blob: 487ec421197871c67c58e6ee1d3a179c8400fe2c [file] [log] [blame]
Aneesh V2ae610f2011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
29#include <asm/arch/emif.h>
30#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
34
35static inline u32 emif_num(u32 base)
36{
37 if (base == OMAP44XX_EMIF1)
38 return 1;
39 else if (base == OMAP44XX_EMIF2)
40 return 2;
41 else
42 return 0;
43}
44
45static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
46{
47 u32 mr;
48 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
49
50 mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
51 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
52 if (omap_revision() == OMAP4430_ES2_0)
53 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
54 else
55 mr = readl(&emif->emif_lpddr2_mode_reg_data);
56 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
57 cs, mr_addr, mr);
58 return mr;
59}
60
61static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
62{
63 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
64
65 mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
66 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
67 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
68}
69
70void emif_reset_phy(u32 base)
71{
72 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
73 u32 iodft;
74
75 iodft = readl(&emif->emif_iodft_tlgc);
76 iodft |= OMAP44XX_REG_RESET_PHY_MASK;
77 writel(iodft, &emif->emif_iodft_tlgc);
78}
79
80static void do_lpddr2_init(u32 base, u32 cs)
81{
82 u32 mr_addr;
83
84 /* Wait till device auto initialization is complete */
85 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
86 ;
87 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
88 /*
89 * tZQINIT = 1 us
90 * Enough loops assuming a maximum of 2GHz
91 */
92 sdelay(2000);
93 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
94 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
95 /*
96 * Enable refresh along with writing MR2
97 * Encoding of RL in MR2 is (RL - 2)
98 */
99 mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK;
100 set_mr(base, cs, mr_addr, RL_FINAL - 2);
101}
102
103static void lpddr2_init(u32 base, const struct emif_regs *regs)
104{
105 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
106
107 /* Not NVM */
108 clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK);
109
110 /*
111 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
112 * when EMIF_SDRAM_CONFIG register is written
113 */
114 setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
115
116 /*
117 * Set the SDRAM_CONFIG and PHY_CTRL for the
118 * un-locked frequency & default RL
119 */
120 writel(regs->sdram_config_init, &emif->emif_sdram_config);
121 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
122
123 do_lpddr2_init(base, CS0);
124 if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK)
125 do_lpddr2_init(base, CS1);
126
127 writel(regs->sdram_config, &emif->emif_sdram_config);
128 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
129
130 /* Enable refresh now */
131 clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
132
133}
134
135static void emif_update_timings(u32 base, const struct emif_regs *regs)
136{
137 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
138
139 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
140 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
141 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
142 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
143 if (omap_revision() == OMAP4430_ES1_0) {
144 /* ES1 bug EMIF should be in force idle during freq_update */
145 writel(0, &emif->emif_pwr_mgmt_ctrl);
146 } else {
147 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
148 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
149 }
150 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
151 writel(regs->zq_config, &emif->emif_zq_config);
152 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
153 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V924eb362011-07-21 09:29:26 -0400154
155 if (omap_revision() >= OMAP4460_ES1_0) {
156 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
157 &emif->emif_l3_config);
158 } else {
159 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
160 &emif->emif_l3_config);
Aneesh V2ae610f2011-07-21 09:10:09 -0400161 }
162}
163
Aneesh V095aea22011-07-21 09:10:12 -0400164#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
165#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
166
167static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM;
168static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN;
169static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE;
170
171/*
172 * Organization and refresh requirements for LPDDR2 devices of different
173 * types and densities. Derived from JESD209-2 section 2.4
174 */
175const struct lpddr2_addressing addressing_table[] = {
176 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
177 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
178 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
179 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
180 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
181 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
182 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
183 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
184 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
185 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
186 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
187};
188
189static const u32 lpddr2_density_2_size_in_mbytes[] = {
190 8, /* 64Mb */
191 16, /* 128Mb */
192 32, /* 256Mb */
193 64, /* 512Mb */
194 128, /* 1Gb */
195 256, /* 2Gb */
196 512, /* 4Gb */
197 1024, /* 8Gb */
198 2048, /* 16Gb */
199 4096 /* 32Gb */
200};
201
202/*
203 * Calculate the period of DDR clock from frequency value and set the
204 * denominator and numerator in global variables for easy access later
205 */
206static void set_ddr_clk_period(u32 freq)
207{
208 /*
209 * period = 1/freq
210 * period_in_ns = 10^9/freq
211 */
212 *T_num = 1000000000;
213 *T_den = freq;
214 cancel_out(T_num, T_den, 200);
215
216}
217
218/*
219 * Convert time in nano seconds to number of cycles of DDR clock
220 */
221static inline u32 ns_2_cycles(u32 ns)
222{
223 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
224}
225
226/*
227 * ns_2_cycles with the difference that the time passed is 2 times the actual
228 * value(to avoid fractions). The cycles returned is for the original value of
229 * the timing parameter
230 */
231static inline u32 ns_x2_2_cycles(u32 ns)
232{
233 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
234}
235
236/*
237 * Find addressing table index based on the device's type(S2 or S4) and
238 * density
239 */
240s8 addressing_table_index(u8 type, u8 density, u8 width)
241{
242 u8 index;
243 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
