blob: 846511d03bded902feee0414028da15f88cfd123 [file] [log] [blame]
Aneesh V2ae610f2011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
Sricharanbb772a52011-11-15 09:50:00 -050029#include <asm/emif.h>
Aneesh V2ae610f2011-07-21 09:10:09 -040030#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
34
Sricharanbb772a52011-11-15 09:50:00 -050035inline u32 emif_num(u32 base)
Aneesh V2ae610f2011-07-21 09:10:09 -040036{
Sricharanbb772a52011-11-15 09:50:00 -050037 if (base == EMIF1_BASE)
Aneesh V2ae610f2011-07-21 09:10:09 -040038 return 1;
Sricharanbb772a52011-11-15 09:50:00 -050039 else if (base == EMIF2_BASE)
Aneesh V2ae610f2011-07-21 09:10:09 -040040 return 2;
41 else
42 return 0;
43}
44
Sricharanbb772a52011-11-15 09:50:00 -050045
Aneesh V2ae610f2011-07-21 09:10:09 -040046static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
47{
48 u32 mr;
49 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
50
Sricharanbb772a52011-11-15 09:50:00 -050051 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh V2ae610f2011-07-21 09:10:09 -040052 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
53 if (omap_revision() == OMAP4430_ES2_0)
54 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
55 else
56 mr = readl(&emif->emif_lpddr2_mode_reg_data);
57 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
58 cs, mr_addr, mr);
59 return mr;
60}
61
62static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
63{
64 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
65
Sricharanbb772a52011-11-15 09:50:00 -050066 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh V2ae610f2011-07-21 09:10:09 -040067 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
68 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
69}
70
71void emif_reset_phy(u32 base)
72{
73 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
74 u32 iodft;
75
76 iodft = readl(&emif->emif_iodft_tlgc);
Sricharanbb772a52011-11-15 09:50:00 -050077 iodft |= EMIF_REG_RESET_PHY_MASK;
Aneesh V2ae610f2011-07-21 09:10:09 -040078 writel(iodft, &emif->emif_iodft_tlgc);
79}
80
81static void do_lpddr2_init(u32 base, u32 cs)
82{
83 u32 mr_addr;
84
85 /* Wait till device auto initialization is complete */
86 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
87 ;
88 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
89 /*
90 * tZQINIT = 1 us
91 * Enough loops assuming a maximum of 2GHz
92 */
SRICHARAN Rf4010732012-03-12 02:25:37 +000093
Aneesh V2ae610f2011-07-21 09:10:09 -040094 sdelay(2000);
SRICHARAN Rf4010732012-03-12 02:25:37 +000095
96 if (omap_revision() >= OMAP5430_ES1_0)
97 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8);
98 else
99 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
100
Aneesh V2ae610f2011-07-21 09:10:09 -0400101 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000102
Aneesh V2ae610f2011-07-21 09:10:09 -0400103 /*
104 * Enable refresh along with writing MR2
105 * Encoding of RL in MR2 is (RL - 2)
106 */
Sricharanbb772a52011-11-15 09:50:00 -0500107 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
Aneesh V2ae610f2011-07-21 09:10:09 -0400108 set_mr(base, cs, mr_addr, RL_FINAL - 2);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000109
110 if (omap_revision() >= OMAP5430_ES1_0)
111 set_mr(base, cs, LPDDR2_MR3, 0x1);
Aneesh V2ae610f2011-07-21 09:10:09 -0400112}
113
114static void lpddr2_init(u32 base, const struct emif_regs *regs)
115{
116 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
SRICHARAN Rf4010732012-03-12 02:25:37 +0000117 u32 *ext_phy_ctrl_base = 0;
118 u32 *emif_ext_phy_ctrl_base = 0;
119 u32 i = 0;
Aneesh V2ae610f2011-07-21 09:10:09 -0400120
121 /* Not NVM */
Sricharanbb772a52011-11-15 09:50:00 -0500122 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
Aneesh V2ae610f2011-07-21 09:10:09 -0400123
124 /*
125 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
126 * when EMIF_SDRAM_CONFIG register is written
127 */
Sricharanbb772a52011-11-15 09:50:00 -0500128 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh V2ae610f2011-07-21 09:10:09 -0400129
130 /*
131 * Set the SDRAM_CONFIG and PHY_CTRL for the
132 * un-locked frequency & default RL
133 */
134 writel(regs->sdram_config_init, &emif->emif_sdram_config);
SRICHARAN Rf4010732012-03-12 02:25:37 +0000135 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
136
137 ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
138 emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
139
140 if (omap_revision() >= OMAP5430_ES1_0) {
141 /* Configure external phy control timing registers */
142 for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
143 writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
144 /* Update shadow registers */
145 writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
146 }
147
148 /*
149 * external phy 6-24 registers do not change with
150 * ddr frequency
151 */
152 for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) {
153 writel(ext_phy_ctrl_const_base[i],
154 emif_ext_phy_ctrl_base++);
155 /* Update shadow registers */
156 writel(ext_phy_ctrl_const_base[i],
157 emif_ext_phy_ctrl_base++);
158 }
159 }
Aneesh V2ae610f2011-07-21 09:10:09 -0400160
161 do_lpddr2_init(base, CS0);
Sricharanbb772a52011-11-15 09:50:00 -0500162 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
Aneesh V2ae610f2011-07-21 09:10:09 -0400163 do_lpddr2_init(base, CS1);
164
165 writel(regs->sdram_config, &emif->emif_sdram_config);
166 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
167
168 /* Enable refresh now */
Sricharanbb772a52011-11-15 09:50:00 -0500169 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh V2ae610f2011-07-21 09:10:09 -0400170
171}
172
Sricharanbb772a52011-11-15 09:50:00 -0500173void emif_update_timings(u32 base, const struct emif_regs *regs)
Aneesh V2ae610f2011-07-21 09:10:09 -0400174{
175 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
176
177 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
178 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
179 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
