Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2012 Linutronix GmbH |
| 3 | * Author: Richard Weinberger <richard@nod.at> |
| 4 | * |
| 5 | * SPDX-License-Identifier: GPL-2.0+ |
| 6 | * |
| 7 | */ |
| 8 | |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 9 | #ifndef __UBOOT__ |
| 10 | #include <linux/crc32.h> |
| 11 | #else |
| 12 | #include <div64.h> |
| 13 | #include <malloc.h> |
| 14 | #include <ubi_uboot.h> |
| 15 | #endif |
| 16 | |
| 17 | #include <linux/compat.h> |
| 18 | #include <linux/math64.h> |
| 19 | #include "ubi.h" |
| 20 | |
| 21 | /** |
| 22 | * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. |
| 23 | * @ubi: UBI device description object |
| 24 | */ |
| 25 | size_t ubi_calc_fm_size(struct ubi_device *ubi) |
| 26 | { |
| 27 | size_t size; |
| 28 | |
| 29 | size = sizeof(struct ubi_fm_hdr) + \ |
| 30 | sizeof(struct ubi_fm_scan_pool) + \ |
| 31 | sizeof(struct ubi_fm_scan_pool) + \ |
| 32 | (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \ |
| 33 | (sizeof(struct ubi_fm_eba) + \ |
| 34 | (ubi->peb_count * sizeof(__be32))) + \ |
| 35 | sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; |
| 36 | return roundup(size, ubi->leb_size); |
| 37 | } |
| 38 | |
| 39 | |
| 40 | /** |
| 41 | * new_fm_vhdr - allocate a new volume header for fastmap usage. |
| 42 | * @ubi: UBI device description object |
| 43 | * @vol_id: the VID of the new header |
| 44 | * |
| 45 | * Returns a new struct ubi_vid_hdr on success. |
| 46 | * NULL indicates out of memory. |
| 47 | */ |
| 48 | static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id) |
| 49 | { |
| 50 | struct ubi_vid_hdr *new; |
| 51 | |
| 52 | new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 53 | if (!new) |
| 54 | goto out; |
| 55 | |
| 56 | new->vol_type = UBI_VID_DYNAMIC; |
| 57 | new->vol_id = cpu_to_be32(vol_id); |
| 58 | |
| 59 | /* UBI implementations without fastmap support have to delete the |
| 60 | * fastmap. |
| 61 | */ |
| 62 | new->compat = UBI_COMPAT_DELETE; |
| 63 | |
| 64 | out: |
| 65 | return new; |
| 66 | } |
| 67 | |
| 68 | /** |
| 69 | * add_aeb - create and add a attach erase block to a given list. |
| 70 | * @ai: UBI attach info object |
| 71 | * @list: the target list |
| 72 | * @pnum: PEB number of the new attach erase block |
| 73 | * @ec: erease counter of the new LEB |
| 74 | * @scrub: scrub this PEB after attaching |
| 75 | * |
| 76 | * Returns 0 on success, < 0 indicates an internal error. |
| 77 | */ |
| 78 | static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, |
| 79 | int pnum, int ec, int scrub) |
| 80 | { |
| 81 | struct ubi_ainf_peb *aeb; |
| 82 | |
| 83 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); |
| 84 | if (!aeb) |
| 85 | return -ENOMEM; |
| 86 | |
| 87 | aeb->pnum = pnum; |
| 88 | aeb->ec = ec; |
| 89 | aeb->lnum = -1; |
| 90 | aeb->scrub = scrub; |
| 91 | aeb->copy_flag = aeb->sqnum = 0; |
| 92 | |
| 93 | ai->ec_sum += aeb->ec; |
| 94 | ai->ec_count++; |
| 95 | |
| 96 | if (ai->max_ec < aeb->ec) |
| 97 | ai->max_ec = aeb->ec; |
| 98 | |
| 99 | if (ai->min_ec > aeb->ec) |
| 100 | ai->min_ec = aeb->ec; |
| 101 | |
| 102 | list_add_tail(&aeb->u.list, list); |
| 103 | |
| 104 | return 0; |
| 105 | } |
| 106 | |
| 107 | /** |
