blob: 1234a7e32ad5524ac9e051b7128cb28bda354f1f [file] [log] [blame]
Aneesh V2ae610f2011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
29#include <asm/arch/emif.h>
30#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
34
35static inline u32 emif_num(u32 base)
36{
37 if (base == OMAP44XX_EMIF1)
38 return 1;
39 else if (base == OMAP44XX_EMIF2)
40 return 2;
41 else
42 return 0;
43}
44
45static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
46{
47 u32 mr;
48 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
49
50 mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
51 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
52 if (omap_revision() == OMAP4430_ES2_0)
53 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
54 else
55 mr = readl(&emif->emif_lpddr2_mode_reg_data);
56 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
57 cs, mr_addr, mr);
58 return mr;
59}
60
61static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
62{
63 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
64
65 mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
66 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
67 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
68}
69
70void emif_reset_phy(u32 base)
71{
72 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
73 u32 iodft;
74
75 iodft = readl(&emif->emif_iodft_tlgc);
76 iodft |= OMAP44XX_REG_RESET_PHY_MASK;
77 writel(iodft, &emif->emif_iodft_tlgc);
78}
79
80static void do_lpddr2_init(u32 base, u32 cs)
81{
82 u32 mr_addr;
83
84 /* Wait till device auto initialization is complete */
85 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
86 ;
87 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
88 /*
89 * tZQINIT = 1 us
90 * Enough loops assuming a maximum of 2GHz
91 */
92 sdelay(2000);
93 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
94 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
95 /*
96 * Enable refresh along with writing MR2
97 * Encoding of RL in MR2 is (RL - 2)
98 */
99 mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK;
100 set_mr(base, cs, mr_addr, RL_FINAL - 2);
101}
102
103static void lpddr2_init(u32 base, const struct emif_regs *regs)
104{
105 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
106
107 /* Not NVM */
108 clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK);
109
110 /*
111 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
112 * when EMIF_SDRAM_CONFIG register is written
113 */
114 setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
115
116 /*
117 * Set the SDRAM_CONFIG and PHY_CTRL for the
118 * un-locked frequency & default RL
119 */
120 writel(regs->sdram_config_init, &emif->emif_sdram_config);
121 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
122
123 do_lpddr2_init(base, CS0);
124 if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK)
125 do_lpddr2_init(base, CS1);
126
127 writel(regs->sdram_config, &emif->emif_sdram_config);
128 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
129
130 /* Enable refresh now */
131 clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
132
133}
134
135static void emif_update_timings(u32 base, const struct emif_regs *regs)
136{
137 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
138
139 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
140 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
141 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
142 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
143 if (omap_revision() == OMAP4430_ES1_0) {
144 /* ES1 bug EMIF should be in force idle during freq_update */
145 writel(0, &emif->emif_pwr_mgmt_ctrl);
146 } else {
147 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
148 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
149 }
150 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
151 writel(regs->zq_config, &emif->emif_zq_config);
152 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
153 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
154 /*
155 * Workaround:
156 * In a specific situation, the OCP interface between the DMM and
157 * EMIF may hang.
158 * 1. A TILER port is used to perform 2D burst writes of
159 * width 1 and height 8
160 * 2. ELLAn port is used to perform reads
161 * 3. All accesses are routed to the same EMIF controller
162 *
163 * Work around to avoid this issue REG_SYS_THRESH_MAX value should
164 * be kept higher than default 0x7. As per recommondation 0x0A will
165 * be used for better performance with REG_LL_THRESH_MAX = 0x00
166 */
167 if (omap_revision() == OMAP4430_ES1_0) {
168 writel(EMIF_L3_CONFIG_VAL_SYS_THRESH_0A_LL_THRESH_00,
169 &emif->emif_l3_config);
170 }
171}
172
Aneesh V095aea22011-07-21 09:10:12 -0400173#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
174#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
175
176static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM;
177static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN;
178static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE;
179
180/*
181 * Organization and refresh requirements for LPDDR2 devices of different
182 * types and densities. Derived from JESD209-2 section 2.4
183 */
184const struct lpddr2_addressing addressing_table[] = {
185 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
186 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
187 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
188 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
189 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
190 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
191 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
192 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
