blob: fe5841e6bacd7d3607e6c12cf828ac67e6c1b588 [file] [log] [blame]
wdenk81a88242002-10-26 15:22:42 +00001/*
2 * (C) Copyright 2001
3 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24/*
25 * I2C Functions similar to the standard memory functions.
26 *
27 * There are several parameters in many of the commands that bear further
28 * explanations:
29 *
30 * Two of the commands (imm and imw) take a byte/word/long modifier
31 * (e.g. imm.w specifies the word-length modifier). This was done to
32 * allow manipulating word-length registers. It was not done on any other
33 * commands because it was not deemed useful.
34 *
35 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
36 * Each I2C chip on the bus has a unique address. On the I2C data bus,
37 * the address is the upper seven bits and the LSB is the "read/write"
38 * bit. Note that the {i2c_chip} address specified on the command
39 * line is not shifted up: e.g. a typical EEPROM memory chip may have
40 * an I2C address of 0x50, but the data put on the bus will be 0xA0
41 * for write and 0xA1 for read. This "non shifted" address notation
42 * matches at least half of the data sheets :-/.
43 *
44 * {addr} is the address (or offset) within the chip. Small memory
45 * chips have 8 bit addresses. Large memory chips have 16 bit
46 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
47 * Many non-memory chips have multiple registers and {addr} is used
48 * as the register index. Some non-memory chips have only one register
49 * and therefore don't need any {addr} parameter.
50 *
51 * The default {addr} parameter is one byte (.1) which works well for
52 * memories and registers with 8 bits of address space.
53 *
54 * You can specify the length of the {addr} field with the optional .0,
55 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
56 * manipulating a single register device which doesn't use an address
57 * field, use "0.0" for the address and the ".0" length field will
58 * suppress the address in the I2C data stream. This also works for
59 * successive reads using the I2C auto-incrementing memory pointer.
60 *
61 * If you are manipulating a large memory with 2-byte addresses, use
62 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
63 *
64 * Then there are the unfortunate memory chips that spill the most
65 * significant 1, 2, or 3 bits of address into the chip address byte.
66 * This effectively makes one chip (logically) look like 2, 4, or
67 * 8 chips. This is handled (awkwardly) by #defining
68 * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
69 * {addr} field (since .1 is the default, it doesn't actually have to
70 * be specified). Examples: given a memory chip at I2C chip address
71 * 0x50, the following would happen...
72 * imd 50 0 10 display 16 bytes starting at 0x000
73 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
74 * imd 50 100 10 display 16 bytes starting at 0x100
75 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
76 * imd 50 210 10 display 16 bytes starting at 0x210
77 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
78 * This is awfully ugly. It would be nice if someone would think up
79 * a better way of handling this.
80 *
81 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
82 */
83
84#include <common.h>
85#include <command.h>
86#include <cmd_i2c.h>
87#include <i2c.h>
88#include <asm/byteorder.h>
89
90#if (CONFIG_COMMANDS & CFG_CMD_I2C)
91
92
93/* Display values from last command.
94 * Memory modify remembered values are different from display memory.
95 */
96static uchar i2c_dp_last_chip;
97static uint i2c_dp_last_addr;
98static uint i2c_dp_last_alen;
99static uint i2c_dp_last_length = 0x10;
100
101static uchar i2c_mm_last_chip;
102static uint i2c_mm_last_addr;
103static uint i2c_mm_last_alen;
104
105#if defined(CFG_I2C_NOPROBES)
106static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
107#endif
108
109static int
110mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
111extern int cmd_get_data_size(char* arg, int default_size);
112
113/*
114 * Syntax:
115 * imd {i2c_chip} {addr}{.0, .1, .2} {len}
116 */
117#define DISP_LINE_LEN 16
118
119int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
120{
121 u_char chip;
122 uint addr, alen, length;
123 int j, nbytes, linebytes;
124
125 /* We use the last specified parameters, unless new ones are
126 * entered.
127 */
128 chip = i2c_dp_last_chip;
129 addr = i2c_dp_last_addr;
130 alen = i2c_dp_last_alen;
131 length = i2c_dp_last_length;
132
133 if (argc < 3) {
134 printf ("Usage:\n%s\n", cmdtp->usage);
135 return 1;
136 }
137
138 if ((flag & CMD_FLAG_REPEAT) == 0) {
139 /*
140 * New command specified.