180 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
181 if (omap_revision() == OMAP4430_ES1_0) {
182 /* ES1 bug EMIF should be in force idle during freq_update */
183 writel(0, &emif->emif_pwr_mgmt_ctrl);
184 } else {
185 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
186 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
187 }
188 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
189 writel(regs->zq_config, &emif->emif_zq_config);
190 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
191 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V924eb362011-07-21 09:29:26 -0400192
Lokesh Vutla784ab7c2012-05-22 00:03:25 +0000193 if (omap_revision() >= OMAP5430_ES1_0) {
Sricharanbb772a52011-11-15 09:50:00 -0500194 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
195 &emif->emif_l3_config);
196 } else if (omap_revision() >= OMAP4460_ES1_0) {
Aneesh V924eb362011-07-21 09:29:26 -0400197 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
198 &emif->emif_l3_config);
199 } else {
200 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
201 &emif->emif_l3_config);
Aneesh V2ae610f2011-07-21 09:10:09 -0400202 }
203}
204
Lokesh Vutla784ab7c2012-05-22 00:03:25 +0000205static void ddr3_leveling(u32 base, const struct emif_regs *regs)
206{
207 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
208
209 /* keep sdram in self-refresh */
210 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
211 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
212 __udelay(130);
213
214 /*
215 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
216 * Invert clock adds an additional half cycle delay on the command
217 * interface. The additional half cycle, is usually meant to enable
218 * leveling in the situation that DQS is later than CK on the board.It
219 * also helps provide some additional margin for leveling.
220 */
221 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
222 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
223 __udelay(130);
224
225 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
226 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
227
228 /* Launch Full leveling */
229 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
230
231 /* Wait till full leveling is complete */
232 readl(&emif->emif_rd_wr_lvl_ctl);
233 __udelay(130);
234
235 /* Read data eye leveling no of samples */
236 config_data_eye_leveling_samples(base);
237
238 /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
239 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
240 __udelay(130);
241
242 /* Launch Incremental leveling */
243 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
244 __udelay(130);
245}
246
247static void ddr3_init(u32 base, const struct emif_regs *regs)
248{
249 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
250 u32 *ext_phy_ctrl_base = 0;
251 u32 *emif_ext_phy_ctrl_base = 0;
252 u32 i = 0;
253
254 /*
255 * Set SDRAM_CONFIG and PHY control registers to locked frequency
256 * and RL =7. As the default values of the Mode Registers are not
257 * defined, contents of mode Registers must be fully initialized.
258 * H/W takes care of this initialization
259 */
260 writel(regs->sdram_config_init, &emif->emif_sdram_config);
261
262 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
263
264 /* Update timing registers */
265 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
266 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
267 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
268
269 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
270 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
271
272 ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
273 emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
274
275 /* Configure external phy control timing registers */
276 for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
277 writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
278 /* Update shadow registers */
279 writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
280 }
281
282 /*
283 * external phy 6-24 registers do not change with
284 * ddr frequency
285 */
286 for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) {
287 writel(ddr3_ext_phy_ctrl_const_base[i],
288 emif_ext_phy_ctrl_base++);
289 /* Update shadow registers */
290 writel(ddr3_ext_phy_ctrl_const_base[i],
291 emif_ext_phy_ctrl_base++);
292 }
293
294 /* enable leveling */
295 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
296
297 ddr3_leveling(base, regs);
298}
299
Aneesh V095aea22011-07-21 09:10:12 -0400300#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
301#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
302
Aneesh V095aea22011-07-21 09:10:12 -0400303/*
304 * Organization and refresh requirements for LPDDR2 devices of different
305 * types and densities. Derived from JESD209-2 section 2.4
306 */
307const struct lpddr2_addressing addressing_table[] = {
308 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
309 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
310 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
311 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
312 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
313 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
314 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
315 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
316 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
317 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
318 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
319};
320
321static const u32 lpddr2_density_2_size_in_mbytes[] = {
322 8, /* 64Mb */
323 16, /* 128Mb */
324 32, /* 256Mb */
325 64, /* 512Mb */
326 128, /* 1Gb */
327 256, /* 2Gb */
328 512, /* 4Gb */
329 1024, /* 8Gb */
330 2048, /* 16Gb */
331 4096 /* 32Gb */
332};
333
334/*
335 * Calculate the period of DDR clock from frequency value and set the
336 * denominator and numerator in global variables for easy access later
337 */