193 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
194 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
195 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
196};
197
198static const u32 lpddr2_density_2_size_in_mbytes[] = {
199 8, /* 64Mb */
200 16, /* 128Mb */
201 32, /* 256Mb */
202 64, /* 512Mb */
203 128, /* 1Gb */
204 256, /* 2Gb */
205 512, /* 4Gb */
206 1024, /* 8Gb */
207 2048, /* 16Gb */
208 4096 /* 32Gb */
209};
210
211/*
212 * Calculate the period of DDR clock from frequency value and set the
213 * denominator and numerator in global variables for easy access later
214 */
215static void set_ddr_clk_period(u32 freq)
216{
217 /*
218 * period = 1/freq
219 * period_in_ns = 10^9/freq
220 */
221 *T_num = 1000000000;
222 *T_den = freq;
223 cancel_out(T_num, T_den, 200);
224
225}
226
227/*
228 * Convert time in nano seconds to number of cycles of DDR clock
229 */
230static inline u32 ns_2_cycles(u32 ns)
231{
232 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
233}
234
235/*
236 * ns_2_cycles with the difference that the time passed is 2 times the actual
237 * value(to avoid fractions). The cycles returned is for the original value of
238 * the timing parameter
239 */
240static inline u32 ns_x2_2_cycles(u32 ns)
241{
242 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
243}
244
245/*
246 * Find addressing table index based on the device's type(S2 or S4) and
247 * density
248 */
249s8 addressing_table_index(u8 type, u8 density, u8 width)
250{
251 u8 index;
252 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
253 return -1;
254
255 /*
256 * Look at the way ADDR_TABLE_INDEX* values have been defined
257 * in emif.h compared to LPDDR2_DENSITY_* values
258 * The table is layed out in the increasing order of density
259 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
260 * at the end
261 */
262 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
263 index = ADDR_TABLE_INDEX1GS2;
264 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
265 index = ADDR_TABLE_INDEX2GS2;
266 else
267 index = density;
268
269 debug("emif: addressing table index %d\n", index);
270
271 return index;
272}
273
274/*
275 * Find the the right timing table from the array of timing
276 * tables of the device using DDR clock frequency
277 */
278static const struct lpddr2_ac_timings *get_timings_table(const struct
279 lpddr2_ac_timings const *const *device_timings,
280 u32 freq)
281{
282 u32 i, temp, freq_nearest;
283 const struct lpddr2_ac_timings *timings = 0;
284
285 emif_assert(freq <= MAX_LPDDR2_FREQ);
286 emif_assert(device_timings);
287
288 /*
289 * Start with the maximum allowed frequency - that is always safe
290 */
291 freq_nearest = MAX_LPDDR2_FREQ;
292 /*
293 * Find the timings table that has the max frequency value:
294 * i. Above or equal to the DDR frequency - safe
295 * ii. The lowest that satisfies condition (i) - optimal
296 */
297 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
298 temp = device_timings[i]->max_freq;
299 if ((temp >= freq) && (temp <= freq_nearest)) {
300 freq_nearest = temp;
301 timings = device_timings[i];
302 }
303 }
304 debug("emif: timings table: %d\n", freq_nearest);
305 return timings;
306}
307
308/*
309 * Finds the value of emif_sdram_config_reg
310 * All parameters are programmed based on the device on CS0.
311 * If there is a device on CS1, it will be same as that on CS0 or
312 * it will be NVM. We don't support NVM yet.
313 * If cs1_device pointer is NULL it is assumed that there is no device
314 * on CS1
315 */
316static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
317 const struct lpddr2_device_details *cs1_device,
318 const struct lpddr2_addressing *addressing,
319 u8 RL)
320{
321 u32 config_reg = 0;
322
323 config_reg |= (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT;
324 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
325 OMAP44XX_REG_IBANK_POS_SHIFT;
326
327 config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT;
328
329 config_reg |= RL << OMAP44XX_REG_CL_SHIFT;
330
331 config_reg |= addressing->row_sz[cs0_device->io_width] <<
332 OMAP44XX_REG_ROWSIZE_SHIFT;
333
334 config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT;
335
336 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
337 OMAP44XX_REG_EBANK_SHIFT;
338
339 config_reg |= addressing->col_sz[cs0_device->io_width] <<
340 OMAP44XX_REG_PAGESIZE_SHIFT;
341
342 return config_reg;
343}
344
345static u32 get_sdram_ref_ctrl(u32 freq,
346 const struct lpddr2_addressing *addressing)
347{
348 u32 ref_ctrl = 0, val = 0, freq_khz;
349 freq_khz = freq / 1000;
350 /*
351 * refresh rate to be set is 'tREFI * freq in MHz
352 * division by 10000 to account for khz and x10 in t_REFI_us_x10
353 */
354 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
355 ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT;
356
357 return ref_ctrl;
358}
359
360static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
361 const struct lpddr2_min_tck *min_tck,
362 const struct lpddr2_addressing *addressing)
363{
364 u32 tim1 = 0, val = 0;
365 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
366 tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT;
367
368 if (addressing->num_banks == BANKS8)
369 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
370 (4 * (*T_num)) - 1;
371 else
372 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
373
374 tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT;
375
376 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
377 tim1 |= val << OMAP44XX_REG_T_RC_SHIFT;
378
379 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
380 tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT;