244 return -1;
245
246 /*
247 * Look at the way ADDR_TABLE_INDEX* values have been defined
248 * in emif.h compared to LPDDR2_DENSITY_* values
249 * The table is layed out in the increasing order of density
250 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
251 * at the end
252 */
253 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
254 index = ADDR_TABLE_INDEX1GS2;
255 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
256 index = ADDR_TABLE_INDEX2GS2;
257 else
258 index = density;
259
260 debug("emif: addressing table index %d\n", index);
261
262 return index;
263}
264
265/*
266 * Find the the right timing table from the array of timing
267 * tables of the device using DDR clock frequency
268 */
269static const struct lpddr2_ac_timings *get_timings_table(const struct
270 lpddr2_ac_timings const *const *device_timings,
271 u32 freq)
272{
273 u32 i, temp, freq_nearest;
274 const struct lpddr2_ac_timings *timings = 0;
275
276 emif_assert(freq <= MAX_LPDDR2_FREQ);
277 emif_assert(device_timings);
278
279 /*
280 * Start with the maximum allowed frequency - that is always safe
281 */
282 freq_nearest = MAX_LPDDR2_FREQ;
283 /*
284 * Find the timings table that has the max frequency value:
285 * i. Above or equal to the DDR frequency - safe
286 * ii. The lowest that satisfies condition (i) - optimal
287 */
288 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
289 temp = device_timings[i]->max_freq;
290 if ((temp >= freq) && (temp <= freq_nearest)) {
291 freq_nearest = temp;
292 timings = device_timings[i];
293 }
294 }
295 debug("emif: timings table: %d\n", freq_nearest);
296 return timings;
297}
298
299/*
300 * Finds the value of emif_sdram_config_reg
301 * All parameters are programmed based on the device on CS0.
302 * If there is a device on CS1, it will be same as that on CS0 or
303 * it will be NVM. We don't support NVM yet.
304 * If cs1_device pointer is NULL it is assumed that there is no device
305 * on CS1
306 */
307static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
308 const struct lpddr2_device_details *cs1_device,
309 const struct lpddr2_addressing *addressing,
310 u8 RL)
311{
312 u32 config_reg = 0;
313
314 config_reg |= (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT;
315 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
316 OMAP44XX_REG_IBANK_POS_SHIFT;
317
318 config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT;
319
320 config_reg |= RL << OMAP44XX_REG_CL_SHIFT;
321
322 config_reg |= addressing->row_sz[cs0_device->io_width] <<
323 OMAP44XX_REG_ROWSIZE_SHIFT;
324
325 config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT;
326
327 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
328 OMAP44XX_REG_EBANK_SHIFT;
329
330 config_reg |= addressing->col_sz[cs0_device->io_width] <<
331 OMAP44XX_REG_PAGESIZE_SHIFT;
332
333 return config_reg;
334}
335
336static u32 get_sdram_ref_ctrl(u32 freq,
337 const struct lpddr2_addressing *addressing)
338{
339 u32 ref_ctrl = 0, val = 0, freq_khz;
340 freq_khz = freq / 1000;
341 /*
342 * refresh rate to be set is 'tREFI * freq in MHz
343 * division by 10000 to account for khz and x10 in t_REFI_us_x10
344 */
345 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
346 ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT;
347
348 return ref_ctrl;
349}
350
351static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
352 const struct lpddr2_min_tck *min_tck,
353 const struct lpddr2_addressing *addressing)
354{
355 u32 tim1 = 0, val = 0;
356 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
357 tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT;
358
359 if (addressing->num_banks == BANKS8)
360 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
361 (4 * (*T_num)) - 1;
362 else
363 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
364
365 tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT;
366
367 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
368 tim1 |= val << OMAP44XX_REG_T_RC_SHIFT;
369
370 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
371 tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT;
372
373 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
374 tim1 |= val << OMAP44XX_REG_T_WR_SHIFT;
375
376 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
377 tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT;
378
379 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
380 tim1 |= val << OMAP44XX_REG_T_RP_SHIFT;
381
382 return tim1;
383}
384
385static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
386 const struct lpddr2_min_tck *min_tck)
387{
388 u32 tim2 = 0, val = 0;
389 val = max(min_tck->tCKE, timings->tCKE) - 1;
390 tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT;
391
392 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
393 tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT;
394
395 /*
396 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
397 * same value
398 */
399 val = ns_2_cycles(timings->tXSR) - 1;
400 tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT;
401 tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT;
402
403 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
404 tim2 |= val << OMAP44XX_REG_T_XP_SHIFT;
405
406 return tim2;
407}
408
409static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
410 const struct lpddr2_min_tck *min_tck,
411 const struct lpddr2_addressing *addressing)
412{
413 u32 tim3 = 0, val = 0;
414 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
415 tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT;
416
417 val = ns_2_cycles(timings->tRFCab) - 1;
418 tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT;
419
420 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
421 tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT;
422
423 val = ns_2_cycles(timings->tZQCS) - 1;
424 tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT;
425
426 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
427 tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT;
428
429 return tim3;
430}
431
432static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
433 const struct lpddr2_addressing *addressing,
434 u8 volt_ramp)
435{
436 u32 zq = 0, val = 0;
437 if (volt_ramp)
438 val =
439 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
440 addressing->t_REFI_us_x10;
441 else
442 val =
443 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
444 addressing->t_REFI_us_x10;
445 zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT;
446
447 zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT;
448
449 zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT;
450
451 zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT;
452
453 /*
454 * Assuming that two chipselects have a single calibration resistor
455 * If there are indeed two calibration resistors, then this flag should
456 * be enabled to take advantage of dual calibration feature.