141 */
142 alen = 1;
143
144 /*
145 * I2C chip address
146 */
147 chip = simple_strtoul(argv[1], NULL, 16);
148
149 /*
150 * I2C data address within the chip. This can be 1 or
151 * 2 bytes long. Some day it might be 3 bytes long :-).
152 */
153 addr = simple_strtoul(argv[2], NULL, 16);
154 alen = 1;
155 for(j = 0; j < 8; j++) {
156 if (argv[2][j] == '.') {
157 alen = argv[2][j+1] - '0';
158 if (alen > 4) {
159 printf ("Usage:\n%s\n", cmdtp->usage);
160 return 1;
161 }
162 break;
163 } else if (argv[2][j] == '\0') {
164 break;
165 }
166 }
167
168 /*
169 * If another parameter, it is the length to display.
170 * Length is the number of objects, not number of bytes.
171 */
172 if (argc > 3)
173 length = simple_strtoul(argv[3], NULL, 16);
174 }
175
176 /*
177 * Print the lines.
178 *
179 * We buffer all read data, so we can make sure data is read only
180 * once.
181 */
182 nbytes = length;
183 do {
184 unsigned char linebuf[DISP_LINE_LEN];
185 unsigned char *cp;
186
187 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
188
189 if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
190 printf("Error reading the chip.\n");
191 } else {
192 printf("%04x:", addr);
193 cp = linebuf;
194 for (j=0; j<linebytes; j++) {
195 printf(" %02x", *cp++);
196 addr++;
197 }
198 printf(" ");
199 cp = linebuf;
200 for (j=0; j<linebytes; j++) {
201 if ((*cp < 0x20) || (*cp > 0x7e))
202 printf(".");
203 else
204 printf("%c", *cp);
205 cp++;
206 }
207 printf("\n");
208 }
209 nbytes -= linebytes;
210 } while (nbytes > 0);
211
212 i2c_dp_last_chip = chip;
213 i2c_dp_last_addr = addr;
214 i2c_dp_last_alen = alen;
215 i2c_dp_last_length = length;
216
217 return 0;
218}
219
220int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
221{
222 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
223}
224
225
226int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
227{
228 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
229}
230
231/* Write (fill) memory
232 *
233 * Syntax:
234 * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
235 */
236int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
237{
238 uchar chip;
239 ulong addr;
240 uint alen;
241 uchar byte;
242 int count;
243 int j;
244
245 if ((argc < 4) || (argc > 5)) {
246 printf ("Usage:\n%s\n", cmdtp->usage);
247 return 1;
248 }
249
250 /*
251 * Chip is always specified.
252 */
253 chip = simple_strtoul(argv[1], NULL, 16);
254
255 /*
256 * Address is always specified.
257 */
258 addr = simple_strtoul(argv[2], NULL, 16);
259 alen = 1;
260 for(j = 0; j < 8; j++) {
261 if (argv[2][j] == '.') {
262 alen = argv[2][j+1] - '0';
263 if(alen > 4) {
264 printf ("Usage:\n%s\n", cmdtp->usage);
265 return 1;
266 }
267 break;
268 } else if (argv[2][j] == '\0') {
269 break;
270 }
271 }
272
273 /*
274 * Value to write is always specified.
275 */
276 byte = simple_strtoul(argv[3], NULL, 16);
277
278 /*
279 * Optional count
280 */
281 if(argc == 5) {
282 count = simple_strtoul(argv[4], NULL, 16);
283 } else {
284 count = 1;
285 }
286
287 while (count-- > 0) {
288 if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
289 printf("Error writing the chip.\n");
290 }
291 /*
292 * Wait for the write to complete. The write can take
293 * up to 10mSec (we allow a little more time).
294 *
295 * On some chips, while the write is in progress, the
296 * chip doesn't respond. This apparently isn't a
297 * universal feature so we don't take advantage of it.
298 */
299 udelay(11000);
300#if 0
301 for(timeout = 0; timeout < 10; timeout++) {
302 udelay(2000);
303 if(i2c_probe(chip) == 0)
304 break;
305 }
306#endif
307 }
308
309 return (0);
310}
311
312
313/* Calculate a CRC on memory
314 *
315 * Syntax:
316 * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
317 */
318int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
319{
320 uchar chip;
321 ulong addr;
322 uint alen;
323 int count;
324 uchar byte;
325 ulong crc;
326 ulong err;
327 int j;
328
329 if (argc < 4) {
330 printf ("Usage:\n%s\n", cmdtp->usage);
331 return 1;
332 }
333
334 /*
335 * Chip is always specified.
