blob: fe5841e6bacd7d3607e6c12cf828ac67e6c1b588 [file] [log] [blame]
/*
* (C) Copyright 2001
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* I2C Functions similar to the standard memory functions.
*
* There are several parameters in many of the commands that bear further
* explanations:
*
* Two of the commands (imm and imw) take a byte/word/long modifier
* (e.g. imm.w specifies the word-length modifier). This was done to
* allow manipulating word-length registers. It was not done on any other
* commands because it was not deemed useful.
*
* {i2c_chip} is the I2C chip address (the first byte sent on the bus).
* Each I2C chip on the bus has a unique address. On the I2C data bus,
* the address is the upper seven bits and the LSB is the "read/write"
* bit. Note that the {i2c_chip} address specified on the command
* line is not shifted up: e.g. a typical EEPROM memory chip may have
* an I2C address of 0x50, but the data put on the bus will be 0xA0
* for write and 0xA1 for read. This "non shifted" address notation
* matches at least half of the data sheets :-/.
*
* {addr} is the address (or offset) within the chip. Small memory
* chips have 8 bit addresses. Large memory chips have 16 bit
* addresses. Other memory chips have 9, 10, or 11 bit addresses.
* Many non-memory chips have multiple registers and {addr} is used
* as the register index. Some non-memory chips have only one register
* and therefore don't need any {addr} parameter.
*
* The default {addr} parameter is one byte (.1) which works well for
* memories and registers with 8 bits of address space.
*
* You can specify the length of the {addr} field with the optional .0,
* .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
* manipulating a single register device which doesn't use an address
* field, use "0.0" for the address and the ".0" length field will
* suppress the address in the I2C data stream. This also works for
* successive reads using the I2C auto-incrementing memory pointer.
*
* If you are manipulating a large memory with 2-byte addresses, use
* the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
*
* Then there are the unfortunate memory chips that spill the most
* significant 1, 2, or 3 bits of address into the chip address byte.
* This effectively makes one chip (logically) look like 2, 4, or
* 8 chips. This is handled (awkwardly) by #defining
* CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
* {addr} field (since .1 is the default, it doesn't actually have to
* be specified). Examples: given a memory chip at I2C chip address
* 0x50, the following would happen...
* imd 50 0 10 display 16 bytes starting at 0x000
* On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
* imd 50 100 10 display 16 bytes starting at 0x100
* On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
* imd 50 210 10 display 16 bytes starting at 0x210
* On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
* This is awfully ugly. It would be nice if someone would think up
* a better way of handling this.
*
* Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
*/
#include <common.h>
#include <command.h>
#include <cmd_i2c.h>
#include <i2c.h>
#include <asm/byteorder.h>
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
/* Display values from last command.
* Memory modify remembered values are different from display memory.
*/
static uchar i2c_dp_last_chip;
static uint i2c_dp_last_addr;
static uint i2c_dp_last_alen;
static uint i2c_dp_last_length = 0x10;
static uchar i2c_mm_last_chip;
static uint i2c_mm_last_addr;
static uint i2c_mm_last_alen;
#if defined(CFG_I2C_NOPROBES)
static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
#endif
static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
extern int cmd_get_data_size(char* arg, int default_size);
/*
* Syntax:
* imd {i2c_chip} {addr}{.0, .1, .2} {len}
*/
#define DISP_LINE_LEN 16
int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
uint addr, alen, length;
int j, nbytes, linebytes;
/* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_dp_last_chip;
addr = i2c_dp_last_addr;
alen = i2c_dp_last_alen;
length = i2c_dp_last_length;
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified.
*/
alen = 1;
/*
* I2C chip address
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for(j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0') {
break;
}
}
/*
* If another parameter, it is the length to display.
* Length is the number of objects, not number of bytes.
*/
if (argc > 3)
length = simple_strtoul(argv[3], NULL, 16);
}
/*
* Print the lines.
*
* We buffer all read data, so we can make sure data is read only
* once.
*/
nbytes = length;
do {
unsigned char linebuf[DISP_LINE_LEN];
unsigned char *cp;
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
printf("Error reading the chip.\n");
} else {
printf("%04x:", addr);
cp = linebuf;
for (j=0; j<linebytes; j++) {
printf(" %02x", *cp++);
addr++;
}
printf(" ");
cp = linebuf;
for (j=0; j<linebytes; j++) {
if ((*cp < 0x20) || (*cp > 0x7e))
printf(".");
else
printf("%c", *cp);
cp++;
}
printf("\n");
}
nbytes -= linebytes;
} while (nbytes > 0);
i2c_dp_last_chip = chip;
i2c_dp_last_addr = addr;
i2c_dp_last_alen = alen;
i2c_dp_last_length = length;
return 0;
}
int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
}
int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
}
/* Write (fill) memory
*
* Syntax:
* imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
*/
int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
uchar byte;
int count;
int j;
if ((argc < 4) || (argc > 5)) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for(j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if(alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0') {
break;
}
}
/*
* Value to write is always specified.