457 * This data should ideally come from board files. But considering
458 * that none of the boards today have calibration resistors per CS,
459 * it would be an unnecessary overhead.
460 */
461 zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT;
462
463 zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT;
464
465 zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT;
466
467 return zq;
468}
469
470static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
471 const struct lpddr2_addressing *addressing,
472 u8 is_derated)
473{
474 u32 alert = 0, interval;
475 interval =
476 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
477 if (is_derated)
478 interval *= 4;
479 alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT;
480
481 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT;
482
483 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT;
484
485 alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT;
486
487 alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT;
488
489 alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT;
490
491 return alert;
492}
493
494static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
495{
496 u32 idle = 0, val = 0;
497 if (volt_ramp)
Aneesh V924eb362011-07-21 09:29:26 -0400498 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh V095aea22011-07-21 09:10:12 -0400499 else
500 /*Maximum value in normal conditions - suggested by hw team */
501 val = 0x1FF;
502 idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT;
503
504 idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT;
505
506 return idle;
507}
508
509static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
510{
511 u32 phy = 0, val = 0;
512
513 phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT;
514
515 if (freq <= 100000000)
516 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
517 else if (freq <= 200000000)
518 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
519 else
520 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
521 phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
522
523 /* Other fields are constant magic values. Hardcode them together */
524 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
525 OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
526
527 return phy;
528}
529
530static u32 get_emif_mem_size(struct emif_device_details *devices)
531{
532 u32 size_mbytes = 0, temp;
533
534 if (!devices)
535 return 0;
536
537 if (devices->cs0_device_details) {
538 temp = devices->cs0_device_details->density;
539 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
540 }
541
542 if (devices->cs1_device_details) {
543 temp = devices->cs1_device_details->density;
544 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
545 }
546 /* convert to bytes */
547 return size_mbytes << 20;
548}
549
550/* Gets the encoding corresponding to a given DMM section size */
551u32 get_dmm_section_size_map(u32 section_size)
552{
553 /*
554 * Section size mapping:
555 * 0x0: 16-MiB section
556 * 0x1: 32-MiB section
557 * 0x2: 64-MiB section
558 * 0x3: 128-MiB section
559 * 0x4: 256-MiB section
560 * 0x5: 512-MiB section
561 * 0x6: 1-GiB section
562 * 0x7: 2-GiB section
563 */
564 section_size >>= 24; /* divide by 16 MB */
565 return log_2_n_round_down(section_size);
566}
567
568static void emif_calculate_regs(
569 const struct emif_device_details *emif_dev_details,
570 u32 freq, struct emif_regs *regs)
571{
572 u32 temp, sys_freq;
573 const struct lpddr2_addressing *addressing;
574 const struct lpddr2_ac_timings *timings;
575 const struct lpddr2_min_tck *min_tck;
576 const struct lpddr2_device_details *cs0_dev_details =
577 emif_dev_details->cs0_device_details;
578 const struct lpddr2_device_details *cs1_dev_details =
579 emif_dev_details->cs1_device_details;
580 const struct lpddr2_device_timings *cs0_dev_timings =
581 emif_dev_details->cs0_device_timings;
582
583 emif_assert(emif_dev_details);
584 emif_assert(regs);
585 /*
586 * You can not have a device on CS1 without one on CS0
587 * So configuring EMIF without a device on CS0 doesn't
588 * make sense
589 */
590 emif_assert(cs0_dev_details);
591 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
592 /*
593 * If there is a device on CS1 it should be same type as CS0
594 * (or NVM. But NVM is not supported in this driver yet)