| 108 | * add_vol - create and add a new volume to ubi_attach_info. |
| 109 | * @ai: ubi_attach_info object |
| 110 | * @vol_id: VID of the new volume |
| 111 | * @used_ebs: number of used EBS |
| 112 | * @data_pad: data padding value of the new volume |
| 113 | * @vol_type: volume type |
| 114 | * @last_eb_bytes: number of bytes in the last LEB |
| 115 | * |
| 116 | * Returns the new struct ubi_ainf_volume on success. |
| 117 | * NULL indicates an error. |
| 118 | */ |
| 119 | static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, |
| 120 | int used_ebs, int data_pad, u8 vol_type, |
| 121 | int last_eb_bytes) |
| 122 | { |
| 123 | struct ubi_ainf_volume *av; |
| 124 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| 125 | |
| 126 | while (*p) { |
| 127 | parent = *p; |
| 128 | av = rb_entry(parent, struct ubi_ainf_volume, rb); |
| 129 | |
| 130 | if (vol_id > av->vol_id) |
| 131 | p = &(*p)->rb_left; |
| 132 | else if (vol_id > av->vol_id) |
| 133 | p = &(*p)->rb_right; |
| 134 | } |
| 135 | |
| 136 | av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); |
| 137 | if (!av) |
| 138 | goto out; |
| 139 | |
| 140 | av->highest_lnum = av->leb_count = 0; |
| 141 | av->vol_id = vol_id; |
| 142 | av->used_ebs = used_ebs; |
| 143 | av->data_pad = data_pad; |
| 144 | av->last_data_size = last_eb_bytes; |
| 145 | av->compat = 0; |
| 146 | av->vol_type = vol_type; |
| 147 | av->root = RB_ROOT; |
| 148 | |
| 149 | dbg_bld("found volume (ID %i)", vol_id); |
| 150 | |
| 151 | rb_link_node(&av->rb, parent, p); |
| 152 | rb_insert_color(&av->rb, &ai->volumes); |
| 153 | |
| 154 | out: |
| 155 | return av; |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it |
| 160 | * from it's original list. |
| 161 | * @ai: ubi_attach_info object |
| 162 | * @aeb: the to be assigned SEB |
| 163 | * @av: target scan volume |
| 164 | */ |
| 165 | static void assign_aeb_to_av(struct ubi_attach_info *ai, |
| 166 | struct ubi_ainf_peb *aeb, |
| 167 | struct ubi_ainf_volume *av) |
| 168 | { |
| 169 | struct ubi_ainf_peb *tmp_aeb; |
| 170 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| 171 | |
| 172 | p = &av->root.rb_node; |
| 173 | while (*p) { |
| 174 | parent = *p; |
| 175 | |
| 176 | tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); |
| 177 | if (aeb->lnum != tmp_aeb->lnum) { |
| 178 | if (aeb->lnum < tmp_aeb->lnum) |
| 179 | p = &(*p)->rb_left; |
| 180 | else |
| 181 | p = &(*p)->rb_right; |
| 182 | |
| 183 | continue; |
| 184 | } else |
| 185 | break; |
| 186 | } |
| 187 | |
| 188 | list_del(&aeb->u.list); |
| 189 | av->leb_count++; |
| 190 | |
| 191 | rb_link_node(&aeb->u.rb, parent, p); |
| 192 | rb_insert_color(&aeb->u.rb, &av->root); |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * update_vol - inserts or updates a LEB which was found a pool. |
| 197 | * @ubi: the UBI device object |
| 198 | * @ai: attach info object |
| 199 | * @av: the volume this LEB belongs to |
| 200 | * @new_vh: the volume header derived from new_aeb |
| 201 | * @new_aeb: the AEB to be examined |
| 202 | * |
| 203 | * Returns 0 on success, < 0 indicates an internal error. |
| 204 | */ |
| 205 | static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 206 | struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, |
| 207 | struct ubi_ainf_peb *new_aeb) |