338static void set_ddr_clk_period(u32 freq)
339{
340 /*
341 * period = 1/freq
342 * period_in_ns = 10^9/freq
343 */
344 *T_num = 1000000000;
345 *T_den = freq;
346 cancel_out(T_num, T_den, 200);
347
348}
349
350/*
351 * Convert time in nano seconds to number of cycles of DDR clock
352 */
353static inline u32 ns_2_cycles(u32 ns)
354{
355 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
356}
357
358/*
359 * ns_2_cycles with the difference that the time passed is 2 times the actual
360 * value(to avoid fractions). The cycles returned is for the original value of
361 * the timing parameter
362 */
363static inline u32 ns_x2_2_cycles(u32 ns)
364{
365 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
366}
367
368/*
369 * Find addressing table index based on the device's type(S2 or S4) and
370 * density
371 */
372s8 addressing_table_index(u8 type, u8 density, u8 width)
373{
374 u8 index;
375 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
376 return -1;
377
378 /*
379 * Look at the way ADDR_TABLE_INDEX* values have been defined
380 * in emif.h compared to LPDDR2_DENSITY_* values
381 * The table is layed out in the increasing order of density
382 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
383 * at the end
384 */
385 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
386 index = ADDR_TABLE_INDEX1GS2;
387 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
388 index = ADDR_TABLE_INDEX2GS2;
389 else
390 index = density;
391
392 debug("emif: addressing table index %d\n", index);
393
394 return index;
395}
396
397/*
398 * Find the the right timing table from the array of timing
399 * tables of the device using DDR clock frequency
400 */
401static const struct lpddr2_ac_timings *get_timings_table(const struct
402 lpddr2_ac_timings const *const *device_timings,
403 u32 freq)
404{
405 u32 i, temp, freq_nearest;
406 const struct lpddr2_ac_timings *timings = 0;
407
408 emif_assert(freq <= MAX_LPDDR2_FREQ);
409 emif_assert(device_timings);
410
411 /*
412 * Start with the maximum allowed frequency - that is always safe
413 */
414 freq_nearest = MAX_LPDDR2_FREQ;
415 /*
416 * Find the timings table that has the max frequency value:
417 * i. Above or equal to the DDR frequency - safe
418 * ii. The lowest that satisfies condition (i) - optimal
419 */
420 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
421 temp = device_timings[i]->max_freq;
422 if ((temp >= freq) && (temp <= freq_nearest)) {
423 freq_nearest = temp;
424 timings = device_timings[i];
425 }
426 }
427 debug("emif: timings table: %d\n", freq_nearest);
428 return timings;
429}
430
431/*
432 * Finds the value of emif_sdram_config_reg
433 * All parameters are programmed based on the device on CS0.
434 * If there is a device on CS1, it will be same as that on CS0 or
435 * it will be NVM. We don't support NVM yet.
436 * If cs1_device pointer is NULL it is assumed that there is no device
437 * on CS1
438 */
439static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
440 const struct lpddr2_device_details *cs1_device,
441 const struct lpddr2_addressing *addressing,
442 u8 RL)
443{
444 u32 config_reg = 0;
445
Sricharanbb772a52011-11-15 09:50:00 -0500446 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400447 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
Sricharanbb772a52011-11-15 09:50:00 -0500448 EMIF_REG_IBANK_POS_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400449
Sricharanbb772a52011-11-15 09:50:00 -0500450 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400451
Sricharanbb772a52011-11-15 09:50:00 -0500452 config_reg |= RL << EMIF_REG_CL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400453
454 config_reg |= addressing->row_sz[cs0_device->io_width] <<
Sricharanbb772a52011-11-15 09:50:00 -0500455 EMIF_REG_ROWSIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400456
Sricharanbb772a52011-11-15 09:50:00 -0500457 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400458
459 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
Sricharanbb772a52011-11-15 09:50:00 -0500460 EMIF_REG_EBANK_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400461
462 config_reg |= addressing->col_sz[cs0_device->io_width] <<
Sricharanbb772a52011-11-15 09:50:00 -0500463 EMIF_REG_PAGESIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400464
465 return config_reg;
466}
467
468static u32 get_sdram_ref_ctrl(u32 freq,
469 const struct lpddr2_addressing *addressing)
470{
471 u32 ref_ctrl = 0, val = 0, freq_khz;
472 freq_khz = freq / 1000;
473 /*
474 * refresh rate to be set is 'tREFI * freq in MHz
475 * division by 10000 to account for khz and x10 in t_REFI_us_x10
476 */
477 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
Sricharanbb772a52011-11-15 09:50:00 -0500478 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400479
480 return ref_ctrl;
481}
482
483static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
484 const struct lpddr2_min_tck *min_tck,
485 const struct lpddr2_addressing *addressing)
486{
487 u32 tim1 = 0, val = 0;
488 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500489 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400490
491 if (addressing->num_banks == BANKS8)
492 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
493 (4 * (*T_num)) - 1;
494 else
495 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
496
Sricharanbb772a52011-11-15 09:50:00 -0500497 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400498
499 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500500 tim1 |= val << EMIF_REG_T_RC_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400501
502 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500503 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400504
505 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500506 tim1 |= val << EMIF_REG_T_WR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400507
508 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500509 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400510