595 */
596 emif_assert((cs1_dev_details == NULL) ||
597 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
598 (cs0_dev_details->type == cs1_dev_details->type));
599 emif_assert(freq <= MAX_LPDDR2_FREQ);
600
601 set_ddr_clk_period(freq);
602
603 /*
604 * The device on CS0 is used for all timing calculations
605 * There is only one set of registers for timings per EMIF. So, if the
606 * second CS(CS1) has a device, it should have the same timings as the
607 * device on CS0
608 */
609 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
610 emif_assert(timings);
611 min_tck = cs0_dev_timings->min_tck;
612
613 temp = addressing_table_index(cs0_dev_details->type,
614 cs0_dev_details->density,
615 cs0_dev_details->io_width);
616
617 emif_assert((temp >= 0));
618 addressing = &(addressing_table[temp]);
619 emif_assert(addressing);
620
621 sys_freq = get_sys_clk_freq();
622
623 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
624 cs1_dev_details,
625 addressing, RL_BOOT);
626
627 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
628 cs1_dev_details,
629 addressing, RL_FINAL);
630
631 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
632
633 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
634
635 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
636
637 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
638
639 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
640
641 regs->temp_alert_config =
642 get_temp_alert_config(cs1_dev_details, addressing, 0);
643
644 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
645 LPDDR2_VOLTAGE_STABLE);
646
647 regs->emif_ddr_phy_ctlr_1_init =
648 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
649
650 regs->emif_ddr_phy_ctlr_1 =
651 get_ddr_phy_ctrl_1(freq, RL_FINAL);
652
653 regs->freq = freq;
654
655 print_timing_reg(regs->sdram_config_init);
656 print_timing_reg(regs->sdram_config);
657 print_timing_reg(regs->ref_ctrl);
658 print_timing_reg(regs->sdram_tim1);
659 print_timing_reg(regs->sdram_tim2);
660 print_timing_reg(regs->sdram_tim3);
661 print_timing_reg(regs->read_idle_ctrl);
662 print_timing_reg(regs->temp_alert_config);
663 print_timing_reg(regs->zq_config);
664 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
665 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
666}
667#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
668
669#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
670/* Base AC Timing values specified by JESD209-2 for 400MHz operation */
671static const struct lpddr2_ac_timings timings_jedec_400_mhz = {
672 .max_freq = 400000000,
673 .RL = 6,
674 .tRPab = 21,
675 .tRCD = 18,
676 .tWR = 15,
677 .tRASmin = 42,
678 .tRRD = 10,
679 .tWTRx2 = 15,
680 .tXSR = 140,
681 .tXPx2 = 15,
682 .tRFCab = 130,
683 .tRTPx2 = 15,
684 .tCKE = 3,
685 .tCKESR = 15,
686 .tZQCS = 90,
687 .tZQCL = 360,
688 .tZQINIT = 1000,
689 .tDQSCKMAXx2 = 11,
690 .tRASmax = 70,
691 .tFAW = 50
692};
693
694/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */
695static const struct lpddr2_ac_timings timings_jedec_333_mhz = {
696 .max_freq = 333000000,
697 .RL = 5,
698 .tRPab = 21,
699 .tRCD = 18,
700 .tWR = 15,
701 .tRASmin = 42,
702 .tRRD = 10,
703 .tWTRx2 = 15,
704 .tXSR = 140,
705 .tXPx2 = 15,
706 .tRFCab = 130,
707 .tRTPx2 = 15,
708 .tCKE = 3,
709 .tCKESR = 15,
710 .tZQCS = 90,
711 .tZQCL = 360,
712 .tZQINIT = 1000,
713 .tDQSCKMAXx2 = 11,
714 .tRASmax = 70,
715 .tFAW = 50
716};
717
718/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */
719static const struct lpddr2_ac_timings timings_jedec_200_mhz = {
720 .max_freq = 200000000,
721 .RL = 3,
722 .tRPab = 21,
723 .tRCD = 18,
724 .tWR = 15,
725 .tRASmin = 42,
726 .tRRD = 10,
727 .tWTRx2 = 20,
728 .tXSR = 140,
729 .tXPx2 = 15,
730 .tRFCab = 130,
731 .tRTPx2 = 15,
732 .tCKE = 3,
733 .tCKESR = 15,
734 .tZQCS = 90,
735 .tZQCL = 360,
736 .tZQINIT = 1000,
737 .tDQSCKMAXx2 = 11,
738 .tRASmax = 70,
739 .tFAW = 50
740};
741
742/*
743 * Min tCK values specified by JESD209-2
744 * Min tCK specifies the minimum duration of some AC timing parameters in terms
745 * of the number of cycles. If the calculated number of cycles based on the
746 * absolute time value is less than the min tCK value, min tCK value should
747 * be used instead. This typically happens at low frequencies.
