omap4: make omap4 code common for future reuse

Much of omap4 soc support code can be reused for omap5.
Move them to the omap-common directory to facilitate
this.

Signed-off-by: sricharan <r.sricharan@ti.com>
Signed-off-by: Sandeep Paulraj <s-paulraj@ti.com>
diff --git a/arch/arm/cpu/armv7/omap-common/emif-common.c b/arch/arm/cpu/armv7/omap-common/emif-common.c
new file mode 100644
index 0000000..94c8bed
--- /dev/null
+++ b/arch/arm/cpu/armv7/omap-common/emif-common.c
@@ -0,0 +1,1254 @@
+/*
+ * EMIF programming
+ *
+ * (C) Copyright 2010
+ * Texas Instruments, <www.ti.com>
+ *
+ * Aneesh V <aneesh@ti.com>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <asm/arch/emif.h>
+#include <asm/arch/clocks.h>
+#include <asm/arch/sys_proto.h>
+#include <asm/omap_common.h>
+#include <asm/utils.h>
+
+static inline u32 emif_num(u32 base)
+{
+	if (base == OMAP44XX_EMIF1)
+		return 1;
+	else if (base == OMAP44XX_EMIF2)
+		return 2;
+	else
+		return 0;
+}
+
+static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
+{
+	u32 mr;
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+
+	mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
+	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
+	if (omap_revision() == OMAP4430_ES2_0)
+		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
+	else
+		mr = readl(&emif->emif_lpddr2_mode_reg_data);
+	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
+	      cs, mr_addr, mr);
+	return mr;
+}
+
+static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
+{
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+
+	mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
+	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
+	writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
+}
+
+void emif_reset_phy(u32 base)
+{
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+	u32 iodft;
+
+	iodft = readl(&emif->emif_iodft_tlgc);
+	iodft |= OMAP44XX_REG_RESET_PHY_MASK;
+	writel(iodft, &emif->emif_iodft_tlgc);
+}
+
+static void do_lpddr2_init(u32 base, u32 cs)
+{
+	u32 mr_addr;
+
+	/* Wait till device auto initialization is complete */
+	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
+		;
+	set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
+	/*
+	 * tZQINIT = 1 us
+	 * Enough loops assuming a maximum of 2GHz
+	 */
+	sdelay(2000);
+	set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
+	set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
+	/*
+	 * Enable refresh along with writing MR2
+	 * Encoding of RL in MR2 is (RL - 2)
+	 */
+	mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK;
+	set_mr(base, cs, mr_addr, RL_FINAL - 2);
+}
+
+static void lpddr2_init(u32 base, const struct emif_regs *regs)
+{
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+
+	/* Not NVM */
+	clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK);
+
+	/*
+	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
+	 * when EMIF_SDRAM_CONFIG register is written
+	 */
+	setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
+
+	/*
+	 * Set the SDRAM_CONFIG and PHY_CTRL for the
+	 * un-locked frequency & default RL
+	 */
+	writel(regs->sdram_config_init, &emif->emif_sdram_config);
+	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
+
+	do_lpddr2_init(base, CS0);
+	if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK)
+		do_lpddr2_init(base, CS1);
+
+	writel(regs->sdram_config, &emif->emif_sdram_config);
+	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
+
+	/* Enable refresh now */
+	clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
+
+}
+
+static void emif_update_timings(u32 base, const struct emif_regs *regs)
+{
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+
+	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
+	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
+	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
+	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
+	if (omap_revision() == OMAP4430_ES1_0) {
+		/* ES1 bug EMIF should be in force idle during freq_update */
+		writel(0, &emif->emif_pwr_mgmt_ctrl);
+	} else {
+		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
+		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
+	}
+	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
+	writel(regs->zq_config, &emif->emif_zq_config);
+	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
+	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
+
+	if (omap_revision() >= OMAP4460_ES1_0) {