| 208 | { |
| 209 | struct rb_node **p = &av->root.rb_node, *parent = NULL; |
| 210 | struct ubi_ainf_peb *aeb, *victim; |
| 211 | int cmp_res; |
| 212 | |
| 213 | while (*p) { |
| 214 | parent = *p; |
| 215 | aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); |
| 216 | |
| 217 | if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { |
| 218 | if (be32_to_cpu(new_vh->lnum) < aeb->lnum) |
| 219 | p = &(*p)->rb_left; |
| 220 | else |
| 221 | p = &(*p)->rb_right; |
| 222 | |
| 223 | continue; |
| 224 | } |
| 225 | |
| 226 | /* This case can happen if the fastmap gets written |
| 227 | * because of a volume change (creation, deletion, ..). |
| 228 | * Then a PEB can be within the persistent EBA and the pool. |
| 229 | */ |
| 230 | if (aeb->pnum == new_aeb->pnum) { |
| 231 | ubi_assert(aeb->lnum == new_aeb->lnum); |
| 232 | kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); |
| 238 | if (cmp_res < 0) |
| 239 | return cmp_res; |
| 240 | |
| 241 | /* new_aeb is newer */ |
| 242 | if (cmp_res & 1) { |
| 243 | victim = kmem_cache_alloc(ai->aeb_slab_cache, |
| 244 | GFP_KERNEL); |
| 245 | if (!victim) |
| 246 | return -ENOMEM; |
| 247 | |
| 248 | victim->ec = aeb->ec; |
| 249 | victim->pnum = aeb->pnum; |
| 250 | list_add_tail(&victim->u.list, &ai->erase); |
| 251 | |
| 252 | if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) |
| 253 | av->last_data_size = \ |
| 254 | be32_to_cpu(new_vh->data_size); |
| 255 | |
| 256 | dbg_bld("vol %i: AEB %i's PEB %i is the newer", |
| 257 | av->vol_id, aeb->lnum, new_aeb->pnum); |
| 258 | |
| 259 | aeb->ec = new_aeb->ec; |
| 260 | aeb->pnum = new_aeb->pnum; |
| 261 | aeb->copy_flag = new_vh->copy_flag; |
| 262 | aeb->scrub = new_aeb->scrub; |
| 263 | kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| 264 | |
| 265 | /* new_aeb is older */ |
| 266 | } else { |
| 267 | dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", |
| 268 | av->vol_id, aeb->lnum, new_aeb->pnum); |
| 269 | list_add_tail(&new_aeb->u.list, &ai->erase); |
| 270 | } |
| 271 | |
| 272 | return 0; |
| 273 | } |
| 274 | /* This LEB is new, let's add it to the volume */ |
| 275 | |
| 276 | if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { |
| 277 | av->highest_lnum = be32_to_cpu(new_vh->lnum); |
| 278 | av->last_data_size = be32_to_cpu(new_vh->data_size); |
| 279 | } |
| 280 | |
| 281 | if (av->vol_type == UBI_STATIC_VOLUME) |
| 282 | av->used_ebs = be32_to_cpu(new_vh->used_ebs); |
| 283 | |
| 284 | av->leb_count++; |
| 285 | |
| 286 | rb_link_node(&new_aeb->u.rb, parent, p); |
| 287 | rb_insert_color(&new_aeb->u.rb, &av->root); |
| 288 | |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | /** |
| 293 | * process_pool_aeb - we found a non-empty PEB in a pool. |
| 294 | * @ubi: UBI device object |
| 295 | * @ai: attach info object |
| 296 | * @new_vh: the volume header derived from new_aeb |
| 297 | * @new_aeb: the AEB to be examined |
| 298 | * |
| 299 | * Returns 0 on success, < 0 indicates an internal error. |
| 300 | */ |
| 301 | static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 302 | struct ubi_vid_hdr *new_vh, |
| 303 | struct ubi_ainf_peb *new_aeb) |
| 304 | { |
| 305 | struct ubi_ainf_volume *av, *tmp_av = NULL; |