748 */
749static const struct lpddr2_min_tck min_tck_jedec = {
750 .tRL = 3,
751 .tRP_AB = 3,
752 .tRCD = 3,
753 .tWR = 3,
754 .tRAS_MIN = 3,
755 .tRRD = 2,
756 .tWTR = 2,
757 .tXP = 2,
758 .tRTP = 2,
759 .tCKE = 3,
760 .tCKESR = 3,
761 .tFAW = 8
762};
763
764static const struct lpddr2_ac_timings const*
765 jedec_ac_timings[MAX_NUM_SPEEDBINS] = {
766 &timings_jedec_200_mhz,
767 &timings_jedec_333_mhz,
768 &timings_jedec_400_mhz
769};
770
771static const struct lpddr2_device_timings jedec_default_timings = {
772 .ac_timings = jedec_ac_timings,
773 .min_tck = &min_tck_jedec
774};
775
776void emif_get_device_timings(u32 emif_nr,
777 const struct lpddr2_device_timings **cs0_device_timings,
778 const struct lpddr2_device_timings **cs1_device_timings)
779{
780 /* Assume Identical devices on EMIF1 & EMIF2 */
781 *cs0_device_timings = &jedec_default_timings;
782 *cs1_device_timings = &jedec_default_timings;
783}
784#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */
785
Aneesh V1e463862011-07-21 09:10:15 -0400786#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
787const char *get_lpddr2_type(u8 type_id)
788{
789 switch (type_id) {
790 case LPDDR2_TYPE_S4:
791 return "LPDDR2-S4";
792 case LPDDR2_TYPE_S2:
793 return "LPDDR2-S2";
794 default:
795 return NULL;
796 }
797}
798
799const char *get_lpddr2_io_width(u8 width_id)
800{
801 switch (width_id) {
802 case LPDDR2_IO_WIDTH_8:
803 return "x8";
804 case LPDDR2_IO_WIDTH_16:
805 return "x16";
806 case LPDDR2_IO_WIDTH_32:
807 return "x32";
808 default:
809 return NULL;
810 }
811}
812
813const char *get_lpddr2_manufacturer(u32 manufacturer)
814{
815 switch (manufacturer) {
816 case LPDDR2_MANUFACTURER_SAMSUNG:
817 return "Samsung";
818 case LPDDR2_MANUFACTURER_QIMONDA:
819 return "Qimonda";
820 case LPDDR2_MANUFACTURER_ELPIDA:
821 return "Elpida";
822 case LPDDR2_MANUFACTURER_ETRON:
823 return "Etron";
824 case LPDDR2_MANUFACTURER_NANYA:
825 return "Nanya";
826 case LPDDR2_MANUFACTURER_HYNIX:
827 return "Hynix";
828 case LPDDR2_MANUFACTURER_MOSEL:
829 return "Mosel";
830 case LPDDR2_MANUFACTURER_WINBOND:
831 return "Winbond";
832 case LPDDR2_MANUFACTURER_ESMT:
833 return "ESMT";
834 case LPDDR2_MANUFACTURER_SPANSION:
835 return "Spansion";
836 case LPDDR2_MANUFACTURER_SST:
837 return "SST";
838 case LPDDR2_MANUFACTURER_ZMOS:
839 return "ZMOS";
840 case LPDDR2_MANUFACTURER_INTEL:
841 return "Intel";
842 case LPDDR2_MANUFACTURER_NUMONYX:
843 return "Numonyx";
844 case LPDDR2_MANUFACTURER_MICRON:
845 return "Micron";
846 default:
847 return NULL;
848 }
849}
850
851static void display_sdram_details(u32 emif_nr, u32 cs,
852 struct lpddr2_device_details *device)
853{
854 const char *mfg_str;
855 const char *type_str;
856 char density_str[10];
857 u32 density;
858
859 debug("EMIF%d CS%d\t", emif_nr, cs);
860
861 if (!device) {
862 debug("None\n");
863 return;
864 }
865
866 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
867 type_str = get_lpddr2_type(device->type);
868
869 density = lpddr2_density_2_size_in_mbytes[device->density];
870 if ((density / 1024 * 1024) == density) {
871 density /= 1024;
872 sprintf(density_str, "%d GB", density);
873 } else
874 sprintf(density_str, "%d MB", density);
875 if (mfg_str && type_str)
876 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
877}
878
879static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
880 struct lpddr2_device_details *lpddr2_device)
881{
882 u32 mr = 0, temp;
883
884 mr = get_mr(base, cs, LPDDR2_MR0);
885 if (mr > 0xFF) {
886 /* Mode register value bigger than 8 bit */
887 return 0;
888 }
889
890 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
891 if (temp) {
892 /* Not SDRAM */
893 return 0;
894 }
895 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
896
897 if (temp) {
898 /* DNV supported - But DNV is only supported for NVM */
899 return 0;
900 }
901
902 mr = get_mr(base, cs, LPDDR2_MR4);
903 if (mr > 0xFF) {
904 /* Mode register value bigger than 8 bit */
905 return 0;
906 }
907
908 mr = get_mr(base, cs, LPDDR2_MR5);
909 if (mr >= 0xFF) {
910 /* Mode register value bigger than 8 bit */
911 return 0;
912 }
913
914 if (!get_lpddr2_manufacturer(mr)) {
915 /* Manufacturer not identified */
916 return 0;
917 }
918 lpddr2_device->manufacturer = mr;
919
920 mr = get_mr(base, cs, LPDDR2_MR6);
921 if (mr >= 0xFF) {
922 /* Mode register value bigger than 8 bit */
923 return 0;
924 }
925
926 mr = get_mr(base, cs, LPDDR2_MR7);
927 if (mr >= 0xFF) {
928 /* Mode register value bigger than 8 bit */
929 return 0;
930 }
931
932 mr = get_mr(base, cs, LPDDR2_MR8);
933 if (mr >= 0xFF) {
934 /* Mode register value bigger than 8 bit */