+		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
+			&emif->emif_l3_config);
+	} else {
+		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
+			&emif->emif_l3_config);
+	}
+}
+
+#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
+#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
+
+static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM;
+static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN;
+static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE;
+
+/*
+ * Organization and refresh requirements for LPDDR2 devices of different
+ * types and densities. Derived from JESD209-2 section 2.4
+ */
+const struct lpddr2_addressing addressing_table[] = {
+	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */
+	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
+	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
+	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
+	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
+	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
+	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
+	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
+	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
+	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
+	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
+};
+
+static const u32 lpddr2_density_2_size_in_mbytes[] = {
+	8,			/* 64Mb */
+	16,			/* 128Mb */
+	32,			/* 256Mb */
+	64,			/* 512Mb */
+	128,			/* 1Gb   */
+	256,			/* 2Gb   */
+	512,			/* 4Gb   */
+	1024,			/* 8Gb   */
+	2048,			/* 16Gb  */
+	4096			/* 32Gb  */
+};
+
+/*
+ * Calculate the period of DDR clock from frequency value and set the
+ * denominator and numerator in global variables for easy access later
+ */
+static void set_ddr_clk_period(u32 freq)
+{
+	/*
+	 * period = 1/freq
+	 * period_in_ns = 10^9/freq
+	 */
+	*T_num = 1000000000;
+	*T_den = freq;
+	cancel_out(T_num, T_den, 200);
+
+}
+
+/*
+ * Convert time in nano seconds to number of cycles of DDR clock
+ */
+static inline u32 ns_2_cycles(u32 ns)
+{
+	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
+}
+
+/*
+ * ns_2_cycles with the difference that the time passed is 2 times the actual
+ * value(to avoid fractions). The cycles returned is for the original value of
+ * the timing parameter
+ */
+static inline u32 ns_x2_2_cycles(u32 ns)
+{
+	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
+}
+
+/*
+ * Find addressing table index based on the device's type(S2 or S4) and
+ * density
+ */
+s8 addressing_table_index(u8 type, u8 density, u8 width)
+{
+	u8 index;
+	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
+		return -1;
+
+	/*
+	 * Look at the way ADDR_TABLE_INDEX* values have been defined
+	 * in emif.h compared to LPDDR2_DENSITY_* values
+	 * The table is layed out in the increasing order of density
+	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
+	 * at the end
+	 */
+	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
+		index = ADDR_TABLE_INDEX1GS2;
+	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
+		index = ADDR_TABLE_INDEX2GS2;
+	else
+		index = density;
+
+	debug("emif: addressing table index %d\n", index);
+
+	return index;
+}
+
+/*
+ * Find the the right timing table from the array of timing
+ * tables of the device using DDR clock frequency
+ */
+static const struct lpddr2_ac_timings *get_timings_table(const struct
+			lpddr2_ac_timings const *const *device_timings,
+			u32 freq)
+{
+	u32 i, temp, freq_nearest;
+	const struct lpddr2_ac_timings *timings = 0;
+
+	emif_assert(freq <= MAX_LPDDR2_FREQ);
+	emif_assert(device_timings);
+
+	/*
+	 * Start with the maximum allowed frequency - that is always safe
+	 */
+	freq_nearest = MAX_LPDDR2_FREQ;
+	/*
+	 * Find the timings table that has the max frequency value:
+	 *   i.  Above or equal to the DDR frequency - safe
+	 *   ii. The lowest that satisfies condition (i) - optimal
+	 */
+	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
+		temp = device_timings[i]->max_freq;
+		if ((temp >= freq) && (temp <= freq_nearest)) {
+			freq_nearest = temp;
+			timings = device_timings[i];
+		}
+	}
+	debug("emif: timings table: %d\n", freq_nearest);
+	return timings;
+}
+
+/*
+ * Finds the value of emif_sdram_config_reg
+ * All parameters are programmed based on the device on CS0.
+ * If there is a device on CS1, it will be same as that on CS0 or
+ * it will be NVM. We don't support NVM yet.