381
382 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
383 tim1 |= val << OMAP44XX_REG_T_WR_SHIFT;
384
385 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
386 tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT;
387
388 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
389 tim1 |= val << OMAP44XX_REG_T_RP_SHIFT;
390
391 return tim1;
392}
393
394static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
395 const struct lpddr2_min_tck *min_tck)
396{
397 u32 tim2 = 0, val = 0;
398 val = max(min_tck->tCKE, timings->tCKE) - 1;
399 tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT;
400
401 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
402 tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT;
403
404 /*
405 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
406 * same value
407 */
408 val = ns_2_cycles(timings->tXSR) - 1;
409 tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT;
410 tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT;
411
412 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
413 tim2 |= val << OMAP44XX_REG_T_XP_SHIFT;
414
415 return tim2;
416}
417
418static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
419 const struct lpddr2_min_tck *min_tck,
420 const struct lpddr2_addressing *addressing)
421{
422 u32 tim3 = 0, val = 0;
423 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
424 tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT;
425
426 val = ns_2_cycles(timings->tRFCab) - 1;
427 tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT;
428
429 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
430 tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT;
431
432 val = ns_2_cycles(timings->tZQCS) - 1;
433 tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT;
434
435 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
436 tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT;
437
438 return tim3;
439}
440
441static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
442 const struct lpddr2_addressing *addressing,
443 u8 volt_ramp)
444{
445 u32 zq = 0, val = 0;
446 if (volt_ramp)
447 val =
448 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
449 addressing->t_REFI_us_x10;
450 else
451 val =
452 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
453 addressing->t_REFI_us_x10;
454 zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT;
455
456 zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT;
457
458 zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT;
459
460 zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT;
461
462 /*
463 * Assuming that two chipselects have a single calibration resistor
464 * If there are indeed two calibration resistors, then this flag should
465 * be enabled to take advantage of dual calibration feature.
466 * This data should ideally come from board files. But considering
467 * that none of the boards today have calibration resistors per CS,
468 * it would be an unnecessary overhead.
469 */
470 zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT;
471
472 zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT;
473
474 zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT;
475
476 return zq;
477}
478
479static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
480 const struct lpddr2_addressing *addressing,
481 u8 is_derated)
482{
483 u32 alert = 0, interval;
484 interval =
485 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
486 if (is_derated)
487 interval *= 4;
488 alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT;
489
490 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT;
491
492 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT;
493
494 alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT;
495
496 alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT;
497
498 alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT;
499
500 return alert;
501}
502
503static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
504{
505 u32 idle = 0, val = 0;
506 if (volt_ramp)
507 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 + 1;
508 else
509 /*Maximum value in normal conditions - suggested by hw team */
510 val = 0x1FF;
511 idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT;
512
513 idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT;
514
515 return idle;
516}
517
518static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
519{
520 u32 phy = 0, val = 0;
521
522 phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT;
523
524 if (freq <= 100000000)
525 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
526 else if (freq <= 200000000)
527 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
528 else
529 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
530 phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
531
532 /* Other fields are constant magic values. Hardcode them together */
533 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
534 OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
535
536 return phy;
537}
538
539static u32 get_emif_mem_size(struct emif_device_details *devices)
540{
541 u32 size_mbytes = 0, temp;
542
543 if (!devices)
544 return 0;
545
546 if (devices->cs0_device_details) {
547 temp = devices->cs0_device_details->density;
548 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
549 }
550
551 if (devices->cs1_device_details) {
552 temp = devices->cs1_device_details->density;
553 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
554 }
555 /* convert to bytes */
556 return size_mbytes << 20;
557}
558
559/* Gets the encoding corresponding to a given DMM section size */
560u32 get_dmm_section_size_map(u32 section_size)