511 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500512 tim1 |= val << EMIF_REG_T_RP_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400513
514 return tim1;
515}
516
517static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
518 const struct lpddr2_min_tck *min_tck)
519{
520 u32 tim2 = 0, val = 0;
521 val = max(min_tck->tCKE, timings->tCKE) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500522 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400523
524 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500525 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400526
527 /*
528 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
529 * same value
530 */
531 val = ns_2_cycles(timings->tXSR) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500532 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
533 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400534
535 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500536 tim2 |= val << EMIF_REG_T_XP_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400537
538 return tim2;
539}
540
541static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
542 const struct lpddr2_min_tck *min_tck,
543 const struct lpddr2_addressing *addressing)
544{
545 u32 tim3 = 0, val = 0;
546 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
Sricharanbb772a52011-11-15 09:50:00 -0500547 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400548
549 val = ns_2_cycles(timings->tRFCab) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500550 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400551
552 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500553 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400554
555 val = ns_2_cycles(timings->tZQCS) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500556 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400557
558 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
Sricharanbb772a52011-11-15 09:50:00 -0500559 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400560
561 return tim3;
562}
563
564static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
565 const struct lpddr2_addressing *addressing,
566 u8 volt_ramp)
567{
568 u32 zq = 0, val = 0;
569 if (volt_ramp)
570 val =
571 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
572 addressing->t_REFI_us_x10;
573 else
574 val =
575 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
576 addressing->t_REFI_us_x10;
Sricharanbb772a52011-11-15 09:50:00 -0500577 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400578
Sricharanbb772a52011-11-15 09:50:00 -0500579 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400580
Sricharanbb772a52011-11-15 09:50:00 -0500581 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400582
Sricharanbb772a52011-11-15 09:50:00 -0500583 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400584
585 /*
586 * Assuming that two chipselects have a single calibration resistor
587 * If there are indeed two calibration resistors, then this flag should
588 * be enabled to take advantage of dual calibration feature.
589 * This data should ideally come from board files. But considering
590 * that none of the boards today have calibration resistors per CS,
591 * it would be an unnecessary overhead.
592 */
Sricharanbb772a52011-11-15 09:50:00 -0500593 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400594
Sricharanbb772a52011-11-15 09:50:00 -0500595 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400596
Sricharanbb772a52011-11-15 09:50:00 -0500597 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400598
599 return zq;
600}
601
602static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
603 const struct lpddr2_addressing *addressing,
604 u8 is_derated)
605{
606 u32 alert = 0, interval;
607 interval =
608 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
609 if (is_derated)
610 interval *= 4;
Sricharanbb772a52011-11-15 09:50:00 -0500611 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400612
Sricharanbb772a52011-11-15 09:50:00 -0500613 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400614
Sricharanbb772a52011-11-15 09:50:00 -0500615 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400616
Sricharanbb772a52011-11-15 09:50:00 -0500617 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400618
Sricharanbb772a52011-11-15 09:50:00 -0500619 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400620
Sricharanbb772a52011-11-15 09:50:00 -0500621 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400622
623 return alert;
624}
625
626static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
627{
628 u32 idle = 0, val = 0;
629 if (volt_ramp)
Aneesh V924eb362011-07-21 09:29:26 -0400630 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh V095aea22011-07-21 09:10:12 -0400631 else
632 /*Maximum value in normal conditions - suggested by hw team */
633 val = 0x1FF;
Sricharanbb772a52011-11-15 09:50:00 -0500634 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400635
Sricharanbb772a52011-11-15 09:50:00 -0500636 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400637
638 return idle;
639}
640
641static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
642{
643 u32 phy = 0, val = 0;
644
Sricharanbb772a52011-11-15 09:50:00 -0500645 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400646
647 if (freq <= 100000000)
648 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
649 else if (freq <= 200000000)
650 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
651 else
652 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
Sricharanbb772a52011-11-15 09:50:00 -0500653 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400654
655 /* Other fields are constant magic values. Hardcode them together */
656 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
Sricharanbb772a52011-11-15 09:50:00 -0500657 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -0400658
659 return phy;
660}
661
662static u32 get_emif_mem_size(struct emif_device_details *devices)
663{
664 u32 size_mbytes = 0, temp;
665
666 if (!devices)
667 return 0;
