 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
Sricharanbb772a52011-11-15 09:50:00 -0500481 EMIF_REG_EBANK_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400482
483 config_reg |= addressing->col_sz[cs0_device->io_width] <<
Sricharanbb772a52011-11-15 09:50:00 -0500484 EMIF_REG_PAGESIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400485
486 return config_reg;
487}
488
489static u32 get_sdram_ref_ctrl(u32 freq,
490 const struct lpddr2_addressing *addressing)
491{
492 u32 ref_ctrl = 0, val = 0, freq_khz;
493 freq_khz = freq / 1000;
494 /*
495 * refresh rate to be set is 'tREFI * freq in MHz
496 * division by 10000 to account for khz and x10 in t_REFI_us_x10
497 */
498 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
Sricharanbb772a52011-11-15 09:50:00 -0500499 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400500
501 return ref_ctrl;
502}
503
504static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
505 const struct lpddr2_min_tck *min_tck,
506 const struct lpddr2_addressing *addressing)
507{
508 u32 tim1 = 0, val = 0;
509 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500510 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400511
512 if (addressing->num_banks == BANKS8)
513 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
514 (4 * (*T_num)) - 1;
515 else
516 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
517
Sricharanbb772a52011-11-15 09:50:00 -0500518 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400519
520 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500521 tim1 |= val << EMIF_REG_T_RC_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400522
523 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500524 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400525
526 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500527 tim1 |= val << EMIF_REG_T_WR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400528
529 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500530 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400531
532 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500533 tim1 |= val << EMIF_REG_T_RP_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400534
535 return tim1;
536}
537
538static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
539 const struct lpddr2_min_tck *min_tck)
540{
541 u32 tim2 = 0, val = 0;
542 val = max(min_tck->tCKE, timings->tCKE) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500543 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400544
545 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500546 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400547
548 /*
549 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
550 * same value
551 */
552 val = ns_2_cycles(timings->tXSR) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500553 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
554 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400555
556 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500557 tim2 |= val << EMIF_REG_T_XP_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400558
559 return tim2;
560}
561
562static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
563 const struct lpddr2_min_tck *min_tck,
564 const struct lpddr2_addressing *addressing)
565{
566 u32 tim3 = 0, val = 0;
567 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
Sricharanbb772a52011-11-15 09:50:00 -0500568 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400569
570 val = ns_2_cycles(timings->tRFCab) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500571 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400572
573 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500574 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400575
576 val = ns_2_cycles(timings->tZQCS) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500577 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400578
579 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500580 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400581
582 return tim3;
583}
584
585static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
586 const struct lpddr2_addressing *addressing,
587 u8 volt_ramp)
588{
589 u32 zq = 0, val = 0;
590 if (volt_ramp)
591 val =
592 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
593 addressing->t_REFI_us_x10;
594 else
595 val =
596 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
597 addressing->t_REFI_us_x10;
Sricharanbb772a52011-11-15 09:50:00 -0500598 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400599
Sricharanbb772a52011-11-15 09:50:00 -0500600 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400601
Sricharanbb772a52011-11-15 09:50:00 -0500602 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400603
Sricharanbb772a52011-11-15 09:50:00 -0500604 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400605
606 /*
607 * Assuming that two chipselects have a single calibration resistor
608 * If there are indeed two calibration resistors, then this flag should
609 * be enabled to take advantage of dual calibration feature.
610 * This data should ideally come from board files. But considering
611 * that none of the boards today have calibration resistors per CS,
612 * it would be an unnecessary overhead.