*/
byte = simple_strtoul(argv[3], NULL, 16);
/*
* Optional count
*/
if(argc == 5) {
count = simple_strtoul(argv[4], NULL, 16);
} else {
count = 1;
}
while (count-- > 0) {
if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
printf("Error writing the chip.\n");
}
/*
* Wait for the write to complete. The write can take
* up to 10mSec (we allow a little more time).
*
* On some chips, while the write is in progress, the
* chip doesn't respond. This apparently isn't a
* universal feature so we don't take advantage of it.
*/
udelay(11000);
#if 0
for(timeout = 0; timeout < 10; timeout++) {
udelay(2000);
if(i2c_probe(chip) == 0)
break;
}
#endif
}
return (0);
}
/* Calculate a CRC on memory
*
* Syntax:
* icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
*/
int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
int count;
uchar byte;
ulong crc;
ulong err;
int j;
if (argc < 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for(j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if(alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0') {
break;
}
}
/*
* Count is always specified
*/
count = simple_strtoul(argv[3], NULL, 16);
printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
/*
* CRC a byte at a time. This is going to be slooow, but hey, the
* memories are small and slow too so hopefully nobody notices.
*/
crc = 0;
err = 0;
while(count-- > 0) {
if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
err++;
}
crc = crc32 (crc, &byte, 1);
addr++;
}
if(err > 0)
{
printf("Error reading the chip,\n");
} else {
printf ("%08lx\n", crc);
}
return 0;
}
/* Modify memory.
*
* Syntax:
* imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
* inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
*/
static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
ulong data;
int size = 1;
int nbytes;
int j;
extern char console_buffer[];
if (argc != 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* got a good command to get here */
#endif
/*
* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_mm_last_chip;
addr = i2c_mm_last_addr;
alen = i2c_mm_last_alen;
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified. Check for a size specification.
* Defaults to byte if no or incorrect specification.
*/
size = cmd_get_data_size(argv[0], 1);
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for(j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if(alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0') {
break;
}
}
}
/*
* Print the address, followed by value. Then accept input for
* the next value. A non-converted value exits.
*/
do {
printf("%08lx:", addr);
if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) {
printf("\nError reading the chip,\n");
} else {
data = cpu_to_be32(data);
if(size == 1) {
printf(" %02lx", (data >> 24) & 0x000000FF);
} else if(size == 2) {
printf(" %04lx", (data >> 16) & 0x0000FFFF);
} else {
printf(" %08lx", data);
}
}
nbytes = readline (" ? ");
if (nbytes == 0) {
/*
* <CR> pressed as only input, don't modify current
* location and move to next.
*/
if (incrflag)
addr += size;
nbytes = size;
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* good enough to not time out */
#endif
}
#ifdef CONFIG_BOOT_RETRY_TIME
else if (nbytes == -2) {
break; /* timed out, exit the command */
}
#endif
else {
char *endp;
data = simple_strtoul(console_buffer, &endp, 16);
if(size == 1) {
data = data << 24;
} else if(size == 2) {
data = data << 16;
}
data = be32_to_cpu(data);
nbytes = endp - console_buffer;
if (nbytes) {
#ifdef CONFIG_BOOT_RETRY_TIME
/*
* good enough to not time out
*/
reset_cmd_timeout();
#endif
if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) {
printf("Error writing the chip.\n");
}
if (incrflag)
addr += size;
}
}
} while (nbytes);
chip = i2c_mm_last_chip;
addr = i2c_mm_last_addr;
alen = i2c_mm_last_alen;
return 0;
}
/*
* Syntax:
* iprobe {addr}{.0, .1, .2}
*/
int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int j;
#if defined(CFG_I2C_NOPROBES)
int k, skip;
#endif
printf("Valid chip addresses:");
for(j = 0; j < 128; j++) {
#if defined(CFG_I2C_NOPROBES)
skip = 0;
for (k = 0; k < sizeof(i2c_no_probes); k++){
if (j == i2c_no_probes[k]){
skip = 1;
break;
}
}
if (skip)
continue;
#endif
if(i2c_probe(j) == 0) {
printf(" %02X", j);
}
}
printf("\n");
#if defined(CFG_I2C_NOPROBES)
puts ("Excluded chip addresses:");
for( k = 0; k < sizeof(i2c_no_probes); k++ )
printf(" %02X", i2c_no_probes[k] );
puts ("\n");
#endif
return 0;
}
/*
* Syntax:
* iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
* {length} - Number of bytes to read
* {delay} - A DECIMAL number and defaults to 1000 uSec
*/
int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
ulong alen;
uint addr;
uint length;
u_char bytes[16];
int delay;
int j;
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for(j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0') {
break;
}
}
/*
* Length is the number of objects, not number of bytes.