668
669 if (devices->cs0_device_details) {
670 temp = devices->cs0_device_details->density;
671 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
672 }
673
674 if (devices->cs1_device_details) {
675 temp = devices->cs1_device_details->density;
676 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
677 }
678 /* convert to bytes */
679 return size_mbytes << 20;
680}
681
682/* Gets the encoding corresponding to a given DMM section size */
683u32 get_dmm_section_size_map(u32 section_size)
684{
685 /*
686 * Section size mapping:
687 * 0x0: 16-MiB section
688 * 0x1: 32-MiB section
689 * 0x2: 64-MiB section
690 * 0x3: 128-MiB section
691 * 0x4: 256-MiB section
692 * 0x5: 512-MiB section
693 * 0x6: 1-GiB section
694 * 0x7: 2-GiB section
695 */
696 section_size >>= 24; /* divide by 16 MB */
697 return log_2_n_round_down(section_size);
698}
699
700static void emif_calculate_regs(
701 const struct emif_device_details *emif_dev_details,
702 u32 freq, struct emif_regs *regs)
703{
704 u32 temp, sys_freq;
705 const struct lpddr2_addressing *addressing;
706 const struct lpddr2_ac_timings *timings;
707 const struct lpddr2_min_tck *min_tck;
708 const struct lpddr2_device_details *cs0_dev_details =
709 emif_dev_details->cs0_device_details;
710 const struct lpddr2_device_details *cs1_dev_details =
711 emif_dev_details->cs1_device_details;
712 const struct lpddr2_device_timings *cs0_dev_timings =
713 emif_dev_details->cs0_device_timings;
714
715 emif_assert(emif_dev_details);
716 emif_assert(regs);
717 /*
718 * You can not have a device on CS1 without one on CS0
719 * So configuring EMIF without a device on CS0 doesn't
720 * make sense
721 */
722 emif_assert(cs0_dev_details);
723 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
724 /*
725 * If there is a device on CS1 it should be same type as CS0
726 * (or NVM. But NVM is not supported in this driver yet)
727 */
728 emif_assert((cs1_dev_details == NULL) ||
729 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
730 (cs0_dev_details->type == cs1_dev_details->type));
731 emif_assert(freq <= MAX_LPDDR2_FREQ);
732
733 set_ddr_clk_period(freq);
734
735 /*
736 * The device on CS0 is used for all timing calculations
737 * There is only one set of registers for timings per EMIF. So, if the
738 * second CS(CS1) has a device, it should have the same timings as the
739 * device on CS0
740 */
741 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
742 emif_assert(timings);
743 min_tck = cs0_dev_timings->min_tck;
744
745 temp = addressing_table_index(cs0_dev_details->type,
746 cs0_dev_details->density,
747 cs0_dev_details->io_width);
748
749 emif_assert((temp >= 0));
750 addressing = &(addressing_table[temp]);
751 emif_assert(addressing);
752
753 sys_freq = get_sys_clk_freq();
754
755 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
756 cs1_dev_details,
757 addressing, RL_BOOT);
758
759 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
760 cs1_dev_details,
761 addressing, RL_FINAL);
762
763 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
764
765 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
766
767 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
768
769 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
770
771 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
772
773 regs->temp_alert_config =
774 get_temp_alert_config(cs1_dev_details, addressing, 0);
775
776 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
777 LPDDR2_VOLTAGE_STABLE);
778
779 regs->emif_ddr_phy_ctlr_1_init =
780 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
781
782 regs->emif_ddr_phy_ctlr_1 =
783 get_ddr_phy_ctrl_1(freq, RL_FINAL);
784
785 regs->freq = freq;
786
787 print_timing_reg(regs->sdram_config_init);
788 print_timing_reg(regs->sdram_config);
789 print_timing_reg(regs->ref_ctrl);
790 print_timing_reg(regs->sdram_tim1);
791 print_timing_reg(regs->sdram_tim2);
792 print_timing_reg(regs->sdram_tim3);
793 print_timing_reg(regs->read_idle_ctrl);
794 print_timing_reg(regs->temp_alert_config);
795 print_timing_reg(regs->zq_config);
796 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
797 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
798}
799#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
800
Aneesh V1e463862011-07-21 09:10:15 -0400801#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
802const char *get_lpddr2_type(u8 type_id)
803{
804 switch (type_id) {
805 case LPDDR2_TYPE_S4:
806 return "LPDDR2-S4";
807 case LPDDR2_TYPE_S2:
808 return "LPDDR2-S2";
809 default:
810 return NULL;
811 }
812}
813
814const char *get_lpddr2_io_width(u8 width_id)
815{
816 switch (width_id) {
817 case LPDDR2_IO_WIDTH_8:
818 return "x8";
819 case LPDDR2_IO_WIDTH_16:
820 return "x16";
821 case LPDDR2_IO_WIDTH_32:
822 return "x32";
823 default:
824 return NULL;
825 }
826}
827
828const char *get_lpddr2_manufacturer(u32 manufacturer)
829{
830 switch (manufacturer) {
831 case LPDDR2_MANUFACTURER_SAMSUNG:
832 return "Samsung";
833 case LPDDR2_MANUFACTURER_QIMONDA:
834 return "Qimonda";
835 case LPDDR2_MANUFACTURER_ELPIDA:
836 return "Elpida";
837 case LPDDR2_MANUFACTURER_ETRON:
838 return "Etron";
839 case LPDDR2_MANUFACTURER_NANYA:
840 return "Nanya";
841 case LPDDR2_MANUFACTURER_HYNIX:
842 return "Hynix";
843 case LPDDR2_MANUFACTURER_MOSEL:
844 return "Mosel";
845 case LPDDR2_MANUFACTURER_WINBOND:
846 return "Winbond";
847 case LPDDR2_MANUFACTURER_ESMT:
848 return "ESMT";
849 case LPDDR2_MANUFACTURER_SPANSION:
850 return "Spansion";
851 case LPDDR2_MANUFACTURER_SST:
852 return "SST";
853 case LPDDR2_MANUFACTURER_ZMOS:
854 return "ZMOS";
855 case LPDDR2_MANUFACTURER_INTEL:
856 return "Intel";
857 case LPDDR2_MANUFACTURER_NUMONYX:
858 return "Numonyx";
859 case LPDDR2_MANUFACTURER_MICRON:
860 return "Micron";
861 default:
862 return NULL;
863 }
864}
865
866static void display_sdram_details(u32 emif_nr, u32 cs,
867 struct lpddr2_device_details *device)
868{
869 const char *mfg_str;
870 const char *type_str;
871 char density_str[10];
872 u32 density;
873