613 */
Sricharanbb772a52011-11-15 09:50:00 -0500614 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400615
Sricharanbb772a52011-11-15 09:50:00 -0500616 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400617
Sricharanbb772a52011-11-15 09:50:00 -0500618 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400619
620 return zq;
621}
622
623static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
624 const struct lpddr2_addressing *addressing,
625 u8 is_derated)
626{
627 u32 alert = 0, interval;
628 interval =
629 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
630 if (is_derated)
631 interval *= 4;
Sricharanbb772a52011-11-15 09:50:00 -0500632 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400633
Sricharanbb772a52011-11-15 09:50:00 -0500634 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400635
Sricharanbb772a52011-11-15 09:50:00 -0500636 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400637
Sricharanbb772a52011-11-15 09:50:00 -0500638 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400639
Sricharanbb772a52011-11-15 09:50:00 -0500640 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400641
Sricharanbb772a52011-11-15 09:50:00 -0500642 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400643
644 return alert;
645}
646
647static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
648{
649 u32 idle = 0, val = 0;
650 if (volt_ramp)
Aneesh V924eb362011-07-21 09:29:26 -0400651 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh V095aea22011-07-21 09:10:12 -0400652 else
653 /*Maximum value in normal conditions - suggested by hw team */
654 val = 0x1FF;
Sricharanbb772a52011-11-15 09:50:00 -0500655 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400656
Sricharanbb772a52011-11-15 09:50:00 -0500657 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400658
659 return idle;
660}
661
662static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
663{
664 u32 phy = 0, val = 0;
665
Sricharanbb772a52011-11-15 09:50:00 -0500666 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400667
668 if (freq <= 100000000)
669 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
670 else if (freq <= 200000000)
671 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
672 else
673 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
Sricharanbb772a52011-11-15 09:50:00 -0500674 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400675
676 /* Other fields are constant magic values. Hardcode them together */
677 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
Sricharanbb772a52011-11-15 09:50:00 -0500678 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400679
680 return phy;
681}
682
683static u32 get_emif_mem_size(struct emif_device_details *devices)
684{
685 u32 size_mbytes = 0, temp;
686
687 if (!devices)
688 return 0;
689
690 if (devices->cs0_device_details) {
691 temp = devices->cs0_device_details->density;
692 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
693 }
694
695 if (devices->cs1_device_details) {
696 temp = devices->cs1_device_details->density;
697 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
698 }
699 /* convert to bytes */
700 return size_mbytes << 20;
701}
702
703/* Gets the encoding corresponding to a given DMM section size */
704u32 get_dmm_section_size_map(u32 section_size)
705{
706 /*
707 * Section size mapping:
708 * 0x0: 16-MiB section
709 * 0x1: 32-MiB section
710 * 0x2: 64-MiB section
711 * 0x3: 128-MiB section
712 * 0x4: 256-MiB section
713 * 0x5: 512-MiB section
714 * 0x6: 1-GiB section
715 * 0x7: 2-GiB section
716 */
717 section_size >>= 24; /* divide by 16 MB */
718 return log_2_n_round_down(section_size);
719}
720
721static void emif_calculate_regs(
722 const struct emif_device_details *emif_dev_details,
723 u32 freq, struct emif_regs *regs)
724{
725 u32 temp, sys_freq;
726 const struct lpddr2_addressing *addressing;
727 const struct lpddr2_ac_timings *timings;
728 const struct lpddr2_min_tck *min_tck;
729 const struct lpddr2_device_details *cs0_dev_details =
730 emif_dev_details->cs0_device_details;
731 const struct lpddr2_device_details *cs1_dev_details =
732 emif_dev_details->cs1_device_details;
733 const struct lpddr2_device_timings *cs0_dev_timings =
734 emif_dev_details->cs0_device_timings;
735
736 emif_assert(emif_dev_details);
737 emif_assert(regs);
738 /*