561{
562 /*
563 * Section size mapping:
564 * 0x0: 16-MiB section
565 * 0x1: 32-MiB section
566 * 0x2: 64-MiB section
567 * 0x3: 128-MiB section
568 * 0x4: 256-MiB section
569 * 0x5: 512-MiB section
570 * 0x6: 1-GiB section
571 * 0x7: 2-GiB section
572 */
573 section_size >>= 24; /* divide by 16 MB */
574 return log_2_n_round_down(section_size);
575}
576
577static void emif_calculate_regs(
578 const struct emif_device_details *emif_dev_details,
579 u32 freq, struct emif_regs *regs)
580{
581 u32 temp, sys_freq;
582 const struct lpddr2_addressing *addressing;
583 const struct lpddr2_ac_timings *timings;
584 const struct lpddr2_min_tck *min_tck;
585 const struct lpddr2_device_details *cs0_dev_details =
586 emif_dev_details->cs0_device_details;
587 const struct lpddr2_device_details *cs1_dev_details =
588 emif_dev_details->cs1_device_details;
589 const struct lpddr2_device_timings *cs0_dev_timings =
590 emif_dev_details->cs0_device_timings;
591
592 emif_assert(emif_dev_details);
593 emif_assert(regs);
594 /*
595 * You can not have a device on CS1 without one on CS0
596 * So configuring EMIF without a device on CS0 doesn't
597 * make sense
598 */
599 emif_assert(cs0_dev_details);
600 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
601 /*
602 * If there is a device on CS1 it should be same type as CS0
603 * (or NVM. But NVM is not supported in this driver yet)
604 */
605 emif_assert((cs1_dev_details == NULL) ||
606 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
607 (cs0_dev_details->type == cs1_dev_details->type));
608 emif_assert(freq <= MAX_LPDDR2_FREQ);
609
610 set_ddr_clk_period(freq);
611
612 /*
613 * The device on CS0 is used for all timing calculations
614 * There is only one set of registers for timings per EMIF. So, if the
615 * second CS(CS1) has a device, it should have the same timings as the
616 * device on CS0
617 */
618 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
619 emif_assert(timings);
620 min_tck = cs0_dev_timings->min_tck;
621
622 temp = addressing_table_index(cs0_dev_details->type,
623 cs0_dev_details->density,
624 cs0_dev_details->io_width);
625
626 emif_assert((temp >= 0));
627 addressing = &(addressing_table[temp]);
628 emif_assert(addressing);
629
630 sys_freq = get_sys_clk_freq();
631
632 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
633 cs1_dev_details,
634 addressing, RL_BOOT);
635
636 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
637 cs1_dev_details,
638 addressing, RL_FINAL);
639
640 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
641
642 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
643
644 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
645
646 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
647
648 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
649
650 regs->temp_alert_config =
651 get_temp_alert_config(cs1_dev_details, addressing, 0);
652
653 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
654 LPDDR2_VOLTAGE_STABLE);
655
656 regs->emif_ddr_phy_ctlr_1_init =
657 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
658
659 regs->emif_ddr_phy_ctlr_1 =
660 get_ddr_phy_ctrl_1(freq, RL_FINAL);
661
662 regs->freq = freq;
663
664 print_timing_reg(regs->sdram_config_init);
665 print_timing_reg(regs->sdram_config);
666 print_timing_reg(regs->ref_ctrl);
667 print_timing_reg(regs->sdram_tim1);
668 print_timing_reg(regs->sdram_tim2);
669 print_timing_reg(regs->sdram_tim3);
670 print_timing_reg(regs->read_idle_ctrl);
671 print_timing_reg(regs->temp_alert_config);
672 print_timing_reg(regs->zq_config);
673 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
674 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
675}
676#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
677
678#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
679/* Base AC Timing values specified by JESD209-2 for 400MHz operation */
680static const struct lpddr2_ac_timings timings_jedec_400_mhz = {
681 .max_freq = 400000000,
682 .RL = 6,
683 .tRPab = 21,
684 .tRCD = 18,
685 .tWR = 15,
686 .tRASmin = 42,
687 .tRRD = 10,
688 .tWTRx2 = 15,
689 .tXSR = 140,
690 .tXPx2 = 15,
691 .tRFCab = 130,
692 .tRTPx2 = 15,
693 .tCKE = 3,
694 .tCKESR = 15,
695 .tZQCS = 90,
696 .tZQCL = 360,
697 .tZQINIT = 1000,
698 .tDQSCKMAXx2 = 11,
699 .tRASmax = 70,
700 .tFAW = 50
701};
702
703/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */
704static const struct lpddr2_ac_timings timings_jedec_333_mhz = {
705 .max_freq = 333000000,
706 .RL = 5,
707 .tRPab = 21,
708 .tRCD = 18,
709 .tWR = 15,
710 .tRASmin = 42,
711 .tRRD = 10,
712 .tWTRx2 = 15,
713 .tXSR = 140,
714 .tXPx2 = 15,
715 .tRFCab = 130,
716 .tRTPx2 = 15,
717 .tCKE = 3,
718 .tCKESR = 15,
719 .tZQCS = 90,
720 .tZQCL = 360,
721 .tZQINIT = 1000,
722 .tDQSCKMAXx2 = 11,
723 .tRASmax = 70,
724 .tFAW = 50
725};
726
727/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */
728static const struct lpddr2_ac_timings timings_jedec_200_mhz = {
729 .max_freq = 200000000,
730 .RL = 3,
731 .tRPab = 21,
732 .tRCD = 18,
733 .tWR = 15,
734 .tRASmin = 42,
735 .tRRD = 10,
736 .tWTRx2 = 20,
737 .tXSR = 140,
738 .tXPx2 = 15,
739 .tRFCab = 130,
740 .tRTPx2 = 15,
741 .tCKE = 3,
742 .tCKESR = 15,
743 .tZQCS = 90,
744 .tZQCL = 360,
745 .tZQINIT = 1000,
746 .tDQSCKMAXx2 = 11,
747 .tRASmax = 70,
748 .tFAW = 50
749};
750
751/*
752 * Min tCK values specified by JESD209-2
753 * Min tCK specifies the minimum duration of some AC timing parameters in terms
754 * of the number of cycles. If the calculated number of cycles based on the
755 * absolute time value is less than the min tCK value, min tCK value should
756 * be used instead. This typically happens at low frequencies.