+ * If cs1_device pointer is NULL it is assumed that there is no device
+ * on CS1
+ */
+static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
+				const struct lpddr2_device_details *cs1_device,
+				const struct lpddr2_addressing *addressing,
+				u8 RL)
+{
+	u32 config_reg = 0;
+
+	config_reg |=  (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT;
+	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
+			OMAP44XX_REG_IBANK_POS_SHIFT;
+
+	config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT;
+
+	config_reg |= RL << OMAP44XX_REG_CL_SHIFT;
+
+	config_reg |= addressing->row_sz[cs0_device->io_width] <<
+			OMAP44XX_REG_ROWSIZE_SHIFT;
+
+	config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT;
+
+	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
+			OMAP44XX_REG_EBANK_SHIFT;
+
+	config_reg |= addressing->col_sz[cs0_device->io_width] <<
+			OMAP44XX_REG_PAGESIZE_SHIFT;
+
+	return config_reg;
+}
+
+static u32 get_sdram_ref_ctrl(u32 freq,
+			      const struct lpddr2_addressing *addressing)
+{
+	u32 ref_ctrl = 0, val = 0, freq_khz;
+	freq_khz = freq / 1000;
+	/*
+	 * refresh rate to be set is 'tREFI * freq in MHz
+	 * division by 10000 to account for khz and x10 in t_REFI_us_x10
+	 */
+	val = addressing->t_REFI_us_x10 * freq_khz / 10000;
+	ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT;
+
+	return ref_ctrl;
+}
+
+static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
+			       const struct lpddr2_min_tck *min_tck,
+			       const struct lpddr2_addressing *addressing)
+{
+	u32 tim1 = 0, val = 0;
+	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
+	tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT;
+
+	if (addressing->num_banks == BANKS8)
+		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
+							(4 * (*T_num)) - 1;
+	else
+		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
+
+	tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT;
+
+	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
+	tim1 |= val << OMAP44XX_REG_T_RC_SHIFT;
+
+	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
+	tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT;
+
+	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
+	tim1 |= val << OMAP44XX_REG_T_WR_SHIFT;
+
+	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
+	tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT;
+
+	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
+	tim1 |= val << OMAP44XX_REG_T_RP_SHIFT;
+
+	return tim1;
+}
+
+static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
+			       const struct lpddr2_min_tck *min_tck)
+{
+	u32 tim2 = 0, val = 0;
+	val = max(min_tck->tCKE, timings->tCKE) - 1;
+	tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT;
+
+	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
+	tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT;
+
+	/*
+	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
+	 * same value
+	 */
+	val = ns_2_cycles(timings->tXSR) - 1;
+	tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT;
+	tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT;
+
+	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
+	tim2 |= val << OMAP44XX_REG_T_XP_SHIFT;
+
+	return tim2;
+}
+
+static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
+			       const struct lpddr2_min_tck *min_tck,
+			       const struct lpddr2_addressing *addressing)
+{
+	u32 tim3 = 0, val = 0;
+	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
+	tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT;
+
+	val = ns_2_cycles(timings->tRFCab) - 1;
+	tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT;
+
+	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
+	tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT;
+
+	val = ns_2_cycles(timings->tZQCS) - 1;
+	tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT;
+
+	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
+	tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT;
+
+	return tim3;
+}
+
+static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
+			     const struct lpddr2_addressing *addressing,
+			     u8 volt_ramp)
+{
+	u32 zq = 0, val = 0;
+	if (volt_ramp)
+		val =
+		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
+		    addressing->t_REFI_us_x10;
+	else
+		val =
+		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
+		    addressing->t_REFI_us_x10;
+	zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT;