874 debug("EMIF%d CS%d\t", emif_nr, cs);
875
876 if (!device) {
877 debug("None\n");
878 return;
879 }
880
881 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
882 type_str = get_lpddr2_type(device->type);
883
884 density = lpddr2_density_2_size_in_mbytes[device->density];
885 if ((density / 1024 * 1024) == density) {
886 density /= 1024;
887 sprintf(density_str, "%d GB", density);
888 } else
889 sprintf(density_str, "%d MB", density);
890 if (mfg_str && type_str)
891 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
892}
893
894static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
895 struct lpddr2_device_details *lpddr2_device)
896{
897 u32 mr = 0, temp;
898
899 mr = get_mr(base, cs, LPDDR2_MR0);
900 if (mr > 0xFF) {
901 /* Mode register value bigger than 8 bit */
902 return 0;
903 }
904
905 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
906 if (temp) {
907 /* Not SDRAM */
908 return 0;
909 }
910 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
911
912 if (temp) {
913 /* DNV supported - But DNV is only supported for NVM */
914 return 0;
915 }
916
917 mr = get_mr(base, cs, LPDDR2_MR4);
918 if (mr > 0xFF) {
919 /* Mode register value bigger than 8 bit */
920 return 0;
921 }
922
923 mr = get_mr(base, cs, LPDDR2_MR5);
924 if (mr >= 0xFF) {
925 /* Mode register value bigger than 8 bit */
926 return 0;
927 }
928
929 if (!get_lpddr2_manufacturer(mr)) {
930 /* Manufacturer not identified */
931 return 0;
932 }
933 lpddr2_device->manufacturer = mr;
934
935 mr = get_mr(base, cs, LPDDR2_MR6);
936 if (mr >= 0xFF) {
937 /* Mode register value bigger than 8 bit */
938 return 0;
939 }
940
941 mr = get_mr(base, cs, LPDDR2_MR7);
942 if (mr >= 0xFF) {
943 /* Mode register value bigger than 8 bit */
944 return 0;
945 }
946
947 mr = get_mr(base, cs, LPDDR2_MR8);
948 if (mr >= 0xFF) {
949 /* Mode register value bigger than 8 bit */
950 return 0;
951 }
952
953 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
954 if (!get_lpddr2_type(temp)) {
955 /* Not SDRAM */
956 return 0;
957 }
958 lpddr2_device->type = temp;
959
960 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
961 if (temp > LPDDR2_DENSITY_32Gb) {
962 /* Density not supported */
963 return 0;
964 }
965 lpddr2_device->density = temp;
966
967 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
968 if (!get_lpddr2_io_width(temp)) {
969 /* IO width unsupported value */
970 return 0;
971 }
972 lpddr2_device->io_width = temp;
973
974 /*
975 * If all the above tests pass we should
976 * have a device on this chip-select
977 */
978 return 1;
979}
980
Aneesh V025bc422011-09-08 11:05:53 -0400981struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
Aneesh V1e463862011-07-21 09:10:15 -0400982 struct lpddr2_device_details *lpddr2_dev_details)
983{
984 u32 phy;
Sricharanbb772a52011-11-15 09:50:00 -0500985 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
986
Aneesh V1e463862011-07-21 09:10:15 -0400987 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
988
989 if (!lpddr2_dev_details)
990 return NULL;
991
992 /* Do the minimum init for mode register accesses */
993 if (!running_from_sdram()) {
994 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
995 writel(phy, &emif->emif_ddr_phy_ctrl_1);
996 }
997
998 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
999 return NULL;
1000
1001 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1002
1003 return lpddr2_dev_details;
1004}
Aneesh V1e463862011-07-21 09:10:15 -04001005#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1006
Aneesh V2ae610f2011-07-21 09:10:09 -04001007static void do_sdram_init(u32 base)
1008{
1009 const struct emif_regs *regs;
1010 u32 in_sdram, emif_nr;
1011
1012 debug(">>do_sdram_init() %x\n", base);
1013
1014 in_sdram = running_from_sdram();
Sricharanbb772a52011-11-15 09:50:00 -05001015 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
Aneesh V2ae610f2011-07-21 09:10:09 -04001016
Aneesh V095aea22011-07-21 09:10:12 -04001017#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001018 emif_get_reg_dump(emif_nr, &regs);
1019 if (!regs) {
1020 debug("EMIF: reg dump not provided\n");
1021 return;
1022 }
Aneesh V095aea22011-07-21 09:10:12 -04001023#else
1024 /*
1025 * The user has not provided the register values. We need to
1026 * calculate it based on the timings and the DDR frequency
1027 */
1028 struct emif_device_details dev_details;
1029 struct emif_regs calculated_regs;
1030
1031 /*
1032 * Get device details:
1033 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1034 * - Obtained from user otherwise
1035 */
1036 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
Aneesh V025bc422011-09-08 11:05:53 -04001037 emif_reset_phy(base);
Aneesh V4324c112011-11-21 23:39:02 +00001038 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
Aneesh V025bc422011-09-08 11:05:53 -04001039 &cs0_dev_details);
Aneesh V4324c112011-11-21 23:39:02 +00001040 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
Aneesh V025bc422011-09-08 11:05:53 -04001041 &cs1_dev_details);
1042 emif_reset_phy(base);
Aneesh V095aea22011-07-21 09:10:12 -04001043
1044 /* Return if no devices on this EMIF */
1045 if (!dev_details.cs0_device_details &&
1046 !dev_details.cs1_device_details) {
1047 emif_sizes[emif_nr - 1] = 0;
1048 return;
1049 }
1050
1051 if (!in_sdram)
1052 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1053
1054 /*
1055 * Get device timings:
1056 * - Default timings specified by JESD209-2 if
1057 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1058 * - Obtained from user otherwise
1059 */
1060 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1061 &dev_details.cs1_device_timings);
1062
1063 /* Calculate the register values */
Sricharan2e5ba482011-11-15 09:49:58 -05001064 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
Aneesh V095aea22011-07-21 09:10:12 -04001065 regs = &calculated_regs;
1066#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
Aneesh V2ae610f2011-07-21 09:10:09 -04001067
1068 /*
1069 * Initializing the LPDDR2 device can not happen from SDRAM.