757 */
758static const struct lpddr2_min_tck min_tck_jedec = {
759 .tRL = 3,
760 .tRP_AB = 3,
761 .tRCD = 3,
762 .tWR = 3,
763 .tRAS_MIN = 3,
764 .tRRD = 2,
765 .tWTR = 2,
766 .tXP = 2,
767 .tRTP = 2,
768 .tCKE = 3,
769 .tCKESR = 3,
770 .tFAW = 8
771};
772
773static const struct lpddr2_ac_timings const*
774 jedec_ac_timings[MAX_NUM_SPEEDBINS] = {
775 &timings_jedec_200_mhz,
776 &timings_jedec_333_mhz,
777 &timings_jedec_400_mhz
778};
779
780static const struct lpddr2_device_timings jedec_default_timings = {
781 .ac_timings = jedec_ac_timings,
782 .min_tck = &min_tck_jedec
783};
784
785void emif_get_device_timings(u32 emif_nr,
786 const struct lpddr2_device_timings **cs0_device_timings,
787 const struct lpddr2_device_timings **cs1_device_timings)
788{
789 /* Assume Identical devices on EMIF1 & EMIF2 */
790 *cs0_device_timings = &jedec_default_timings;
791 *cs1_device_timings = &jedec_default_timings;
792}
793#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */
794
Aneesh V1e463862011-07-21 09:10:15 -0400795#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
796const char *get_lpddr2_type(u8 type_id)
797{
798 switch (type_id) {
799 case LPDDR2_TYPE_S4:
800 return "LPDDR2-S4";
801 case LPDDR2_TYPE_S2:
802 return "LPDDR2-S2";
803 default:
804 return NULL;
805 }
806}
807
808const char *get_lpddr2_io_width(u8 width_id)
809{
810 switch (width_id) {
811 case LPDDR2_IO_WIDTH_8:
812 return "x8";
813 case LPDDR2_IO_WIDTH_16:
814 return "x16";
815 case LPDDR2_IO_WIDTH_32:
816 return "x32";
817 default:
818 return NULL;
819 }
820}
821
822const char *get_lpddr2_manufacturer(u32 manufacturer)
823{
824 switch (manufacturer) {
825 case LPDDR2_MANUFACTURER_SAMSUNG:
826 return "Samsung";
827 case LPDDR2_MANUFACTURER_QIMONDA:
828 return "Qimonda";
829 case LPDDR2_MANUFACTURER_ELPIDA:
830 return "Elpida";
831 case LPDDR2_MANUFACTURER_ETRON:
832 return "Etron";
833 case LPDDR2_MANUFACTURER_NANYA:
834 return "Nanya";
835 case LPDDR2_MANUFACTURER_HYNIX:
836 return "Hynix";
837 case LPDDR2_MANUFACTURER_MOSEL:
838 return "Mosel";
839 case LPDDR2_MANUFACTURER_WINBOND:
840 return "Winbond";
841 case LPDDR2_MANUFACTURER_ESMT:
842 return "ESMT";
843 case LPDDR2_MANUFACTURER_SPANSION:
844 return "Spansion";
845 case LPDDR2_MANUFACTURER_SST:
846 return "SST";
847 case LPDDR2_MANUFACTURER_ZMOS:
848 return "ZMOS";
849 case LPDDR2_MANUFACTURER_INTEL:
850 return "Intel";
851 case LPDDR2_MANUFACTURER_NUMONYX:
852 return "Numonyx";
853 case LPDDR2_MANUFACTURER_MICRON:
854 return "Micron";
855 default:
856 return NULL;
857 }
858}
859
860static void display_sdram_details(u32 emif_nr, u32 cs,
861 struct lpddr2_device_details *device)
862{
863 const char *mfg_str;
864 const char *type_str;
865 char density_str[10];
866 u32 density;
867
868 debug("EMIF%d CS%d\t", emif_nr, cs);
869
870 if (!device) {
871 debug("None\n");
872 return;
873 }
874
875 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
876 type_str = get_lpddr2_type(device->type);
877
878 density = lpddr2_density_2_size_in_mbytes[device->density];
879 if ((density / 1024 * 1024) == density) {
880 density /= 1024;
881 sprintf(density_str, "%d GB", density);
882 } else
883 sprintf(density_str, "%d MB", density);
884 if (mfg_str && type_str)
885 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
886}
887
888static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
889 struct lpddr2_device_details *lpddr2_device)
890{