+
+	zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT;
+
+	zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT;
+
+	zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT;
+
+	/*
+	 * Assuming that two chipselects have a single calibration resistor
+	 * If there are indeed two calibration resistors, then this flag should
+	 * be enabled to take advantage of dual calibration feature.
+	 * This data should ideally come from board files. But considering
+	 * that none of the boards today have calibration resistors per CS,
+	 * it would be an unnecessary overhead.
+	 */
+	zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT;
+
+	zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT;
+
+	zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT;
+
+	return zq;
+}
+
+static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
+				 const struct lpddr2_addressing *addressing,
+				 u8 is_derated)
+{
+	u32 alert = 0, interval;
+	interval =
+	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
+	if (is_derated)
+		interval *= 4;
+	alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT;
+
+	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT;
+
+	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT;
+
+	alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT;
+
+	alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT;
+
+	alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT;
+
+	return alert;
+}
+
+static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
+{
+	u32 idle = 0, val = 0;
+	if (volt_ramp)
+		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
+	else
+		/*Maximum value in normal conditions - suggested by hw team */
+		val = 0x1FF;
+	idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT;
+
+	idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT;
+
+	return idle;
+}
+
+static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
+{
+	u32 phy = 0, val = 0;
+
+	phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT;
+
+	if (freq <= 100000000)
+		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
+	else if (freq <= 200000000)
+		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
+	else
+		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
+	phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
+
+	/* Other fields are constant magic values. Hardcode them together */
+	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
+		OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
+
+	return phy;
+}
+
+static u32 get_emif_mem_size(struct emif_device_details *devices)
+{
+	u32 size_mbytes = 0, temp;
+
+	if (!devices)
+		return 0;
+
+	if (devices->cs0_device_details) {
+		temp = devices->cs0_device_details->density;
+		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
+	}
+
+	if (devices->cs1_device_details) {
+		temp = devices->cs1_device_details->density;
+		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
+	}
+	/* convert to bytes */
+	return size_mbytes << 20;
+}
+
+/* Gets the encoding corresponding to a given DMM section size */
+u32 get_dmm_section_size_map(u32 section_size)
+{
+	/*
+	 * Section size mapping:
+	 * 0x0: 16-MiB section
+	 * 0x1: 32-MiB section
+	 * 0x2: 64-MiB section
+	 * 0x3: 128-MiB section
+	 * 0x4: 256-MiB section
+	 * 0x5: 512-MiB section
+	 * 0x6: 1-GiB section
+	 * 0x7: 2-GiB section
+	 */
+	section_size >>= 24; /* divide by 16 MB */
+	return log_2_n_round_down(section_size);
+}
+
+static void emif_calculate_regs(
+		const struct emif_device_details *emif_dev_details,
+		u32 freq, struct emif_regs *regs)
+{
+	u32 temp, sys_freq;
+	const struct lpddr2_addressing *addressing;
+	const struct lpddr2_ac_timings *timings;
+	const struct lpddr2_min_tck *min_tck;
+	const struct lpddr2_device_details *cs0_dev_details =
+					emif_dev_details->cs0_device_details;
+	const struct lpddr2_device_details *cs1_dev_details =
+					emif_dev_details->cs1_device_details;
+	const struct lpddr2_device_timings *cs0_dev_timings =
+					emif_dev_details->cs0_device_timings;
+
+	emif_assert(emif_dev_details);
+	emif_assert(regs);
+	/*
+	 * You can not have a device on CS1 without one on CS0
+	 * So configuring EMIF without a device on CS0 doesn't
+	 * make sense
+	 */
+	emif_assert(cs0_dev_details);
+	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
+	/*
+	 * If there is a device on CS1 it should be same type as CS0
+	 * (or NVM. But NVM is not supported in this driver yet)
+	 */