739 * You can not have a device on CS1 without one on CS0
740 * So configuring EMIF without a device on CS0 doesn't
741 * make sense
742 */
743 emif_assert(cs0_dev_details);
744 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
745 /*
746 * If there is a device on CS1 it should be same type as CS0
747 * (or NVM. But NVM is not supported in this driver yet)
748 */
749 emif_assert((cs1_dev_details == NULL) ||
750 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
751 (cs0_dev_details->type == cs1_dev_details->type));
752 emif_assert(freq <= MAX_LPDDR2_FREQ);
753
754 set_ddr_clk_period(freq);
755
756 /*
757 * The device on CS0 is used for all timing calculations
758 * There is only one set of registers for timings per EMIF. So, if the
759 * second CS(CS1) has a device, it should have the same timings as the
760 * device on CS0
761 */
762 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
763 emif_assert(timings);
764 min_tck = cs0_dev_timings->min_tck;
765
766 temp = addressing_table_index(cs0_dev_details->type,
767 cs0_dev_details->density,
768 cs0_dev_details->io_width);
769
770 emif_assert((temp >= 0));
771 addressing = &(addressing_table[temp]);
772 emif_assert(addressing);
773
774 sys_freq = get_sys_clk_freq();
775
776 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
777 cs1_dev_details,
778 addressing, RL_BOOT);
779
780 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
781 cs1_dev_details,
782 addressing, RL_FINAL);
783
784 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
785
786 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
787
788 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
789
790 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
791
792 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
793
794 regs->temp_alert_config =
795 get_temp_alert_config(cs1_dev_details, addressing, 0);
796
797 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
798 LPDDR2_VOLTAGE_STABLE);
799
800 regs->emif_ddr_phy_ctlr_1_init =
801 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
802
803 regs->emif_ddr_phy_ctlr_1 =
804 get_ddr_phy_ctrl_1(freq, RL_FINAL);
805
806 regs->freq = freq;
807
808 print_timing_reg(regs->sdram_config_init);
809 print_timing_reg(regs->sdram_config);
810 print_timing_reg(regs->ref_ctrl);
811 print_timing_reg(regs->sdram_tim1);
812 print_timing_reg(regs->sdram_tim2);
813 print_timing_reg(regs->sdram_tim3);
814 print_timing_reg(regs->read_idle_ctrl);
815 print_timing_reg(regs->temp_alert_config);
816 print_timing_reg(regs->zq_config);
817 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
818 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
819}
820#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
821
Aneesh V1e463862011-07-21 09:10:15 -0400822#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
823const char *get_lpddr2_type(u8 type_id)
824{
825 switch (type_id) {
826 case LPDDR2_TYPE_S4:
827 return "LPDDR2-S4";
828 case LPDDR2_TYPE_S2:
829 return "LPDDR2-S2";
830 default:
831 return NULL;
832 }
833}
834
835const char *get_lpddr2_io_width(u8 width_id)
836{
837 switch (width_id) {
838 case LPDDR2_IO_WIDTH_8:
839 return "x8";
840 case LPDDR2_IO_WIDTH_16:
841 return "x16";
842 case LPDDR2_IO_WIDTH_32:
843 return "x32";
844 default:
845 return NULL;
846 }
847}
848
849const char *get_lpddr2_manufacturer(u32 manufacturer)
850{
851 switch (manufacturer) {
852 case LPDDR2_MANUFACTURER_SAMSUNG:
853 return "Samsung";
854 case LPDDR2_MANUFACTURER_QIMONDA:
855 return "Qimonda";
856 case LPDDR2_MANUFACTURER_ELPIDA:
857 return "Elpida";
858 case LPDDR2_MANUFACTURER_ETRON:
859 return "Etron";
860 case LPDDR2_MANUFACTURER_NANYA:
861 return "Nanya";
862 case LPDDR2_MANUFACTURER_HYNIX:
863 return "Hynix";
864 case LPDDR2_MANUFACTURER_MOSEL:
865 return "Mosel";
866 case LPDDR2_MANUFACTURER_WINBOND:
867 return "Winbond";
868 case LPDDR2_MANUFACTURER_ESMT:
869 return "ESMT";
870 case LPDDR2_MANUFACTURER_SPANSION:
871 return "Spansion";
872 case LPDDR2_MANUFACTURER_SST:
873 return "SST";
874 case LPDDR2_MANUFACTURER_ZMOS:
875 return "ZMOS";
876 case LPDDR2_MANUFACTURER_INTEL:
877 return "Intel";
878 case LPDDR2_MANUFACTURER_NUMONYX:
879 return "Numonyx";
880 case LPDDR2_MANUFACTURER_MICRON:
881 return "Micron";
882 default:
883 return NULL;
884 }
885}
886
887static void display_sdram_details(u32 emif_nr, u32 cs,