935 return 0;
936 }
937
938 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
939 if (!get_lpddr2_type(temp)) {
940 /* Not SDRAM */
941 return 0;
942 }
943 lpddr2_device->type = temp;
944
945 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
946 if (temp > LPDDR2_DENSITY_32Gb) {
947 /* Density not supported */
948 return 0;
949 }
950 lpddr2_device->density = temp;
951
952 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
953 if (!get_lpddr2_io_width(temp)) {
954 /* IO width unsupported value */
955 return 0;
956 }
957 lpddr2_device->io_width = temp;
958
959 /*
960 * If all the above tests pass we should
961 * have a device on this chip-select
962 */
963 return 1;
964}
965
966static struct lpddr2_device_details *get_lpddr2_details(u32 base, u8 cs,
967 struct lpddr2_device_details *lpddr2_dev_details)
968{
969 u32 phy;
970 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
971
972 if (!lpddr2_dev_details)
973 return NULL;
974
975 /* Do the minimum init for mode register accesses */
976 if (!running_from_sdram()) {
977 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
978 writel(phy, &emif->emif_ddr_phy_ctrl_1);
979 }
980
981 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
982 return NULL;
983
984 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
985
986 return lpddr2_dev_details;
987}
988
989void emif_get_device_details(u32 emif_nr,
990 struct lpddr2_device_details *cs0_device_details,
991 struct lpddr2_device_details *cs1_device_details)
992{
993 u32 base = (emif_nr == 1) ? OMAP44XX_EMIF1 : OMAP44XX_EMIF2;
994
995 if (running_from_sdram()) {
996 /*
997 * We can not do automatic discovery running from SDRAM
998 * Most likely we came here by mistake. Indicate error
999 * by returning NULL
1000 */
1001 cs0_device_details = NULL;
1002 cs1_device_details = NULL;
1003 } else {
1004 /*
1005 * Automatically find the device details:
1006 *
1007 * Reset the PHY after each call to get_lpddr2_details().
1008 * If there is nothing connected to a given chip select
1009 * (typically CS1) mode register reads will mess up with
1010 * the PHY state and subsequent initialization won't work.
1011 * PHY reset brings back PHY to a good state.
1012 */
1013 cs0_device_details =
1014 get_lpddr2_details(base, CS0, cs0_device_details);
1015 emif_reset_phy(base);
1016
1017 cs1_device_details =
1018 get_lpddr2_details(base, CS1, cs1_device_details);
1019 emif_reset_phy(base);
1020 }
1021}
1022#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1023
Aneesh V2ae610f2011-07-21 09:10:09 -04001024static void do_sdram_init(u32 base)
1025{
1026 const struct emif_regs *regs;
1027 u32 in_sdram, emif_nr;
1028
1029 debug(">>do_sdram_init() %x\n", base);
1030
1031 in_sdram = running_from_sdram();
1032 emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2;
1033
Aneesh V095aea22011-07-21 09:10:12 -04001034#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001035 emif_get_reg_dump(emif_nr, &regs);
1036 if (!regs) {
1037 debug("EMIF: reg dump not provided\n");
1038 return;
1039 }
Aneesh V095aea22011-07-21 09:10:12 -04001040#else
1041 /*
1042 * The user has not provided the register values. We need to
1043 * calculate it based on the timings and the DDR frequency
1044 */
1045 struct emif_device_details dev_details;
1046 struct emif_regs calculated_regs;
1047
1048 /*
1049 * Get device details:
1050 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1051 * - Obtained from user otherwise
1052 */
1053 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1054 emif_get_device_details(emif_nr, &cs0_dev_details,
1055 &cs1_dev_details);
1056 dev_details.cs0_device_details = &cs0_dev_details;
1057 dev_details.cs1_device_details = &cs1_dev_details;
1058
1059 /* Return if no devices on this EMIF */
1060 if (!dev_details.cs0_device_details &&
1061 !dev_details.cs1_device_details) {
1062 emif_sizes[emif_nr - 1] = 0;
1063 return;
1064 }
1065
1066 if (!in_sdram)
1067 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1068
1069 /*
1070 * Get device timings:
1071 * - Default timings specified by JESD209-2 if
1072 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1073 * - Obtained from user otherwise
1074 */
1075 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1076 &dev_details.cs1_device_timings);
1077
1078 /* Calculate the register values */
1079 emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs);
1080 regs = &calculated_regs;
1081#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
Aneesh V2ae610f2011-07-21 09:10:09 -04001082
1083 /*
1084 * Initializing the LPDDR2 device can not happen from SDRAM.