+	emif_assert((cs1_dev_details == NULL) ||
+		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
+		    (cs0_dev_details->type == cs1_dev_details->type));
+	emif_assert(freq <= MAX_LPDDR2_FREQ);
+
+	set_ddr_clk_period(freq);
+
+	/*
+	 * The device on CS0 is used for all timing calculations
+	 * There is only one set of registers for timings per EMIF. So, if the
+	 * second CS(CS1) has a device, it should have the same timings as the
+	 * device on CS0
+	 */
+	timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
+	emif_assert(timings);
+	min_tck = cs0_dev_timings->min_tck;
+
+	temp = addressing_table_index(cs0_dev_details->type,
+				      cs0_dev_details->density,
+				      cs0_dev_details->io_width);
+
+	emif_assert((temp >= 0));
+	addressing = &(addressing_table[temp]);
+	emif_assert(addressing);
+
+	sys_freq = get_sys_clk_freq();
+
+	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
+							cs1_dev_details,
+							addressing, RL_BOOT);
+
+	regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
+						cs1_dev_details,
+						addressing, RL_FINAL);
+
+	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
+
+	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
+
+	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
+
+	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
+
+	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
+
+	regs->temp_alert_config =
+	    get_temp_alert_config(cs1_dev_details, addressing, 0);
+
+	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
+					    LPDDR2_VOLTAGE_STABLE);
+
+	regs->emif_ddr_phy_ctlr_1_init =
+			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
+
+	regs->emif_ddr_phy_ctlr_1 =
+			get_ddr_phy_ctrl_1(freq, RL_FINAL);
+
+	regs->freq = freq;
+
+	print_timing_reg(regs->sdram_config_init);
+	print_timing_reg(regs->sdram_config);
+	print_timing_reg(regs->ref_ctrl);
+	print_timing_reg(regs->sdram_tim1);
+	print_timing_reg(regs->sdram_tim2);
+	print_timing_reg(regs->sdram_tim3);
+	print_timing_reg(regs->read_idle_ctrl);
+	print_timing_reg(regs->temp_alert_config);
+	print_timing_reg(regs->zq_config);
+	print_timing_reg(regs->emif_ddr_phy_ctlr_1);
+	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
+}
+#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
+
+#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
+/* Base AC Timing values specified by JESD209-2 for 400MHz operation */
+static const struct lpddr2_ac_timings timings_jedec_400_mhz = {
+	.max_freq = 400000000,
+	.RL = 6,
+	.tRPab = 21,
+	.tRCD = 18,
+	.tWR = 15,
+	.tRASmin = 42,
+	.tRRD = 10,
+	.tWTRx2 = 15,
+	.tXSR = 140,
+	.tXPx2 = 15,
+	.tRFCab = 130,
+	.tRTPx2 = 15,
+	.tCKE = 3,
+	.tCKESR = 15,
+	.tZQCS = 90,
+	.tZQCL = 360,
+	.tZQINIT = 1000,
+	.tDQSCKMAXx2 = 11,
+	.tRASmax = 70,
+	.tFAW = 50
+};
+
+/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */
+static const struct lpddr2_ac_timings timings_jedec_333_mhz = {
+	.max_freq = 333000000,
+	.RL = 5,
+	.tRPab = 21,
+	.tRCD = 18,
+	.tWR = 15,
+	.tRASmin = 42,
+	.tRRD = 10,
+	.tWTRx2 = 15,
+	.tXSR = 140,
+	.tXPx2 = 15,
+	.tRFCab = 130,
+	.tRTPx2 = 15,
+	.tCKE = 3,
+	.tCKESR = 15,
+	.tZQCS = 90,
+	.tZQCL = 360,
+	.tZQINIT = 1000,
+	.tDQSCKMAXx2 = 11,
+	.tRASmax = 70,
+	.tFAW = 50
+};
+
+/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */
+static const struct lpddr2_ac_timings timings_jedec_200_mhz = {
+	.max_freq = 200000000,
+	.RL = 3,
+	.tRPab = 21,
+	.tRCD = 18,
+	.tWR = 15,
+	.tRASmin = 42,
+	.tRRD = 10,
+	.tWTRx2 = 20,
+	.tXSR = 140,
+	.tXPx2 = 15,
+	.tRFCab = 130,
+	.tRTPx2 = 15,
+	.tCKE = 3,
+	.tCKESR = 15,
+	.tZQCS = 90,
+	.tZQCL = 360,
+	.tZQINIT = 1000,
+	.tDQSCKMAXx2 = 11,
+	.tRASmax = 70,
+	.tFAW = 50
+};
+
+/*
+ * Min tCK values specified by JESD209-2
+ * Min tCK specifies the minimum duration of some AC timing parameters in terms
+ * of the number of cycles. If the calculated number of cycles based on the
+ * absolute time value is less than the min tCK value, min tCK value should
+ * be used instead. This typically happens at low frequencies.
+ */
+static const struct lpddr2_min_tck min_tck_jedec = {
+	.tRL = 3,
+	.tRP_AB = 3,
+	.tRCD = 3,
+	.tWR = 3,
+	.tRAS_MIN = 3,
+	.tRRD = 2,
+	.tWTR = 2,
+	.tXP = 2,
+	.tRTP = 2,
+	.tCKE = 3,
+	.tCKESR = 3,
+	.tFAW = 8
+};
+
+static const struct lpddr2_ac_timings const*
+			jedec_ac_timings[MAX_NUM_SPEEDBINS] = {
+	&timings_jedec_200_mhz,
+	&timings_jedec_333_mhz,
+	&timings_jedec_400_mhz