336 */
337 chip = simple_strtoul(argv[1], NULL, 16);
338
339 /*
340 * Address is always specified.
341 */
342 addr = simple_strtoul(argv[2], NULL, 16);
343 alen = 1;
344 for(j = 0; j < 8; j++) {
345 if (argv[2][j] == '.') {
346 alen = argv[2][j+1] - '0';
347 if(alen > 4) {
348 printf ("Usage:\n%s\n", cmdtp->usage);
349 return 1;
350 }
351 break;
352 } else if (argv[2][j] == '\0') {
353 break;
354 }
355 }
356
357 /*
358 * Count is always specified
359 */
360 count = simple_strtoul(argv[3], NULL, 16);
361
362 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
363 /*
364 * CRC a byte at a time. This is going to be slooow, but hey, the
365 * memories are small and slow too so hopefully nobody notices.
366 */
367 crc = 0;
368 err = 0;
369 while(count-- > 0) {
370 if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
371 err++;
372 }
373 crc = crc32 (crc, &byte, 1);
374 addr++;
375 }
376 if(err > 0)
377 {
378 printf("Error reading the chip,\n");
379 } else {
380 printf ("%08lx\n", crc);
381 }
382
383 return 0;
384}
385
386
387/* Modify memory.
388 *
389 * Syntax:
390 * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
391 * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
392 */
393
394static int
395mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
396{
397 uchar chip;
398 ulong addr;
399 uint alen;
400 ulong data;
401 int size = 1;
402 int nbytes;
403 int j;
404 extern char console_buffer[];
405
406 if (argc != 3) {
407 printf ("Usage:\n%s\n", cmdtp->usage);
408 return 1;
409 }
410
411#ifdef CONFIG_BOOT_RETRY_TIME
412 reset_cmd_timeout(); /* got a good command to get here */
413#endif
414 /*
415 * We use the last specified parameters, unless new ones are
416 * entered.
417 */
418 chip = i2c_mm_last_chip;
419 addr = i2c_mm_last_addr;
420 alen = i2c_mm_last_alen;
421
422 if ((flag & CMD_FLAG_REPEAT) == 0) {
423 /*
424 * New command specified. Check for a size specification.
425 * Defaults to byte if no or incorrect specification.
426 */
427 size = cmd_get_data_size(argv[0], 1);
428
429 /*
430 * Chip is always specified.
431 */
432 chip = simple_strtoul(argv[1], NULL, 16);
433
434 /*
435 * Address is always specified.
436 */
437 addr = simple_strtoul(argv[2], NULL, 16);
438 alen = 1;
439 for(j = 0; j < 8; j++) {
440 if (argv[2][j] == '.') {
441 alen = argv[2][j+1] - '0';
442 if(alen > 4) {
443 printf ("Usage:\n%s\n", cmdtp->usage);
444 return 1;
445 }
446 break;
447 } else if (argv[2][j] == '\0') {
448 break;
449 }
450 }
451 }
452
453 /*
454 * Print the address, followed by value. Then accept input for
455 * the next value. A non-converted value exits.
456 */
457 do {
458 printf("%08lx:", addr);
459 if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) {
460 printf("\nError reading the chip,\n");
461 } else {
462 data = cpu_to_be32(data);
463 if(size == 1) {
464 printf(" %02lx", (data >> 24) & 0x000000FF);
465 } else if(size == 2) {
466 printf(" %04lx", (data >> 16) & 0x0000FFFF);
467 } else {
468 printf(" %08lx", data);
469 }
470 }
471
472 nbytes = readline (" ? ");
473 if (nbytes == 0) {
474 /*
475 * <CR> pressed as only input, don't modify current
476 * location and move to next.