1070 * Changing the timing registers in EMIF can happen(going from one
1071 * OPP to another)
1072 */
Lokesh Vutla784ab7c2012-05-22 00:03:25 +00001073 if (!in_sdram) {
1074 if (omap_revision() != OMAP5432_ES1_0)
1075 lpddr2_init(base, regs);
1076 else
1077 ddr3_init(base, regs);
1078 }
Aneesh V2ae610f2011-07-21 09:10:09 -04001079
1080 /* Write to the shadow registers */
1081 emif_update_timings(base, regs);
1082
1083 debug("<<do_sdram_init() %x\n", base);
1084}
1085
Sricharanbb772a52011-11-15 09:50:00 -05001086void emif_post_init_config(u32 base)
Aneesh V2ae610f2011-07-21 09:10:09 -04001087{
1088 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Sricharanbb772a52011-11-15 09:50:00 -05001089 u32 omap_rev = omap_revision();
1090
1091 if (omap_rev == OMAP5430_ES1_0)
1092 return;
Aneesh V2ae610f2011-07-21 09:10:09 -04001093
1094 /* reset phy on ES2.0 */
Sricharanbb772a52011-11-15 09:50:00 -05001095 if (omap_rev == OMAP4430_ES2_0)
Aneesh V2ae610f2011-07-21 09:10:09 -04001096 emif_reset_phy(base);
1097
1098 /* Put EMIF back in smart idle on ES1.0 */
Sricharanbb772a52011-11-15 09:50:00 -05001099 if (omap_rev == OMAP4430_ES1_0)
Aneesh V2ae610f2011-07-21 09:10:09 -04001100 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1101}
1102
Sricharanbb772a52011-11-15 09:50:00 -05001103void dmm_init(u32 base)
Aneesh V2ae610f2011-07-21 09:10:09 -04001104{
1105 const struct dmm_lisa_map_regs *lisa_map_regs;
1106
Aneesh V095aea22011-07-21 09:10:12 -04001107#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001108 emif_get_dmm_regs(&lisa_map_regs);
Aneesh V095aea22011-07-21 09:10:12 -04001109#else
1110 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1111 u32 section_cnt, sys_addr;
1112 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
Aneesh V2ae610f2011-07-21 09:10:09 -04001113
Aneesh V095aea22011-07-21 09:10:12 -04001114 mapped_size = 0;
1115 section_cnt = 3;
1116 sys_addr = CONFIG_SYS_SDRAM_BASE;
1117 emif1_size = emif_sizes[0];
1118 emif2_size = emif_sizes[1];
1119 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1120
1121 if (!emif1_size && !emif2_size)
1122 return;
1123
1124 /* symmetric interleaved section */
1125 if (emif1_size && emif2_size) {
1126 mapped_size = min(emif1_size, emif2_size);
1127 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
Sricharanbb772a52011-11-15 09:50:00 -05001128 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001129 /* only MSB */
1130 section_map |= (sys_addr >> 24) <<
Sricharanbb772a52011-11-15 09:50:00 -05001131 EMIF_SYS_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001132 section_map |= get_dmm_section_size_map(mapped_size * 2)
Sricharanbb772a52011-11-15 09:50:00 -05001133 << EMIF_SYS_SIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001134 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1135 emif1_size -= mapped_size;
1136 emif2_size -= mapped_size;
1137 sys_addr += (mapped_size * 2);
1138 section_cnt--;
1139 }
1140
1141 /*
1142 * Single EMIF section(we can have a maximum of 1 single EMIF
1143 * section- either EMIF1 or EMIF2 or none, but not both)
1144 */
1145 if (emif1_size) {
1146 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1147 section_map |= get_dmm_section_size_map(emif1_size)
Sricharanbb772a52011-11-15 09:50:00 -05001148 << EMIF_SYS_SIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001149 /* only MSB */
1150 section_map |= (mapped_size >> 24) <<
Sricharanbb772a52011-11-15 09:50:00 -05001151 EMIF_SDRC_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001152 /* only MSB */
Sricharanbb772a52011-11-15 09:50:00 -05001153 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001154 section_cnt--;
1155 }
1156 if (emif2_size) {
1157 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1158 section_map |= get_dmm_section_size_map(emif2_size) <<
Sricharanbb772a52011-11-15 09:50:00 -05001159 EMIF_SYS_SIZE_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001160 /* only MSB */
Sricharanbb772a52011-11-15 09:50:00 -05001161 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001162 /* only MSB */
Sricharanbb772a52011-11-15 09:50:00 -05001163 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
Aneesh V095aea22011-07-21 09:10:12 -04001164 section_cnt--;
1165 }
1166
1167 if (section_cnt == 2) {
1168 /* Only 1 section - either symmetric or single EMIF */