1085 * Changing the timing registers in EMIF can happen(going from one
1086 * OPP to another)
1087 */
1088 if (!in_sdram)
1089 lpddr2_init(base, regs);
1090
1091 /* Write to the shadow registers */
1092 emif_update_timings(base, regs);
1093
1094 debug("<<do_sdram_init() %x\n", base);
1095}
1096
1097void sdram_init_pads(void)
1098{
1099 u32 lpddr2io;
1100 struct control_lpddr2io_regs *lpddr2io_regs =
1101 (struct control_lpddr2io_regs *)LPDDR2_IO_REGS_BASE;
1102 u32 omap4_rev = omap_revision();
1103
1104 if (omap4_rev == OMAP4430_ES1_0)
1105 lpddr2io = CONTROL_LPDDR2IO_SLEW_125PS_DRV8_PULL_DOWN;
1106 else if (omap4_rev == OMAP4430_ES2_0)
1107 lpddr2io = CONTROL_LPDDR2IO_SLEW_325PS_DRV8_GATE_KEEPER;
1108 else
1109 return; /* Post ES2.1 reset values will work */
1110
1111 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_0);
1112 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_1);
1113 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_2);
1114 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_0);
1115 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_1);
1116 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_2);
1117
1118 writel(CONTROL_EFUSE_2_NMOS_PMOS_PTV_CODE_1, CONTROL_EFUSE_2);
1119}
1120
1121static void emif_post_init_config(u32 base)
1122{
1123 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1124 u32 omap4_rev = omap_revision();
1125
1126 /* reset phy on ES2.0 */
1127 if (omap4_rev == OMAP4430_ES2_0)
1128 emif_reset_phy(base);
1129
1130 /* Put EMIF back in smart idle on ES1.0 */
1131 if (omap4_rev == OMAP4430_ES1_0)
1132 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1133}
1134
1135static void dmm_init(u32 base)
1136{
1137 const struct dmm_lisa_map_regs *lisa_map_regs;
1138
Aneesh V095aea22011-07-21 09:10:12 -04001139#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001140 emif_get_dmm_regs(&lisa_map_regs);
Aneesh V095aea22011-07-21 09:10:12 -04001141#else
1142 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1143 u32 section_cnt, sys_addr;
1144 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
Aneesh V2ae610f2011-07-21 09:10:09 -04001145
Aneesh V095aea22011-07-21 09:10:12 -04001146 mapped_size = 0;
1147 section_cnt = 3;
1148 sys_addr = CONFIG_SYS_SDRAM_BASE;
1149 emif1_size = emif_sizes[0];
1150 emif2_size = emif_sizes[1];
1151 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1152
1153 if (!emif1_size && !emif2_size)
1154 return;
1155
1156 /* symmetric interleaved section */
1157 if (emif1_size && emif2_size) {
1158 mapped_size = min(emif1_size, emif2_size);
1159 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1160 section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT;
1161 /* only MSB */
1162 section_map |= (sys_addr >> 24) <<
1163 OMAP44XX_SYS_ADDR_SHIFT;
1164 section_map |= get_dmm_section_size_map(mapped_size * 2)
1165 << OMAP44XX_SYS_SIZE_SHIFT;
1166 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1167 emif1_size -= mapped_size;
1168 emif2_size -= mapped_size;
1169 sys_addr += (mapped_size * 2);
1170 section_cnt--;
1171 }
1172
1173 /*
1174 * Single EMIF section(we can have a maximum of 1 single EMIF
1175 * section- either EMIF1 or EMIF2 or none, but not both)
1176 */
1177 if (emif1_size) {
1178 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1179 section_map |= get_dmm_section_size_map(emif1_size)
1180 << OMAP44XX_SYS_SIZE_SHIFT;
1181 /* only MSB */
1182 section_map |= (mapped_size >> 24) <<
1183 OMAP44XX_SDRC_ADDR_SHIFT;
1184 /* only MSB */
1185 section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT;
1186 section_cnt--;
1187 }
1188 if (emif2_size) {
1189 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1190 section_map |= get_dmm_section_size_map(emif2_size) <<
1191 OMAP44XX_SYS_SIZE_SHIFT;
1192 /* only MSB */
1193 section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT;
1194 /* only MSB */
1195 section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT;
1196 section_cnt--;