888 struct lpddr2_device_details *device)
889{
890 const char *mfg_str;
891 const char *type_str;
892 char density_str[10];
893 u32 density;
894
895 debug("EMIF%d CS%d\t", emif_nr, cs);
896
897 if (!device) {
898 debug("None\n");
899 return;
900 }
901
902 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
903 type_str = get_lpddr2_type(device->type);
904
905 density = lpddr2_density_2_size_in_mbytes[device->density];
906 if ((density / 1024 * 1024) == density) {
907 density /= 1024;
908 sprintf(density_str, "%d GB", density);
909 } else
910 sprintf(density_str, "%d MB", density);
911 if (mfg_str && type_str)
912 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
913}
914
915static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
916 struct lpddr2_device_details *lpddr2_device)
917{
918 u32 mr = 0, temp;
919
920 mr = get_mr(base, cs, LPDDR2_MR0);
921 if (mr > 0xFF) {
922 /* Mode register value bigger than 8 bit */
923 return 0;
924 }
925
926 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
927 if (temp) {
928 /* Not SDRAM */
929 return 0;
930 }
931 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
932
933 if (temp) {
934 /* DNV supported - But DNV is only supported for NVM */
935 return 0;
936 }
937
938 mr = get_mr(base, cs, LPDDR2_MR4);
939 if (mr > 0xFF) {
940 /* Mode register value bigger than 8 bit */
941 return 0;
942 }
943
944 mr = get_mr(base, cs, LPDDR2_MR5);
Steve Sakomanad0878a2012-05-30 07:38:08 +0000945 if (mr > 0xFF) {
Aneesh V1e463862011-07-21 09:10:15 -0400946 /* Mode register value bigger than 8 bit */
947 return 0;
948 }
949
950 if (!get_lpddr2_manufacturer(mr)) {
951 /* Manufacturer not identified */
952 return 0;
953 }
954 lpddr2_device->manufacturer = mr;
955
956 mr = get_mr(base, cs, LPDDR2_MR6);
957 if (mr >= 0xFF) {
958 /* Mode register value bigger than 8 bit */
959 return 0;
960 }
961
962 mr = get_mr(base, cs, LPDDR2_MR7);
963 if (mr >= 0xFF) {
964 /* Mode register value bigger than 8 bit */
965 return 0;
966 }
967
968 mr = get_mr(base, cs, LPDDR2_MR8);
969 if (mr >= 0xFF) {
970 /* Mode register value bigger than 8 bit */
971 return 0;
972 }
973
974 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
975 if (!get_lpddr2_type(temp)) {
976 /* Not SDRAM */
977 return 0;
978 }
979 lpddr2_device->type = temp;
980
981 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
982 if (temp > LPDDR2_DENSITY_32Gb) {
983 /* Density not supported */
984 return 0;
985 }
986 lpddr2_device->density = temp;
987
988 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
989 if (!get_lpddr2_io_width(temp)) {
990 /* IO width unsupported value */
991 return 0;
992 }
993 lpddr2_device->io_width = temp;
994
995 /*
996 * If all the above tests pass we should
997 * have a device on this chip-select
998 */
999 return 1;
1000}
1001
Aneesh V025bc422011-09-08 11:05:53 -04001002struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
Aneesh V1e463862011-07-21 09:10:15 -04001003 struct lpddr2_device_details *lpddr2_dev_details)
1004{
1005 u32 phy;
Sricharanbb772a52011-11-15 09:50:00 -05001006 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1007
Aneesh V1e463862011-07-21 09:10:15 -04001008 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1009
1010 if (!lpddr2_dev_details)
1011 return NULL;
1012
1013 /* Do the minimum init for mode register accesses */
Lokesh Vutla784229c2012-05-29 19:26:42 +00001014 if (!(running_from_sdram() || warm_reset())) {
Aneesh V1e463862011-07-21 09:10:15 -04001015 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1016 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1017 }
1018
1019 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1020 return NULL;
1021
1022 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1023
1024 return lpddr2_dev_details;
1025}
Aneesh V1e463862011-07-21 09:10:15 -04001026#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1027
Aneesh V2ae610f2011-07-21 09:10:09 -04001028static void do_sdram_init(u32 base)
1029{
1030 const struct emif_regs *regs;
1031 u32 in_sdram, emif_nr;
1032
1033 debug(">>do_sdram_init() %x\n", base);
1034
1035 in_sdram = running_from_sdram();
Sricharanbb772a52011-11-15 09:50:00 -05001036 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
Aneesh V2ae610f2011-07-21 09:10:09 -04001037