1169 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1170 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1171 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1172 } else {
1173 /* 2 sections - 1 symmetric, 1 single EMIF */
1174 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1175 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1176 }
1177
1178 /* TRAP for invalid TILER mappings in section 0 */
1179 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1180
1181 lisa_map_regs = &lis_map_regs_calculated;
1182#endif
Aneesh V2ae610f2011-07-21 09:10:09 -04001183 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1184 (struct dmm_lisa_map_regs *)base;
1185
1186 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1187 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1188 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1189 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1190
1191 writel(lisa_map_regs->dmm_lisa_map_3,
1192 &hw_lisa_map_regs->dmm_lisa_map_3);
1193 writel(lisa_map_regs->dmm_lisa_map_2,
1194 &hw_lisa_map_regs->dmm_lisa_map_2);
1195 writel(lisa_map_regs->dmm_lisa_map_1,
1196 &hw_lisa_map_regs->dmm_lisa_map_1);
1197 writel(lisa_map_regs->dmm_lisa_map_0,
1198 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V924eb362011-07-21 09:29:26 -04001199
1200 if (omap_revision() >= OMAP4460_ES1_0) {
1201 hw_lisa_map_regs =
Sricharanbb772a52011-11-15 09:50:00 -05001202 (struct dmm_lisa_map_regs *)MA_BASE;
Aneesh V924eb362011-07-21 09:29:26 -04001203
1204 writel(lisa_map_regs->dmm_lisa_map_3,
1205 &hw_lisa_map_regs->dmm_lisa_map_3);
1206 writel(lisa_map_regs->dmm_lisa_map_2,
1207 &hw_lisa_map_regs->dmm_lisa_map_2);
1208 writel(lisa_map_regs->dmm_lisa_map_1,
1209 &hw_lisa_map_regs->dmm_lisa_map_1);
1210 writel(lisa_map_regs->dmm_lisa_map_0,
1211 &hw_lisa_map_regs->dmm_lisa_map_0);
1212 }
Aneesh V2ae610f2011-07-21 09:10:09 -04001213}
1214
1215/*
1216 * SDRAM initialization:
1217 * SDRAM initialization has two parts:
1218 * 1. Configuring the SDRAM device
1219 * 2. Update the AC timings related parameters in the EMIF module
1220 * (1) should be done only once and should not be done while we are
1221 * running from SDRAM.
1222 * (2) can and should be done more than once if OPP changes.
1223 * Particularly, this may be needed when we boot without SPL and
1224 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1225 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1226 * the frequency. So,
1227 * Doing (1) and (2) makes sense - first time initialization
1228 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1229 * Doing (1) and not (2) doen't make sense
1230 * See do_sdram_init() for the details
1231 */
1232void sdram_init(void)
1233{
1234 u32 in_sdram, size_prog, size_detect;
1235
1236 debug(">>sdram_init()\n");
1237
Sricharan508a58f2011-11-15 09:49:55 -05001238 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
Aneesh V2ae610f2011-07-21 09:10:09 -04001239 return;
1240
1241 in_sdram = running_from_sdram();
1242 debug("in_sdram = %d\n", in_sdram);
1243
Sricharance170be2011-11-15 09:49:50 -05001244 if (!in_sdram)
Aneesh V2ae610f2011-07-21 09:10:09 -04001245 bypass_dpll(&prcm->cm_clkmode_dpll_core);
Sricharance170be2011-11-15 09:49:50 -05001246
Aneesh V2ae610f2011-07-21 09:10:09 -04001247
Sricharanbb772a52011-11-15 09:50:00 -05001248 do_sdram_init(EMIF1_BASE);
1249 do_sdram_init(EMIF2_BASE);
Aneesh V2ae610f2011-07-21 09:10:09 -04001250
1251 if (!in_sdram) {
Sricharanbb772a52011-11-15 09:50:00 -05001252 dmm_init(DMM_BASE);
1253 emif_post_init_config(EMIF1_BASE);
1254 emif_post_init_config(EMIF2_BASE);
Aneesh V2ae610f2011-07-21 09:10:09 -04001255 }
1256
1257 /* for the shadow registers to take effect */
1258 freq_update_core();
1259
1260 /* Do some testing after the init */
1261 if (!in_sdram) {
Sricharan508a58f2011-11-15 09:49:55 -05001262 size_prog = omap_sdram_size();
SRICHARAN R41321fd2012-05-17 00:12:08 +00001263 size_prog = log_2_n_round_down(size_prog);
1264 size_prog = (1 << size_prog);
1265
Aneesh V2ae610f2011-07-21 09:10:09 -04001266 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1267 size_prog);
1268 /* Compare with the size programmed */
1269 if (size_detect != size_prog) {
1270 printf("SDRAM: identified size not same as expected"
1271 " size identified: %x expected: %x\n",
1272 size_detect,
1273 size_prog);
1274 } else
1275 debug("get_ram_size() successful");
1276 }
1277
1278 debug("<<sdram_init()\n");
1279}