1197 }
1198
1199 if (section_cnt == 2) {
1200 /* Only 1 section - either symmetric or single EMIF */
1201 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1202 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1203 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1204 } else {
1205 /* 2 sections - 1 symmetric, 1 single EMIF */
1206 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1207 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1208 }
1209
1210 /* TRAP for invalid TILER mappings in section 0 */
1211 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1212
1213 lisa_map_regs = &lis_map_regs_calculated;
1214#endif
Aneesh V2ae610f2011-07-21 09:10:09 -04001215 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1216 (struct dmm_lisa_map_regs *)base;
1217
1218 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1219 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1220 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1221 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1222
1223 writel(lisa_map_regs->dmm_lisa_map_3,
1224 &hw_lisa_map_regs->dmm_lisa_map_3);
1225 writel(lisa_map_regs->dmm_lisa_map_2,
1226 &hw_lisa_map_regs->dmm_lisa_map_2);
1227 writel(lisa_map_regs->dmm_lisa_map_1,
1228 &hw_lisa_map_regs->dmm_lisa_map_1);
1229 writel(lisa_map_regs->dmm_lisa_map_0,
1230 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V924eb362011-07-21 09:29:26 -04001231
1232 if (omap_revision() >= OMAP4460_ES1_0) {
1233 hw_lisa_map_regs =
1234 (struct dmm_lisa_map_regs *)OMAP44XX_MA_LISA_MAP_BASE;
1235
1236 writel(lisa_map_regs->dmm_lisa_map_3,
1237 &hw_lisa_map_regs->dmm_lisa_map_3);
1238 writel(lisa_map_regs->dmm_lisa_map_2,
1239 &hw_lisa_map_regs->dmm_lisa_map_2);
1240 writel(lisa_map_regs->dmm_lisa_map_1,
1241 &hw_lisa_map_regs->dmm_lisa_map_1);
1242 writel(lisa_map_regs->dmm_lisa_map_0,
1243 &hw_lisa_map_regs->dmm_lisa_map_0);
1244 }
Aneesh V2ae610f2011-07-21 09:10:09 -04001245}
1246
1247/*
1248 * SDRAM initialization:
1249 * SDRAM initialization has two parts:
1250 * 1. Configuring the SDRAM device
1251 * 2. Update the AC timings related parameters in the EMIF module
1252 * (1) should be done only once and should not be done while we are
1253 * running from SDRAM.
1254 * (2) can and should be done more than once if OPP changes.
1255 * Particularly, this may be needed when we boot without SPL and
1256 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1257 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1258 * the frequency. So,
1259 * Doing (1) and (2) makes sense - first time initialization
1260 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1261 * Doing (1) and not (2) doen't make sense
1262 * See do_sdram_init() for the details
1263 */
1264void sdram_init(void)
1265{
1266 u32 in_sdram, size_prog, size_detect;
1267
1268 debug(">>sdram_init()\n");
1269
1270 if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1271 return;
1272
1273 in_sdram = running_from_sdram();
1274 debug("in_sdram = %d\n", in_sdram);
1275
1276 if (!in_sdram) {
1277 sdram_init_pads();
1278 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1279 }
1280
1281 do_sdram_init(OMAP44XX_EMIF1);
1282 do_sdram_init(OMAP44XX_EMIF2);
1283
1284 if (!in_sdram) {
1285 dmm_init(OMAP44XX_DMM_LISA_MAP_BASE);
1286 emif_post_init_config(OMAP44XX_EMIF1);
1287 emif_post_init_config(OMAP44XX_EMIF2);
1288
1289 }
1290
1291 /* for the shadow registers to take effect */
1292 freq_update_core();
1293
1294 /* Do some testing after the init */
1295 if (!in_sdram) {
1296 size_prog = omap4_sdram_size();
1297 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1298 size_prog);
1299 /* Compare with the size programmed */
1300 if (size_detect != size_prog) {
1301 printf("SDRAM: identified size not same as expected"
1302 " size identified: %x expected: %x\n",
1303 size_detect,
1304 size_prog);
1305 } else
1306 debug("get_ram_size() successful");
1307 }
1308
1309 debug("<<sdram_init()\n");
1310}