Aneesh V095aea22011-07-21 09:10:12 -04001038#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001039 emif_get_reg_dump(emif_nr, &regs);
1040 if (!regs) {
1041 debug("EMIF: reg dump not provided\n");
1042 return;
1043 }
Aneesh V095aea22011-07-21 09:10:12 -04001044#else
1045 /*
1046 * The user has not provided the register values. We need to
1047 * calculate it based on the timings and the DDR frequency
1048 */
1049 struct emif_device_details dev_details;
1050 struct emif_regs calculated_regs;
1051
1052 /*
1053 * Get device details:
1054 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1055 * - Obtained from user otherwise
1056 */
1057 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
Aneesh V025bc422011-09-08 11:05:53 -04001058 emif_reset_phy(base);
Aneesh V4324c112011-11-21 23:39:02 +00001059 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
Aneesh V025bc422011-09-08 11:05:53 -04001060 &cs0_dev_details);
Aneesh V4324c112011-11-21 23:39:02 +00001061 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
Aneesh V025bc422011-09-08 11:05:53 -04001062 &cs1_dev_details);
1063 emif_reset_phy(base);
Aneesh V095aea22011-07-21 09:10:12 -04001064
1065 /* Return if no devices on this EMIF */
1066 if (!dev_details.cs0_device_details &&
1067 !dev_details.cs1_device_details) {
1068 emif_sizes[emif_nr - 1] = 0;
1069 return;
1070 }
1071
1072 if (!in_sdram)
1073 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1074
1075 /*
1076 * Get device timings:
1077 * - Default timings specified by JESD209-2 if
1078 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1079 * - Obtained from user otherwise
1080 */
1081 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1082 &dev_details.cs1_device_timings);
1083
1084 /* Calculate the register values */
Sricharan2e5ba482011-11-15 09:49:58 -05001085 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
Aneesh V095aea22011-07-21 09:10:12 -04001086 regs = &calculated_regs;
1087#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
Aneesh V2ae610f2011-07-21 09:10:09 -04001088
1089 /*
1090 * Initializing the LPDDR2 device can not happen from SDRAM.
1091 * Changing the timing registers in EMIF can happen(going from one
1092 * OPP to another)
1093 */
Lokesh Vutla784229c2012-05-29 19:26:42 +00001094 if (!(in_sdram || warm_reset())) {
Lokesh Vutla9ca8bfe2013-02-04 04:21:59 +00001095 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutla784ab7c2012-05-22 00:03:25 +00001096 lpddr2_init(base, regs);
1097 else
1098 ddr3_init(base, regs);
1099 }
Aneesh V2ae610f2011-07-21 09:10:09 -04001100
1101 /* Write to the shadow registers */
1102 emif_update_timings(base, regs);
1103
1104 debug("<<do_sdram_init() %x\n", base);
1105}
1106
Sricharanbb772a52011-11-15 09:50:00 -05001107void emif_post_init_config(u32 base)
Aneesh V2ae610f2011-07-21 09:10:09 -04001108{
1109 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Sricharanbb772a52011-11-15 09:50:00 -05001110 u32 omap_rev = omap_revision();
1111
1112 if (omap_rev == OMAP5430_ES1_0)
1113 return;
Aneesh V2ae610f2011-07-21 09:10:09 -04001114
1115 /* reset phy on ES2.0 */
Sricharanbb772a52011-11-15 09:50:00 -05001116 if (omap_rev == OMAP4430_ES2_0)
Aneesh V2ae610f2011-07-21 09:10:09 -04001117 emif_reset_phy(base);
1118
1119 /* Put EMIF back in smart idle on ES1.0 */
Sricharanbb772a52011-11-15 09:50:00 -05001120 if (omap_rev == OMAP4430_ES1_0)
Aneesh V2ae610f2011-07-21 09:10:09 -04001121 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1122}
1123
Sricharanbb772a52011-11-15 09:50:00 -05001124void dmm_init(u32 base)
Aneesh V2ae610f2011-07-21 09:10:09 -04001125{
1126 const struct dmm_lisa_map_regs *lisa_map_regs;
Lokesh Vutla86021142012-11-15 21:06:33 +00001127 u32 i, section, valid;
Aneesh V2ae610f2011-07-21 09:10:09 -04001128
Aneesh V095aea22011-07-21 09:10:12 -04001129#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001130 emif_get_dmm_regs(&lisa_map_regs);
Aneesh V095aea22011-07-21 09:10:12 -04001131#else
1132 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1133 u32 section_cnt, sys_addr;
1134 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
Aneesh V2ae610f2011-07-21 09:10:09 -04001135
Aneesh V095aea22011-07-21 09:10:12 -04001136 mapped_size = 0;
1137 section_cnt = 3;
1138 sys_addr = CONFIG_SYS_SDRAM_BASE;
1139 emif1_size = emif_sizes[0];
1140 emif2_size = emif_sizes[1];