+};
+
+static const struct lpddr2_device_timings jedec_default_timings = {
+	.ac_timings = jedec_ac_timings,
+	.min_tck = &min_tck_jedec
+};
+
+void emif_get_device_timings(u32 emif_nr,
+		const struct lpddr2_device_timings **cs0_device_timings,
+		const struct lpddr2_device_timings **cs1_device_timings)
+{
+	/* Assume Identical devices on EMIF1 & EMIF2 */
+	*cs0_device_timings = &jedec_default_timings;
+	*cs1_device_timings = &jedec_default_timings;
+}
+#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */
+
+#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
+const char *get_lpddr2_type(u8 type_id)
+{
+	switch (type_id) {
+	case LPDDR2_TYPE_S4:
+		return "LPDDR2-S4";
+	case LPDDR2_TYPE_S2:
+		return "LPDDR2-S2";
+	default:
+		return NULL;
+	}
+}
+
+const char *get_lpddr2_io_width(u8 width_id)
+{
+	switch (width_id) {
+	case LPDDR2_IO_WIDTH_8:
+		return "x8";
+	case LPDDR2_IO_WIDTH_16:
+		return "x16";
+	case LPDDR2_IO_WIDTH_32:
+		return "x32";
+	default:
+		return NULL;
+	}
+}
+
+const char *get_lpddr2_manufacturer(u32 manufacturer)
+{
+	switch (manufacturer) {
+	case LPDDR2_MANUFACTURER_SAMSUNG:
+		return "Samsung";
+	case LPDDR2_MANUFACTURER_QIMONDA:
+		return "Qimonda";
+	case LPDDR2_MANUFACTURER_ELPIDA:
+		return "Elpida";
+	case LPDDR2_MANUFACTURER_ETRON:
+		return "Etron";
+	case LPDDR2_MANUFACTURER_NANYA:
+		return "Nanya";
+	case LPDDR2_MANUFACTURER_HYNIX:
+		return "Hynix";
+	case LPDDR2_MANUFACTURER_MOSEL:
+		return "Mosel";
+	case LPDDR2_MANUFACTURER_WINBOND:
+		return "Winbond";
+	case LPDDR2_MANUFACTURER_ESMT:
+		return "ESMT";
+	case LPDDR2_MANUFACTURER_SPANSION:
+		return "Spansion";
+	case LPDDR2_MANUFACTURER_SST:
+		return "SST";
+	case LPDDR2_MANUFACTURER_ZMOS:
+		return "ZMOS";
+	case LPDDR2_MANUFACTURER_INTEL:
+		return "Intel";
+	case LPDDR2_MANUFACTURER_NUMONYX:
+		return "Numonyx";
+	case LPDDR2_MANUFACTURER_MICRON:
+		return "Micron";
+	default:
+		return NULL;
+	}
+}
+
+static void display_sdram_details(u32 emif_nr, u32 cs,
+				  struct lpddr2_device_details *device)
+{
+	const char *mfg_str;
+	const char *type_str;
+	char density_str[10];
+	u32 density;
+
+	debug("EMIF%d CS%d\t", emif_nr, cs);
+
+	if (!device) {
+		debug("None\n");
+		return;
+	}
+
+	mfg_str = get_lpddr2_manufacturer(device->manufacturer);
+	type_str = get_lpddr2_type(device->type);
+
+	density = lpddr2_density_2_size_in_mbytes[device->density];
+	if ((density / 1024 * 1024) == density) {
+		density /= 1024;
+		sprintf(density_str, "%d GB", density);
+	} else
+		sprintf(density_str, "%d MB", density);
+	if (mfg_str && type_str)
+		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
+}
+
+static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
+				  struct lpddr2_device_details *lpddr2_device)
+{
+	u32 mr = 0, temp;
+
+	mr = get_mr(base, cs, LPDDR2_MR0);
+	if (mr > 0xFF) {
+		/* Mode register value bigger than 8 bit */
+		return 0;
+	}
+
+	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
+	if (temp) {
+		/* Not SDRAM */
+		return 0;
+	}
+	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
+
+	if (temp) {
+		/* DNV supported - But DNV is only supported for NVM */
+		return 0;
+	}
+
+	mr = get_mr(base, cs, LPDDR2_MR4);
+	if (mr > 0xFF) {
+		/* Mode register value bigger than 8 bit */
+		return 0;
+	}
+
+	mr = get_mr(base, cs, LPDDR2_MR5);
+	if (mr >= 0xFF) {
+		/* Mode register value bigger than 8 bit */
+		return 0;
+	}
+
+	if (!get_lpddr2_manufacturer(mr)) {
+		/* Manufacturer not identified */
+		return 0;
+	}
+	lpddr2_device->manufacturer = mr;
+
+	mr = get_mr(base, cs, LPDDR2_MR6);
+	if (mr >= 0xFF) {
+		/* Mode register value bigger than 8 bit */
+		return 0;
+	}
+
+	mr = get_mr(base, cs, LPDDR2_MR7);
+	if (mr >= 0xFF) {
+		/* Mode register value bigger than 8 bit */
+		return 0;
+	}
+
+	mr = get_mr(base, cs, LPDDR2_MR8);
+	if (mr >= 0xFF) {
+		/* Mode register value bigger than 8 bit */
+		return 0;
+	}
+
+	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
+	if (!get_lpddr2_type(temp)) {
+		/* Not SDRAM */
+		return 0;
+	}
+	lpddr2_device->type = temp;
+
+	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
+	if (temp > LPDDR2_DENSITY_32Gb) {
+		/* Density not supported */
+		return 0;
+	}
+	lpddr2_device->density = temp;
+
+	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
+	if (!get_lpddr2_io_width(temp)) {
+		/* IO width unsupported value */
+		return 0;
+	}
+	lpddr2_device->io_width = temp;
+
+	/*