477 */
478 if (incrflag)
479 addr += size;
480 nbytes = size;
481#ifdef CONFIG_BOOT_RETRY_TIME
482 reset_cmd_timeout(); /* good enough to not time out */
483#endif
484 }
485#ifdef CONFIG_BOOT_RETRY_TIME
486 else if (nbytes == -2) {
487 break; /* timed out, exit the command */
488 }
489#endif
490 else {
491 char *endp;
492
493 data = simple_strtoul(console_buffer, &endp, 16);
494 if(size == 1) {
495 data = data << 24;
496 } else if(size == 2) {
497 data = data << 16;
498 }
499 data = be32_to_cpu(data);
500 nbytes = endp - console_buffer;
501 if (nbytes) {
502#ifdef CONFIG_BOOT_RETRY_TIME
503 /*
504 * good enough to not time out
505 */
506 reset_cmd_timeout();
507#endif
508 if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) {
509 printf("Error writing the chip.\n");
510 }
511 if (incrflag)
512 addr += size;
513 }
514 }
515 } while (nbytes);
516
517 chip = i2c_mm_last_chip;
518 addr = i2c_mm_last_addr;
519 alen = i2c_mm_last_alen;
520
521 return 0;
522}
523
524/*
525 * Syntax:
526 * iprobe {addr}{.0, .1, .2}
527 */
528int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
529{
530 int j;
531#if defined(CFG_I2C_NOPROBES)
532 int k, skip;
533#endif
534
535 printf("Valid chip addresses:");
536 for(j = 0; j < 128; j++) {
537#if defined(CFG_I2C_NOPROBES)
538 skip = 0;
539 for (k = 0; k < sizeof(i2c_no_probes); k++){
540 if (j == i2c_no_probes[k]){
541 skip = 1;
542 break;
543 }
544 }
545 if (skip)
546 continue;
547#endif
548 if(i2c_probe(j) == 0) {
549 printf(" %02X", j);
550 }
551 }
552 printf("\n");
553
554#if defined(CFG_I2C_NOPROBES)
555 puts ("Excluded chip addresses:");
556 for( k = 0; k < sizeof(i2c_no_probes); k++ )
557 printf(" %02X", i2c_no_probes[k] );
558 puts ("\n");
559#endif
560
561 return 0;
562}
563
564
565/*
566 * Syntax:
567 * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
568 * {length} - Number of bytes to read
569 * {delay} - A DECIMAL number and defaults to 1000 uSec
570 */
571int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
572{
573 u_char chip;
574 ulong alen;
575 uint addr;
576 uint length;
577 u_char bytes[16];
578 int delay;
579 int j;
580
581 if (argc < 3) {
582 printf ("Usage:\n%s\n", cmdtp->usage);
583 return 1;
584 }
585
586 /*
587 * Chip is always specified.
588 */
589 chip = simple_strtoul(argv[1], NULL, 16);
590
591 /*
592 * Address is always specified.
593 */
594 addr = simple_strtoul(argv[2], NULL, 16);
595 alen = 1;
596 for(j = 0; j < 8; j++) {
597 if (argv[2][j] == '.') {
598 alen = argv[2][j+1] - '0';
599 if (alen > 4) {
600 printf ("Usage:\n%s\n", cmdtp->usage);
601 return 1;
602 }
603 break;
604 } else if (argv[2][j] == '\0') {
605 break;
606 }
607 }
608
609 /*
610 * Length is the number of objects, not number of bytes.
611 */
612 length = 1;
613 length = simple_strtoul(argv[3], NULL, 16);
614 if(length > sizeof(bytes)) {
615 length = sizeof(bytes);
616 }
617
618 /*
619 * The delay time (uSec) is optional.
620 */
621 delay = 1000;
622 if (argc > 3) {
623 delay = simple_strtoul(argv[4], NULL, 10);
624 }
625 /*
626 * Run the loop...
627 */
628 while(1) {
629 if(i2c_read(chip, addr, alen, bytes, length) != 0) {
630 printf("Error reading the chip.\n");
631 }
632 udelay(delay);
633 }
634
635 /* NOTREACHED */
636 return 0;
637}
638
639
640/*
641 * The SDRAM command is separately configured because many
642 * (most?) embedded boards don't use SDRAM DIMMs.
643 */
644#if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
645
646/*
647 * Syntax:
648 * sdram {i2c_chip}
649 */
650int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
651{
652 u_char chip;
653 u_char data[128];
654 u_char cksum;
655 int j;
656
657 if (argc < 2) {
658 printf ("Usage:\n%s\n", cmdtp->usage);
659 return 1;
660 }
661 /*
662 * Chip is always specified.