1141 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1142
1143 if (!emif1_size && !emif2_size)
1144 return;
1145
1146 /* symmetric interleaved section */
1147 if (emif1_size && emif2_size) {
1148 mapped_size = min(emif1_size, emif2_size);
1149 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
Sricharanbb772a52011-11-15 09:50:00 -05001150 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001151 /* only MSB */
1152 section_map |= (sys_addr >> 24) <<
Sricharanbb772a52011-11-15 09:50:00 -05001153 EMIF_SYS_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001154 section_map |= get_dmm_section_size_map(mapped_size * 2)
Sricharanbb772a52011-11-15 09:50:00 -05001155 << EMIF_SYS_SIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001156 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1157 emif1_size -= mapped_size;
1158 emif2_size -= mapped_size;
1159 sys_addr += (mapped_size * 2);
1160 section_cnt--;
1161 }
1162
1163 /*
1164 * Single EMIF section(we can have a maximum of 1 single EMIF
1165 * section- either EMIF1 or EMIF2 or none, but not both)
1166 */
1167 if (emif1_size) {
1168 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1169 section_map |= get_dmm_section_size_map(emif1_size)
Sricharanbb772a52011-11-15 09:50:00 -05001170 << EMIF_SYS_SIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001171 /* only MSB */
1172 section_map |= (mapped_size >> 24) <<
Sricharanbb772a52011-11-15 09:50:00 -05001173 EMIF_SDRC_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001174 /* only MSB */
Sricharanbb772a52011-11-15 09:50:00 -05001175 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001176 section_cnt--;
1177 }
1178 if (emif2_size) {
1179 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1180 section_map |= get_dmm_section_size_map(emif2_size) <<
Sricharanbb772a52011-11-15 09:50:00 -05001181 EMIF_SYS_SIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001182 /* only MSB */
Sricharanbb772a52011-11-15 09:50:00 -05001183 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001184 /* only MSB */
Sricharanbb772a52011-11-15 09:50:00 -05001185 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001186 section_cnt--;
1187 }
1188
1189 if (section_cnt == 2) {
1190 /* Only 1 section - either symmetric or single EMIF */
1191 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1192 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1193 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1194 } else {
1195 /* 2 sections - 1 symmetric, 1 single EMIF */
1196 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1197 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1198 }
1199
1200 /* TRAP for invalid TILER mappings in section 0 */
1201 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1202
1203 lisa_map_regs = &lis_map_regs_calculated;
1204#endif
Aneesh V2ae610f2011-07-21 09:10:09 -04001205 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1206 (struct dmm_lisa_map_regs *)base;
1207
1208 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1209 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1210 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1211 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1212
1213 writel(lisa_map_regs->dmm_lisa_map_3,
1214 &hw_lisa_map_regs->dmm_lisa_map_3);
1215 writel(lisa_map_regs->dmm_lisa_map_2,
1216 &hw_lisa_map_regs->dmm_lisa_map_2);
1217 writel(lisa_map_regs->dmm_lisa_map_1,
1218 &hw_lisa_map_regs->dmm_lisa_map_1);
1219 writel(lisa_map_regs->dmm_lisa_map_0,
1220 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V924eb362011-07-21 09:29:26 -04001221
1222 if (omap_revision() >= OMAP4460_ES1_0) {
1223 hw_lisa_map_regs =
Sricharanbb772a52011-11-15 09:50:00 -05001224 (struct dmm_lisa_map_regs *)MA_BASE;
Aneesh V924eb362011-07-21 09:29:26 -04001225
1226 writel(lisa_map_regs->dmm_lisa_map_3,
1227 &hw_lisa_map_regs->dmm_lisa_map_3);
1228 writel(lisa_map_regs->dmm_lisa_map_2,
1229 &hw_lisa_map_regs->dmm_lisa_map_2);
1230 writel(lisa_map_regs->dmm_lisa_map_1,
1231 &hw_lisa_map_regs->dmm_lisa_map_1);
1232 writel(lisa_map_regs->dmm_lisa_map_0,
1233 &hw_lisa_map_regs->dmm_lisa_map_0);
1234 }
Lokesh Vutla86021142012-11-15 21:06:33 +00001235
1236 /*
1237 * EMIF should be configured only when
1238 * memory is mapped on it. Using emif1_enabled
1239 * and emif2_enabled variables for this.