*/
length = 1;
length = simple_strtoul(argv[3], NULL, 16);
if(length > sizeof(bytes)) {
length = sizeof(bytes);
}
/*
* The delay time (uSec) is optional.
*/
delay = 1000;
if (argc > 3) {
delay = simple_strtoul(argv[4], NULL, 10);
}
/*
* Run the loop...
*/
while(1) {
if(i2c_read(chip, addr, alen, bytes, length) != 0) {
printf("Error reading the chip.\n");
}
udelay(delay);
}
/* NOTREACHED */
return 0;
}
/*
* The SDRAM command is separately configured because many
* (most?) embedded boards don't use SDRAM DIMMs.
*/
#if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
/*
* Syntax:
* sdram {i2c_chip}
*/
int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
u_char data[128];
u_char cksum;
int j;
if (argc < 2) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
printf("No SDRAM Serial Presence Detect found.\n");
return 1;
}
cksum = 0;
for (j = 0; j < 63; j++) {
cksum += data[j];
}
if(cksum != data[63]) {
printf ("WARNING: Configuration data checksum failure:\n"
" is 0x%02x, calculated 0x%02x\n",
data[63], cksum);
}
printf("SPD data revision %d.%d\n",
(data[62] >> 4) & 0x0F, data[62] & 0x0F);
printf("Bytes used 0x%02X\n", data[0]);
printf("Serial memory size 0x%02X\n", 1 << data[1]);
printf("Memory type ");
switch(data[2]) {
case 2: printf("EDO\n"); break;
case 4: printf("SDRAM\n"); break;
default: printf("unknown\n"); break;
}
printf("Row address bits ");
if((data[3] & 0x00F0) == 0) {
printf("%d\n", data[3] & 0x0F);
} else {
printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
}
printf("Column address bits ");
if((data[4] & 0x00F0) == 0) {
printf("%d\n", data[4] & 0x0F);
} else {
printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
}
printf("Module rows %d\n", data[5]);
printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
printf("Interface signal levels ");
switch(data[8]) {
case 0: printf("5.0v/TTL\n"); break;
case 1: printf("LVTTL\n"); break;
case 2: printf("HSTL 1.5\n"); break;
case 3: printf("SSTL 3.3\n"); break;
case 4: printf("SSTL 2.5\n"); break;
default: printf("unknown\n"); break;
}
printf("SDRAM cycle time %d.%d nS\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
printf("SDRAM access time %d.%d nS\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
printf("EDC configuration ");
switch(data[11]) {
case 0: printf("None\n"); break;
case 1: printf("Parity\n"); break;
case 2: printf("ECC\n"); break;
default: printf("unknown\n"); break;
}
if((data[12] & 0x80) == 0) {
printf("No self refresh, rate ");
} else {
printf("Self refresh, rate ");
}
switch(data[12] & 0x7F) {
case 0: printf("15.625uS\n"); break;
case 1: printf("3.9uS\n"); break;
case 2: printf("7.8uS\n"); break;
case 3: printf("31.3uS\n"); break;
case 4: printf("62.5uS\n"); break;
case 5: printf("125uS\n"); break;
default: printf("unknown\n"); break;
}
printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
if((data[13] & 0x80) != 0) {
printf(" (second bank) %d\n",
2 * (data[13] & 0x7F));
}
if(data[14] != 0) {
printf("EDC width %d\n",
data[14] & 0x7F);
if((data[14] & 0x80) != 0) {
printf(" (second bank) %d\n",
2 * (data[14] & 0x7F));
}
}
printf("Min clock delay, back-to-back random column addresses %d\n",
data[15]);
printf("Burst length(s) ");
if(data[16] & 0x80) printf(" Page");
if(data[16] & 0x08) printf(" 8");
if(data[16] & 0x04) printf(" 4");
if(data[16] & 0x02) printf(" 2");
if(data[16] & 0x01) printf(" 1");
printf("\n");
printf("Number of banks %d\n", data[17]);
printf("CAS latency(s) ");
if(data[18] & 0x80) printf(" TBD");
if(data[18] & 0x40) printf(" 7");
if(data[18] & 0x20) printf(" 6");
if(data[18] & 0x10) printf(" 5");
if(data[18] & 0x08) printf(" 4");
if(data[18] & 0x04) printf(" 3");
if(data[18] & 0x02) printf(" 2");
if(data[18] & 0x01) printf(" 1");