891 u32 mr = 0, temp;
892
893 mr = get_mr(base, cs, LPDDR2_MR0);
894 if (mr > 0xFF) {
895 /* Mode register value bigger than 8 bit */
896 return 0;
897 }
898
899 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
900 if (temp) {
901 /* Not SDRAM */
902 return 0;
903 }
904 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
905
906 if (temp) {
907 /* DNV supported - But DNV is only supported for NVM */
908 return 0;
909 }
910
911 mr = get_mr(base, cs, LPDDR2_MR4);
912 if (mr > 0xFF) {
913 /* Mode register value bigger than 8 bit */
914 return 0;
915 }
916
917 mr = get_mr(base, cs, LPDDR2_MR5);
918 if (mr >= 0xFF) {
919 /* Mode register value bigger than 8 bit */
920 return 0;
921 }
922
923 if (!get_lpddr2_manufacturer(mr)) {
924 /* Manufacturer not identified */
925 return 0;
926 }
927 lpddr2_device->manufacturer = mr;
928
929 mr = get_mr(base, cs, LPDDR2_MR6);
930 if (mr >= 0xFF) {
931 /* Mode register value bigger than 8 bit */
932 return 0;
933 }
934
935 mr = get_mr(base, cs, LPDDR2_MR7);
936 if (mr >= 0xFF) {
937 /* Mode register value bigger than 8 bit */
938 return 0;
939 }
940
941 mr = get_mr(base, cs, LPDDR2_MR8);
942 if (mr >= 0xFF) {
943 /* Mode register value bigger than 8 bit */
944 return 0;
945 }
946
947 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
948 if (!get_lpddr2_type(temp)) {
949 /* Not SDRAM */
950 return 0;
951 }
952 lpddr2_device->type = temp;
953
954 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
955 if (temp > LPDDR2_DENSITY_32Gb) {
956 /* Density not supported */
957 return 0;
958 }
959 lpddr2_device->density = temp;
960
961 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
962 if (!get_lpddr2_io_width(temp)) {
963 /* IO width unsupported value */
964 return 0;
965 }
966 lpddr2_device->io_width = temp;
967
968 /*
969 * If all the above tests pass we should
970 * have a device on this chip-select
971 */
972 return 1;
973}
974
975static struct lpddr2_device_details *get_lpddr2_details(u32 base, u8 cs,
976 struct lpddr2_device_details *lpddr2_dev_details)
977{
978 u32 phy;
979 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
980
981 if (!lpddr2_dev_details)
982 return NULL;
983
984 /* Do the minimum init for mode register accesses */
985 if (!running_from_sdram()) {
986 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
987 writel(phy, &emif->emif_ddr_phy_ctrl_1);
988 }
989
990 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
991 return NULL;
992
993 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
994
995 return lpddr2_dev_details;
996}
997
998void emif_get_device_details(u32 emif_nr,
999 struct lpddr2_device_details *cs0_device_details,
1000 struct lpddr2_device_details *cs1_device_details)
1001{
1002 u32 base = (emif_nr == 1) ? OMAP44XX_EMIF1 : OMAP44XX_EMIF2;
1003
1004 if (running_from_sdram()) {
1005 /*
1006 * We can not do automatic discovery running from SDRAM
1007 * Most likely we came here by mistake. Indicate error
1008 * by returning NULL
1009 */
1010 cs0_device_details = NULL;
1011 cs1_device_details = NULL;
1012 } else {
1013 /*
1014 * Automatically find the device details:
1015 *
1016 * Reset the PHY after each call to get_lpddr2_details().
1017 * If there is nothing connected to a given chip select
1018 * (typically CS1) mode register reads will mess up with
1019 * the PHY state and subsequent initialization won't work.
1020 * PHY reset brings back PHY to a good state.