663 */
664 chip = simple_strtoul(argv[1], NULL, 16);
665
666 if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
667 printf("No SDRAM Serial Presence Detect found.\n");
668 return 1;
669 }
670
671 cksum = 0;
672 for (j = 0; j < 63; j++) {
673 cksum += data[j];
674 }
675 if(cksum != data[63]) {
676 printf ("WARNING: Configuration data checksum failure:\n"
677 " is 0x%02x, calculated 0x%02x\n",
678 data[63], cksum);
679 }
680 printf("SPD data revision %d.%d\n",
681 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
682 printf("Bytes used 0x%02X\n", data[0]);
683 printf("Serial memory size 0x%02X\n", 1 << data[1]);
684 printf("Memory type ");
685 switch(data[2]) {
686 case 2: printf("EDO\n"); break;
687 case 4: printf("SDRAM\n"); break;
688 default: printf("unknown\n"); break;
689 }
690 printf("Row address bits ");
691 if((data[3] & 0x00F0) == 0) {
692 printf("%d\n", data[3] & 0x0F);
693 } else {
694 printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
695 }
696 printf("Column address bits ");
697 if((data[4] & 0x00F0) == 0) {
698 printf("%d\n", data[4] & 0x0F);
699 } else {
700 printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
701 }
702 printf("Module rows %d\n", data[5]);
703 printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
704 printf("Interface signal levels ");
705 switch(data[8]) {
706 case 0: printf("5.0v/TTL\n"); break;
707 case 1: printf("LVTTL\n"); break;
708 case 2: printf("HSTL 1.5\n"); break;
709 case 3: printf("SSTL 3.3\n"); break;
710 case 4: printf("SSTL 2.5\n"); break;
711 default: printf("unknown\n"); break;
712 }
713 printf("SDRAM cycle time %d.%d nS\n",
714 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
715 printf("SDRAM access time %d.%d nS\n",
716 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
717 printf("EDC configuration ");
718 switch(data[11]) {
719 case 0: printf("None\n"); break;
720 case 1: printf("Parity\n"); break;
721 case 2: printf("ECC\n"); break;
722 default: printf("unknown\n"); break;
723 }
724 if((data[12] & 0x80) == 0) {
725 printf("No self refresh, rate ");
726 } else {
727 printf("Self refresh, rate ");
728 }
729 switch(data[12] & 0x7F) {
730 case 0: printf("15.625uS\n"); break;
731 case 1: printf("3.9uS\n"); break;
732 case 2: printf("7.8uS\n"); break;
733 case 3: printf("31.3uS\n"); break;
734 case 4: printf("62.5uS\n"); break;
735 case 5: printf("125uS\n"); break;
736 default: printf("unknown\n"); break;
737 }
738 printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
739 if((data[13] & 0x80) != 0) {
740 printf(" (second bank) %d\n",
741 2 * (data[13] & 0x7F));
742 }
743 if(data[14] != 0) {
744 printf("EDC width %d\n",
745 data[14] & 0x7F);
746 if((data[14] & 0x80) != 0) {
747 printf(" (second bank) %d\n",
748 2 * (data[14] & 0x7F));
749 }
750 }
751 printf("Min clock delay, back-to-back random column addresses %d\n",
752 data[15]);
753 printf("Burst length(s) ");
754 if(data[16] & 0x80) printf(" Page");
755 if(data[16] & 0x08) printf(" 8");
756 if(data[16] & 0x04) printf(" 4");
757 if(data[16] & 0x02) printf(" 2");
758 if(data[16] & 0x01) printf(" 1");
759 printf("\n");
760 printf("Number of banks %d\n", data[17]);
761 printf("CAS latency(s) ");
762 if(data[18] & 0x80) printf(" TBD");
763 if(data[18] & 0x40) printf(" 7");
764 if(data[18] & 0x20) printf(" 6");
765 if(data[18] & 0x10) printf(" 5");
766 if(data[18] & 0x08) printf(" 4");
767 if(data[18] & 0x04) printf(" 3");
768 if(data[18] & 0x02) printf(" 2");
769 if(data[18] & 0x01) printf(" 1");
770 printf("\n");
771 printf("CS latency(s) ");
772 if(data[19] & 0x80) printf(" TBD");
773 if(data[19] & 0x40) printf(" 6");
774 if(data[19] & 0x20) printf(" 5");
775 if(data[19] & 0x10) printf(" 4");
776 if(data[19] & 0x08) printf(" 3");
777 if(data[19] & 0x04) printf(" 2");
778 if(data[19] & 0x02) printf(" 1");
779 if(data[19] & 0x01) printf(" 0");