| 306 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| 307 | int found = 0; |
| 308 | |
| 309 | if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID || |
| 310 | be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) { |
| 311 | kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| 312 | |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | /* Find the volume this SEB belongs to */ |
| 317 | while (*p) { |
| 318 | parent = *p; |
| 319 | tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb); |
| 320 | |
| 321 | if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id) |
| 322 | p = &(*p)->rb_left; |
| 323 | else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id) |
| 324 | p = &(*p)->rb_right; |
| 325 | else { |
| 326 | found = 1; |
| 327 | break; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | if (found) |
| 332 | av = tmp_av; |
| 333 | else { |
| 334 | ubi_err("orphaned volume in fastmap pool!"); |
| 335 | return UBI_BAD_FASTMAP; |
| 336 | } |
| 337 | |
| 338 | ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id); |
| 339 | |
| 340 | return update_vol(ubi, ai, av, new_vh, new_aeb); |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * unmap_peb - unmap a PEB. |
| 345 | * If fastmap detects a free PEB in the pool it has to check whether |
| 346 | * this PEB has been unmapped after writing the fastmap. |
| 347 | * |
| 348 | * @ai: UBI attach info object |
| 349 | * @pnum: The PEB to be unmapped |
| 350 | */ |
| 351 | static void unmap_peb(struct ubi_attach_info *ai, int pnum) |
| 352 | { |
| 353 | struct ubi_ainf_volume *av; |
| 354 | struct rb_node *node, *node2; |
| 355 | struct ubi_ainf_peb *aeb; |
| 356 | |
| 357 | for (node = rb_first(&ai->volumes); node; node = rb_next(node)) { |
| 358 | av = rb_entry(node, struct ubi_ainf_volume, rb); |
| 359 | |
| 360 | for (node2 = rb_first(&av->root); node2; |
| 361 | node2 = rb_next(node2)) { |
| 362 | aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb); |
| 363 | if (aeb->pnum == pnum) { |
| 364 | rb_erase(&aeb->u.rb, &av->root); |
| 365 | kmem_cache_free(ai->aeb_slab_cache, aeb); |
| 366 | return; |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | /** |
| 373 | * scan_pool - scans a pool for changed (no longer empty PEBs). |
| 374 | * @ubi: UBI device object |
| 375 | * @ai: attach info object |
| 376 | * @pebs: an array of all PEB numbers in the to be scanned pool |
| 377 | * @pool_size: size of the pool (number of entries in @pebs) |
| 378 | * @max_sqnum: pointer to the maximal sequence number |
| 379 | * @eba_orphans: list of PEBs which need to be scanned |
| 380 | * @free: list of PEBs which are most likely free (and go into @ai->free) |
| 381 | * |
| 382 | * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. |
| 383 | * < 0 indicates an internal error. |
| 384 | */ |
| 385 | #ifndef __UBOOT__ |
| 386 | static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 387 | int *pebs, int pool_size, unsigned long long *max_sqnum, |
| 388 | struct list_head *eba_orphans, struct list_head *freef) |
| 389 | #else |
| 390 | static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 391 | __be32 *pebs, int pool_size, unsigned long long *max_sqnum, |
| 392 | struct list_head *eba_orphans, struct list_head *freef) |
| 393 | #endif |
| 394 | { |