1021 */
1022 cs0_device_details =
1023 get_lpddr2_details(base, CS0, cs0_device_details);
1024 emif_reset_phy(base);
1025
1026 cs1_device_details =
1027 get_lpddr2_details(base, CS1, cs1_device_details);
1028 emif_reset_phy(base);
1029 }
1030}
1031#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1032
Aneesh V2ae610f2011-07-21 09:10:09 -04001033static void do_sdram_init(u32 base)
1034{
1035 const struct emif_regs *regs;
1036 u32 in_sdram, emif_nr;
1037
1038 debug(">>do_sdram_init() %x\n", base);
1039
1040 in_sdram = running_from_sdram();
1041 emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2;
1042
Aneesh V095aea22011-07-21 09:10:12 -04001043#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001044 emif_get_reg_dump(emif_nr, &regs);
1045 if (!regs) {
1046 debug("EMIF: reg dump not provided\n");
1047 return;
1048 }
Aneesh V095aea22011-07-21 09:10:12 -04001049#else
1050 /*
1051 * The user has not provided the register values. We need to
1052 * calculate it based on the timings and the DDR frequency
1053 */
1054 struct emif_device_details dev_details;
1055 struct emif_regs calculated_regs;
1056
1057 /*
1058 * Get device details:
1059 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1060 * - Obtained from user otherwise
1061 */
1062 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1063 emif_get_device_details(emif_nr, &cs0_dev_details,
1064 &cs1_dev_details);
1065 dev_details.cs0_device_details = &cs0_dev_details;
1066 dev_details.cs1_device_details = &cs1_dev_details;
1067
1068 /* Return if no devices on this EMIF */
1069 if (!dev_details.cs0_device_details &&
1070 !dev_details.cs1_device_details) {
1071 emif_sizes[emif_nr - 1] = 0;
1072 return;
1073 }
1074
1075 if (!in_sdram)
1076 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1077
1078 /*
1079 * Get device timings:
1080 * - Default timings specified by JESD209-2 if
1081 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1082 * - Obtained from user otherwise
1083 */
1084 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1085 &dev_details.cs1_device_timings);
1086
1087 /* Calculate the register values */
1088 emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs);
1089 regs = &calculated_regs;
1090#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
Aneesh V2ae610f2011-07-21 09:10:09 -04001091
1092 /*
1093 * Initializing the LPDDR2 device can not happen from SDRAM.
1094 * Changing the timing registers in EMIF can happen(going from one
1095 * OPP to another)
1096 */
1097 if (!in_sdram)
1098 lpddr2_init(base, regs);
1099
1100 /* Write to the shadow registers */
1101 emif_update_timings(base, regs);
1102
1103 debug("<<do_sdram_init() %x\n", base);
1104}
1105
1106void sdram_init_pads(void)
1107{
1108 u32 lpddr2io;
1109 struct control_lpddr2io_regs *lpddr2io_regs =
1110 (struct control_lpddr2io_regs *)LPDDR2_IO_REGS_BASE;
1111 u32 omap4_rev = omap_revision();
1112
1113 if (omap4_rev == OMAP4430_ES1_0)
1114 lpddr2io = CONTROL_LPDDR2IO_SLEW_125PS_DRV8_PULL_DOWN;
1115 else if (omap4_rev == OMAP4430_ES2_0)
1116 lpddr2io = CONTROL_LPDDR2IO_SLEW_325PS_DRV8_GATE_KEEPER;
1117 else
1118 return; /* Post ES2.1 reset values will work */
1119
1120 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_0);
1121 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_1);
1122 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_2);
1123 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_0);
1124 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_1);
1125 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_2);
1126
1127 writel(CONTROL_EFUSE_2_NMOS_PMOS_PTV_CODE_1, CONTROL_EFUSE_2);
1128}
1129
1130static void emif_post_init_config(u32 base)
1131{
1132 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1133 u32 omap4_rev = omap_revision();
1134
1135 /* reset phy on ES2.0 */
1136 if (omap4_rev == OMAP4430_ES2_0)
1137 emif_reset_phy(base);
1138
1139 /* Put EMIF back in smart idle on ES1.0 */
1140 if (omap4_rev == OMAP4430_ES1_0)
1141 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1142}
1143
1144static void dmm_init(u32 base)
1145{
1146 const struct dmm_lisa_map_regs *lisa_map_regs;
1147
Aneesh V095aea22011-07-21 09:10:12 -04001148#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh V2ae610f2011-07-21 09:10:09 -04001149 emif_get_dmm_regs(&lisa_map_regs);
Aneesh V095aea22011-07-21 09:10:12 -04001150#else
1151 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1152 u32 section_cnt, sys_addr;
1153 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
Aneesh V2ae610f2011-07-21 09:10:09 -04001154
Aneesh V095aea22011-07-21 09:10:12 -04001155 mapped_size = 0;
1156 section_cnt = 3;
1157 sys_addr = CONFIG_SYS_SDRAM_BASE;
1158 emif1_size = emif_sizes[0];
1159 emif2_size = emif_sizes[1];
1160 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1161
1162 if (!emif1_size && !emif2_size)
1163 return;
1164