780 printf("\n");
781 printf("WE latency(s) ");
782 if(data[20] & 0x80) printf(" TBD");
783 if(data[20] & 0x40) printf(" 6");
784 if(data[20] & 0x20) printf(" 5");
785 if(data[20] & 0x10) printf(" 4");
786 if(data[20] & 0x08) printf(" 3");
787 if(data[20] & 0x04) printf(" 2");
788 if(data[20] & 0x02) printf(" 1");
789 if(data[20] & 0x01) printf(" 0");
790 printf("\n");
791 printf("Module attributes:\n");
792 if(!data[21]) printf(" (none)\n");
793 if(data[21] & 0x80) printf(" TBD (bit 7)\n");
794 if(data[21] & 0x40) printf(" Redundant row address\n");
795 if(data[21] & 0x20) printf(" Differential clock input\n");
796 if(data[21] & 0x10) printf(" Registerd DQMB inputs\n");
797 if(data[21] & 0x08) printf(" Buffered DQMB inputs\n");
798 if(data[21] & 0x04) printf(" On-card PLL\n");
799 if(data[21] & 0x02) printf(" Registered address/control lines\n");
800 if(data[21] & 0x01) printf(" Buffered address/control lines\n");
801 printf("Device attributes:\n");
802 if(data[22] & 0x80) printf(" TBD (bit 7)\n");
803 if(data[22] & 0x40) printf(" TBD (bit 6)\n");
804 if(data[22] & 0x20) printf(" Upper Vcc tolerance 5%%\n");
805 else printf(" Upper Vcc tolerance 10%%\n");
806 if(data[22] & 0x10) printf(" Lower Vcc tolerance 5%%\n");
807 else printf(" Lower Vcc tolerance 10%%\n");
808 if(data[22] & 0x08) printf(" Supports write1/read burst\n");
809 if(data[22] & 0x04) printf(" Supports precharge all\n");
810 if(data[22] & 0x02) printf(" Supports auto precharge\n");
811 if(data[22] & 0x01) printf(" Supports early RAS# precharge\n");
812 printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
813 (data[23] >> 4) & 0x0F, data[23] & 0x0F);
814 printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
815 (data[24] >> 4) & 0x0F, data[24] & 0x0F);
816 printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
817 (data[25] >> 4) & 0x0F, data[25] & 0x0F);
818 printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
819 (data[26] >> 4) & 0x0F, data[26] & 0x0F);
820 printf("Minimum row precharge %d nS\n", data[27]);
821 printf("Row active to row active min %d nS\n", data[28]);
822 printf("RAS to CAS delay min %d nS\n", data[29]);
823 printf("Minimum RAS pulse width %d nS\n", data[30]);
824 printf("Density of each row ");
825 if(data[31] & 0x80) printf(" 512MByte");
826 if(data[31] & 0x40) printf(" 256MByte");
827 if(data[31] & 0x20) printf(" 128MByte");
828 if(data[31] & 0x10) printf(" 64MByte");
829 if(data[31] & 0x08) printf(" 32MByte");
830 if(data[31] & 0x04) printf(" 16MByte");
831 if(data[31] & 0x02) printf(" 8MByte");
832 if(data[31] & 0x01) printf(" 4MByte");
833 printf("\n");
834 printf("Command and Address setup %c%d.%d nS\n",
835 (data[32] & 0x80) ? '-' : '+',
836 (data[32] >> 4) & 0x07, data[32] & 0x0F);
837 printf("Command and Address hold %c%d.%d nS\n",
838 (data[33] & 0x80) ? '-' : '+',
839 (data[33] >> 4) & 0x07, data[33] & 0x0F);
840 printf("Data signal input setup %c%d.%d nS\n",
841 (data[34] & 0x80) ? '-' : '+',
842 (data[34] >> 4) & 0x07, data[34] & 0x0F);
843 printf("Data signal input hold %c%d.%d nS\n",
844 (data[35] & 0x80) ? '-' : '+',
845 (data[35] >> 4) & 0x07, data[35] & 0x0F);
846 printf("Manufacturer's JEDEC ID ");
847 for(j = 64; j <= 71; j++)
848 printf("%02X ", data[j]);
849 printf("\n");
850 printf("Manufacturing Location %02X\n", data[72]);
851 printf("Manufacturer's Part Number ");
852 for(j = 73; j <= 90; j++)
853 printf("%02X ", data[j]);
854 printf("\n");
855 printf("Revision Code %02X %02X\n", data[91], data[92]);
856 printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
857 printf("Assembly Serial Number ");
858 for(j = 95; j <= 98; j++)
859 printf("%02X ", data[j]);
860 printf("\n");
861 printf("Speed rating PC%d\n",
862 data[126] == 0x66 ? 66 : data[126]);
863
864 return 0;
865}
866#endif /* CFG_CMD_SDRAM */
867
868#endif /* CFG_CMD_I2C */