1240 */
1241 emif1_enabled = 0;
1242 emif2_enabled = 0;
1243 for (i = 0; i < 4; i++) {
1244 section = __raw_readl(DMM_BASE + i*4);
1245 valid = (section & EMIF_SDRC_MAP_MASK) >>
1246 (EMIF_SDRC_MAP_SHIFT);
1247 if (valid == 3) {
1248 emif1_enabled = 1;
1249 emif2_enabled = 1;
1250 break;
1251 } else if (valid == 1) {
1252 emif1_enabled = 1;
1253 } else if (valid == 2) {
1254 emif2_enabled = 1;
1255 }
1256 }
1257
Aneesh V2ae610f2011-07-21 09:10:09 -04001258}
1259
1260/*
1261 * SDRAM initialization:
1262 * SDRAM initialization has two parts:
1263 * 1. Configuring the SDRAM device
1264 * 2. Update the AC timings related parameters in the EMIF module
1265 * (1) should be done only once and should not be done while we are
1266 * running from SDRAM.
1267 * (2) can and should be done more than once if OPP changes.
1268 * Particularly, this may be needed when we boot without SPL and
1269 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1270 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1271 * the frequency. So,
1272 * Doing (1) and (2) makes sense - first time initialization
1273 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1274 * Doing (1) and not (2) doen't make sense
1275 * See do_sdram_init() for the details
1276 */
1277void sdram_init(void)
1278{
1279 u32 in_sdram, size_prog, size_detect;
Lokesh Vutla9ca8bfe2013-02-04 04:21:59 +00001280 u32 sdram_type = emif_sdram_type();
Aneesh V2ae610f2011-07-21 09:10:09 -04001281
1282 debug(">>sdram_init()\n");
1283
Sricharan508a58f2011-11-15 09:49:55 -05001284 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
Aneesh V2ae610f2011-07-21 09:10:09 -04001285 return;
1286
1287 in_sdram = running_from_sdram();
1288 debug("in_sdram = %d\n", in_sdram);
1289
Lokesh Vutla784229c2012-05-29 19:26:42 +00001290 if (!(in_sdram || warm_reset())) {
Lokesh Vutla9ca8bfe2013-02-04 04:21:59 +00001291 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutla753bae82012-05-22 00:03:26 +00001292 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1293 else
1294 writel(CM_DLL_CTRL_NO_OVERRIDE, &prcm->cm_dll_ctrl);
1295 }
Aneesh V2ae610f2011-07-21 09:10:09 -04001296
Lokesh Vutla784229c2012-05-29 19:26:42 +00001297 if (!in_sdram)
Sricharanbb772a52011-11-15 09:50:00 -05001298 dmm_init(DMM_BASE);
Lokesh Vutla784229c2012-05-29 19:26:42 +00001299
Lokesh Vutla86021142012-11-15 21:06:33 +00001300 if (emif1_enabled)
1301 do_sdram_init(EMIF1_BASE);
1302
1303 if (emif2_enabled)
1304 do_sdram_init(EMIF2_BASE);
1305
Lokesh Vutla784229c2012-05-29 19:26:42 +00001306 if (!(in_sdram || warm_reset())) {
Lokesh Vutla86021142012-11-15 21:06:33 +00001307 if (emif1_enabled)
1308 emif_post_init_config(EMIF1_BASE);
1309 if (emif2_enabled)
1310 emif_post_init_config(EMIF2_BASE);
Aneesh V2ae610f2011-07-21 09:10:09 -04001311 }
1312
1313 /* for the shadow registers to take effect */
Lokesh Vutla9ca8bfe2013-02-04 04:21:59 +00001314 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutla753bae82012-05-22 00:03:26 +00001315 freq_update_core();
Aneesh V2ae610f2011-07-21 09:10:09 -04001316
1317 /* Do some testing after the init */
1318 if (!in_sdram) {
Sricharan508a58f2011-11-15 09:49:55 -05001319 size_prog = omap_sdram_size();
SRICHARAN R41321fd2012-05-17 00:12:08 +00001320 size_prog = log_2_n_round_down(size_prog);
1321 size_prog = (1 << size_prog);
1322
Aneesh V2ae610f2011-07-21 09:10:09 -04001323 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1324 size_prog);
1325 /* Compare with the size programmed */
1326 if (size_detect != size_prog) {
1327 printf("SDRAM: identified size not same as expected"
1328 " size identified: %x expected: %x\n",
1329 size_detect,
1330 size_prog);
1331 } else
1332 debug("get_ram_size() successful");
1333 }
1334
1335 debug("<<sdram_init()\n");
1336}