printf("\n");
printf("CS latency(s) ");
if(data[19] & 0x80) printf(" TBD");
if(data[19] & 0x40) printf(" 6");
if(data[19] & 0x20) printf(" 5");
if(data[19] & 0x10) printf(" 4");
if(data[19] & 0x08) printf(" 3");
if(data[19] & 0x04) printf(" 2");
if(data[19] & 0x02) printf(" 1");
if(data[19] & 0x01) printf(" 0");
printf("\n");
printf("WE latency(s) ");
if(data[20] & 0x80) printf(" TBD");
if(data[20] & 0x40) printf(" 6");
if(data[20] & 0x20) printf(" 5");
if(data[20] & 0x10) printf(" 4");
if(data[20] & 0x08) printf(" 3");
if(data[20] & 0x04) printf(" 2");
if(data[20] & 0x02) printf(" 1");
if(data[20] & 0x01) printf(" 0");
printf("\n");
printf("Module attributes:\n");
if(!data[21]) printf(" (none)\n");
if(data[21] & 0x80) printf(" TBD (bit 7)\n");
if(data[21] & 0x40) printf(" Redundant row address\n");
if(data[21] & 0x20) printf(" Differential clock input\n");
if(data[21] & 0x10) printf(" Registerd DQMB inputs\n");
if(data[21] & 0x08) printf(" Buffered DQMB inputs\n");
if(data[21] & 0x04) printf(" On-card PLL\n");
if(data[21] & 0x02) printf(" Registered address/control lines\n");
if(data[21] & 0x01) printf(" Buffered address/control lines\n");
printf("Device attributes:\n");
if(data[22] & 0x80) printf(" TBD (bit 7)\n");
if(data[22] & 0x40) printf(" TBD (bit 6)\n");
if(data[22] & 0x20) printf(" Upper Vcc tolerance 5%%\n");
else printf(" Upper Vcc tolerance 10%%\n");
if(data[22] & 0x10) printf(" Lower Vcc tolerance 5%%\n");
else printf(" Lower Vcc tolerance 10%%\n");
if(data[22] & 0x08) printf(" Supports write1/read burst\n");
if(data[22] & 0x04) printf(" Supports precharge all\n");
if(data[22] & 0x02) printf(" Supports auto precharge\n");
if(data[22] & 0x01) printf(" Supports early RAS# precharge\n");
printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
(data[23] >> 4) & 0x0F, data[23] & 0x0F);
printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
(data[24] >> 4) & 0x0F, data[24] & 0x0F);
printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
(data[25] >> 4) & 0x0F, data[25] & 0x0F);
printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
(data[26] >> 4) & 0x0F, data[26] & 0x0F);
printf("Minimum row precharge %d nS\n", data[27]);
printf("Row active to row active min %d nS\n", data[28]);
printf("RAS to CAS delay min %d nS\n", data[29]);
printf("Minimum RAS pulse width %d nS\n", data[30]);
printf("Density of each row ");
if(data[31] & 0x80) printf(" 512MByte");
if(data[31] & 0x40) printf(" 256MByte");
if(data[31] & 0x20) printf(" 128MByte");
if(data[31] & 0x10) printf(" 64MByte");
if(data[31] & 0x08) printf(" 32MByte");
if(data[31] & 0x04) printf(" 16MByte");
if(data[31] & 0x02) printf(" 8MByte");
if(data[31] & 0x01) printf(" 4MByte");
printf("\n");
printf("Command and Address setup %c%d.%d nS\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
printf("Command and Address hold %c%d.%d nS\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
printf("Data signal input setup %c%d.%d nS\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
printf("Data signal input hold %c%d.%d nS\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
printf("Manufacturer's JEDEC ID ");
for(j = 64; j <= 71; j++)
printf("%02X ", data[j]);
printf("\n");
printf("Manufacturing Location %02X\n", data[72]);
printf("Manufacturer's Part Number ");
for(j = 73; j <= 90; j++)
printf("%02X ", data[j]);
printf("\n");
printf("Revision Code %02X %02X\n", data[91], data[92]);
printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
printf("Assembly Serial Number ");
for(j = 95; j <= 98; j++)
printf("%02X ", data[j]);
printf("\n");
printf("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
return 0;
}
#endif /* CFG_CMD_SDRAM */
#endif /* CFG_CMD_I2C */