+	 * If all the above tests pass we should
+	 * have a device on this chip-select
+	 */
+	return 1;
+}
+
+struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
+			struct lpddr2_device_details *lpddr2_dev_details)
+{
+	u32 phy;
+	u32 base = (emif_nr == 1) ? OMAP44XX_EMIF1 : OMAP44XX_EMIF2;
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+
+	if (!lpddr2_dev_details)
+		return NULL;
+
+	/* Do the minimum init for mode register accesses */
+	if (!running_from_sdram()) {
+		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
+		writel(phy, &emif->emif_ddr_phy_ctrl_1);
+	}
+
+	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
+		return NULL;
+
+	display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
+
+	return lpddr2_dev_details;
+}
+#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
+
+static void do_sdram_init(u32 base)
+{
+	const struct emif_regs *regs;
+	u32 in_sdram, emif_nr;
+
+	debug(">>do_sdram_init() %x\n", base);
+
+	in_sdram = running_from_sdram();
+	emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2;
+
+#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
+	emif_get_reg_dump(emif_nr, &regs);
+	if (!regs) {
+		debug("EMIF: reg dump not provided\n");
+		return;
+	}
+#else
+	/*
+	 * The user has not provided the register values. We need to
+	 * calculate it based on the timings and the DDR frequency
+	 */
+	struct emif_device_details dev_details;
+	struct emif_regs calculated_regs;
+
+	/*
+	 * Get device details:
+	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
+	 * - Obtained from user otherwise
+	 */
+	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
+	emif_reset_phy(base);
+	dev_details.cs0_device_details = emif_get_device_details(base, CS0,
+						&cs0_dev_details);
+	dev_details.cs1_device_details = emif_get_device_details(base, CS1,
+						&cs1_dev_details);
+	emif_reset_phy(base);
+
+	/* Return if no devices on this EMIF */
+	if (!dev_details.cs0_device_details &&
+	    !dev_details.cs1_device_details) {
+		emif_sizes[emif_nr - 1] = 0;
+		return;
+	}
+
+	if (!in_sdram)
+		emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
+
+	/*
+	 * Get device timings:
+	 * - Default timings specified by JESD209-2 if
+	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
+	 * - Obtained from user otherwise
+	 */
+	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
+				&dev_details.cs1_device_timings);
+
+	/* Calculate the register values */
+	emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs);
+	regs = &calculated_regs;
+#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
+
+	/*
+	 * Initializing the LPDDR2 device can not happen from SDRAM.
+	 * Changing the timing registers in EMIF can happen(going from one
+	 * OPP to another)
+	 */
+	if (!in_sdram)
+		lpddr2_init(base, regs);
+
+	/* Write to the shadow registers */
+	emif_update_timings(base, regs);
+
+	debug("<<do_sdram_init() %x\n", base);
+}
+
+static void emif_post_init_config(u32 base)
+{
+	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
+	u32 omap4_rev = omap_revision();
+
+	/* reset phy on ES2.0 */
+	if (omap4_rev == OMAP4430_ES2_0)
+		emif_reset_phy(base);
+
+	/* Put EMIF back in smart idle on ES1.0 */
+	if (omap4_rev == OMAP4430_ES1_0)
+		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
+}
+
+static void dmm_init(u32 base)
+{
+	const struct dmm_lisa_map_regs *lisa_map_regs;
+
+#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
+	emif_get_dmm_regs(&lisa_map_regs);
+#else
+	u32 emif1_size, emif2_size, mapped_size, section_map = 0;
+	u32 section_cnt, sys_addr;
+	struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
+
+	mapped_size = 0;
+	section_cnt = 3;
+	sys_addr = CONFIG_SYS_SDRAM_BASE;
+	emif1_size = emif_sizes[0];
+	emif2_size = emif_sizes[1];
+	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
+
+	if (!emif1_size && !emif2_size)
+		return;
+
+	/* symmetric interleaved section */
+	if (emif1_size && emif2_size) {
+		mapped_size = min(emif1_size, emif2_size);
+		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
+		section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT;
+		/* only MSB */
+		section_map |= (sys_addr >> 24) <<
+				OMAP44XX_SYS_ADDR_SHIFT;
+		section_map |= get_dmm_section_size_map(mapped_size * 2)
+				<< OMAP44XX_SYS_SIZE_SHIFT;
+		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
+		emif1_size -= mapped_size;
+		emif2_size -= mapped_size;
+		sys_addr += (mapped_size * 2);