1165 /* symmetric interleaved section */
1166 if (emif1_size && emif2_size) {
1167 mapped_size = min(emif1_size, emif2_size);
1168 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1169 section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT;
1170 /* only MSB */
1171 section_map |= (sys_addr >> 24) <<
1172 OMAP44XX_SYS_ADDR_SHIFT;
1173 section_map |= get_dmm_section_size_map(mapped_size * 2)
1174 << OMAP44XX_SYS_SIZE_SHIFT;
1175 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1176 emif1_size -= mapped_size;
1177 emif2_size -= mapped_size;
1178 sys_addr += (mapped_size * 2);
1179 section_cnt--;
1180 }
1181
1182 /*
1183 * Single EMIF section(we can have a maximum of 1 single EMIF
1184 * section- either EMIF1 or EMIF2 or none, but not both)
1185 */
1186 if (emif1_size) {
1187 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1188 section_map |= get_dmm_section_size_map(emif1_size)
1189 << OMAP44XX_SYS_SIZE_SHIFT;
1190 /* only MSB */
1191 section_map |= (mapped_size >> 24) <<
1192 OMAP44XX_SDRC_ADDR_SHIFT;
1193 /* only MSB */
1194 section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT;
1195 section_cnt--;
1196 }
1197 if (emif2_size) {
1198 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1199 section_map |= get_dmm_section_size_map(emif2_size) <<
1200 OMAP44XX_SYS_SIZE_SHIFT;
1201 /* only MSB */
1202 section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT;
1203 /* only MSB */
1204 section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT;
1205 section_cnt--;
1206 }
1207
1208 if (section_cnt == 2) {
1209 /* Only 1 section - either symmetric or single EMIF */
1210 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1211 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1212 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1213 } else {
1214 /* 2 sections - 1 symmetric, 1 single EMIF */
1215 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1216 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1217 }
1218
1219 /* TRAP for invalid TILER mappings in section 0 */
1220 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1221
1222 lisa_map_regs = &lis_map_regs_calculated;
1223#endif
Aneesh V2ae610f2011-07-21 09:10:09 -04001224 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1225 (struct dmm_lisa_map_regs *)base;
1226
1227 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1228 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1229 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1230 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1231
1232 writel(lisa_map_regs->dmm_lisa_map_3,
1233 &hw_lisa_map_regs->dmm_lisa_map_3);
1234 writel(lisa_map_regs->dmm_lisa_map_2,
1235 &hw_lisa_map_regs->dmm_lisa_map_2);
1236 writel(lisa_map_regs->dmm_lisa_map_1,
1237 &hw_lisa_map_regs->dmm_lisa_map_1);
1238 writel(lisa_map_regs->dmm_lisa_map_0,
1239 &hw_lisa_map_regs->dmm_lisa_map_0);
1240}
1241
1242/*
1243 * SDRAM initialization:
1244 * SDRAM initialization has two parts:
1245 * 1. Configuring the SDRAM device
1246 * 2. Update the AC timings related parameters in the EMIF module
1247 * (1) should be done only once and should not be done while we are
1248 * running from SDRAM.
1249 * (2) can and should be done more than once if OPP changes.
1250 * Particularly, this may be needed when we boot without SPL and
1251 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1252 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1253 * the frequency. So,
1254 * Doing (1) and (2) makes sense - first time initialization
1255 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1256 * Doing (1) and not (2) doen't make sense
1257 * See do_sdram_init() for the details
1258 */
1259void sdram_init(void)
1260{
1261 u32 in_sdram, size_prog, size_detect;
1262
1263 debug(">>sdram_init()\n");
1264
1265 if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1266 return;
1267
1268 in_sdram = running_from_sdram();
1269 debug("in_sdram = %d\n", in_sdram);
1270
1271 if (!in_sdram) {
1272 sdram_init_pads();
1273 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1274 }
1275
1276 do_sdram_init(OMAP44XX_EMIF1);
1277 do_sdram_init(OMAP44XX_EMIF2);
1278
1279 if (!in_sdram) {
1280 dmm_init(OMAP44XX_DMM_LISA_MAP_BASE);
1281 emif_post_init_config(OMAP44XX_EMIF1);
1282 emif_post_init_config(OMAP44XX_EMIF2);
1283
1284 }
1285
1286 /* for the shadow registers to take effect */
1287 freq_update_core();
1288
1289 /* Do some testing after the init */
1290 if (!in_sdram) {
1291 size_prog = omap4_sdram_size();
1292 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1293 size_prog);
1294 /* Compare with the size programmed */
1295 if (size_detect != size_prog) {
1296 printf("SDRAM: identified size not same as expected"
1297 " size identified: %x expected: %x\n",
1298 size_detect,
1299 size_prog);
1300 } else
1301 debug("get_ram_size() successful");
1302 }
1303
1304 debug("<<sdram_init()\n");
1305}