+		section_cnt--;
+	}
+
+	/*
+	 * Single EMIF section(we can have a maximum of 1 single EMIF
+	 * section- either EMIF1 or EMIF2 or none, but not both)
+	 */
+	if (emif1_size) {
+		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
+		section_map |= get_dmm_section_size_map(emif1_size)
+				<< OMAP44XX_SYS_SIZE_SHIFT;
+		/* only MSB */
+		section_map |= (mapped_size >> 24) <<
+				OMAP44XX_SDRC_ADDR_SHIFT;
+		/* only MSB */
+		section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT;
+		section_cnt--;
+	}
+	if (emif2_size) {
+		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
+		section_map |= get_dmm_section_size_map(emif2_size) <<
+				OMAP44XX_SYS_SIZE_SHIFT;
+		/* only MSB */
+		section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT;
+		/* only MSB */
+		section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT;
+		section_cnt--;
+	}
+
+	if (section_cnt == 2) {
+		/* Only 1 section - either symmetric or single EMIF */
+		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
+		lis_map_regs_calculated.dmm_lisa_map_2 = 0;
+		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
+	} else {
+		/* 2 sections - 1 symmetric, 1 single EMIF */
+		lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
+		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
+	}
+
+	/* TRAP for invalid TILER mappings in section 0 */
+	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
+
+	lisa_map_regs = &lis_map_regs_calculated;
+#endif
+	struct dmm_lisa_map_regs *hw_lisa_map_regs =
+	    (struct dmm_lisa_map_regs *)base;
+
+	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
+	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
+	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
+	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
+
+	writel(lisa_map_regs->dmm_lisa_map_3,
+		&hw_lisa_map_regs->dmm_lisa_map_3);
+	writel(lisa_map_regs->dmm_lisa_map_2,
+		&hw_lisa_map_regs->dmm_lisa_map_2);
+	writel(lisa_map_regs->dmm_lisa_map_1,
+		&hw_lisa_map_regs->dmm_lisa_map_1);
+	writel(lisa_map_regs->dmm_lisa_map_0,
+		&hw_lisa_map_regs->dmm_lisa_map_0);
+
+	if (omap_revision() >= OMAP4460_ES1_0) {
+		hw_lisa_map_regs =
+		    (struct dmm_lisa_map_regs *)OMAP44XX_MA_LISA_MAP_BASE;
+
+		writel(lisa_map_regs->dmm_lisa_map_3,
+			&hw_lisa_map_regs->dmm_lisa_map_3);
+		writel(lisa_map_regs->dmm_lisa_map_2,
+			&hw_lisa_map_regs->dmm_lisa_map_2);
+		writel(lisa_map_regs->dmm_lisa_map_1,
+			&hw_lisa_map_regs->dmm_lisa_map_1);
+		writel(lisa_map_regs->dmm_lisa_map_0,
+			&hw_lisa_map_regs->dmm_lisa_map_0);
+	}
+}
+
+/*
+ * SDRAM initialization:
+ * SDRAM initialization has two parts:
+ * 1. Configuring the SDRAM device
+ * 2. Update the AC timings related parameters in the EMIF module
+ * (1) should be done only once and should not be done while we are
+ * running from SDRAM.
+ * (2) can and should be done more than once if OPP changes.
+ * Particularly, this may be needed when we boot without SPL and
+ * and using Configuration Header(CH). ROM code supports only at 50% OPP
+ * at boot (low power boot). So u-boot has to switch to OPP100 and update
+ * the frequency. So,
+ * Doing (1) and (2) makes sense - first time initialization
+ * Doing (2) and not (1) makes sense - OPP change (when using CH)
+ * Doing (1) and not (2) doen't make sense
+ * See do_sdram_init() for the details
+ */
+void sdram_init(void)
+{
+	u32 in_sdram, size_prog, size_detect;
+
+	debug(">>sdram_init()\n");
+
+	if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
+		return;
+
+	in_sdram = running_from_sdram();
+	debug("in_sdram = %d\n", in_sdram);
+
+	if (!in_sdram)
+		bypass_dpll(&prcm->cm_clkmode_dpll_core);
+
+
+	do_sdram_init(OMAP44XX_EMIF1);
+	do_sdram_init(OMAP44XX_EMIF2);
+
+	if (!in_sdram) {
+		dmm_init(OMAP44XX_DMM_LISA_MAP_BASE);
+		emif_post_init_config(OMAP44XX_EMIF1);
+		emif_post_init_config(OMAP44XX_EMIF2);
+
+	}
+
+	/* for the shadow registers to take effect */
+	freq_update_core();
+
+	/* Do some testing after the init */
+	if (!in_sdram) {
+		size_prog = omap4_sdram_size();
+		size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
+						size_prog);
+		/* Compare with the size programmed */
+		if (size_detect != size_prog) {
+			printf("SDRAM: identified size not same as expected"
+				" size identified: %x expected: %x\n",
+				size_detect,
+				size_prog);
+		} else
+			debug("get_ram_size() successful");
+	}
+
+	debug("<<sdram_init()\n");
+}