| 395 | struct ubi_vid_hdr *vh; |
| 396 | struct ubi_ec_hdr *ech; |
| 397 | struct ubi_ainf_peb *new_aeb, *tmp_aeb; |
| 398 | int i, pnum, err, found_orphan, ret = 0; |
| 399 | |
| 400 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 401 | if (!ech) |
| 402 | return -ENOMEM; |
| 403 | |
| 404 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 405 | if (!vh) { |
| 406 | kfree(ech); |
| 407 | return -ENOMEM; |
| 408 | } |
| 409 | |
| 410 | dbg_bld("scanning fastmap pool: size = %i", pool_size); |
| 411 | |
| 412 | /* |
| 413 | * Now scan all PEBs in the pool to find changes which have been made |
| 414 | * after the creation of the fastmap |
| 415 | */ |
| 416 | for (i = 0; i < pool_size; i++) { |
| 417 | int scrub = 0; |
| 418 | int image_seq; |
| 419 | |
| 420 | pnum = be32_to_cpu(pebs[i]); |
| 421 | |
| 422 | if (ubi_io_is_bad(ubi, pnum)) { |
| 423 | ubi_err("bad PEB in fastmap pool!"); |
| 424 | ret = UBI_BAD_FASTMAP; |
| 425 | goto out; |
| 426 | } |
| 427 | |
| 428 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| 429 | if (err && err != UBI_IO_BITFLIPS) { |
| 430 | ubi_err("unable to read EC header! PEB:%i err:%i", |
| 431 | pnum, err); |
| 432 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 433 | goto out; |
| 434 | } else if (ret == UBI_IO_BITFLIPS) |
| 435 | scrub = 1; |
| 436 | |
| 437 | /* |
| 438 | * Older UBI implementations have image_seq set to zero, so |
| 439 | * we shouldn't fail if image_seq == 0. |
| 440 | */ |
| 441 | image_seq = be32_to_cpu(ech->image_seq); |
| 442 | |
| 443 | if (image_seq && (image_seq != ubi->image_seq)) { |
| 444 | ubi_err("bad image seq: 0x%x, expected: 0x%x", |
| 445 | be32_to_cpu(ech->image_seq), ubi->image_seq); |
| 446 | ret = UBI_BAD_FASTMAP; |
| 447 | goto out; |
| 448 | } |
| 449 | |
| 450 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| 451 | if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { |
| 452 | unsigned long long ec = be64_to_cpu(ech->ec); |
| 453 | unmap_peb(ai, pnum); |
| 454 | dbg_bld("Adding PEB to free: %i", pnum); |
| 455 | if (err == UBI_IO_FF_BITFLIPS) |
| 456 | add_aeb(ai, freef, pnum, ec, 1); |
| 457 | else |
| 458 | add_aeb(ai, freef, pnum, ec, 0); |
| 459 | continue; |
| 460 | } else if (err == 0 || err == UBI_IO_BITFLIPS) { |
| 461 | dbg_bld("Found non empty PEB:%i in pool", pnum); |
| 462 | |
| 463 | if (err == UBI_IO_BITFLIPS) |
| 464 | scrub = 1; |
| 465 | |
| 466 | found_orphan = 0; |
| 467 | list_for_each_entry(tmp_aeb, eba_orphans, u.list) { |
| 468 | if (tmp_aeb->pnum == pnum) { |
| 469 | found_orphan = 1; |
| 470 | break; |
| 471 | } |
| 472 | } |
| 473 | if (found_orphan) { |
| 474 | list_del(&tmp_aeb->u.list); |
| 475 | kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| 476 | } |
| 477 | |
| 478 | new_aeb = kmem_cache_alloc(ai->aeb_slab_cache, |
| 479 | GFP_KERNEL); |
| 480 | if (!new_aeb) { |
| 481 | ret = -ENOMEM; |
| 482 | goto out; |
| 483 | } |
| 484 | |
| 485 | new_aeb->ec = be64_to_cpu(ech->ec); |
| 486 | new_aeb->pnum = pnum; |
| 487 | new_aeb->lnum = be32_to_cpu(vh->lnum); |
| 488 | new_aeb->sqnum = be64_to_cpu(vh->sqnum); |
| 489 | new_aeb->copy_flag = vh->copy_flag; |
| 490 | new_aeb->scrub = scrub; |
| 491 | |
| 492 | if (*max_sqnum < new_aeb->sqnum) |
| 493 | *max_sqnum = new_aeb->sqnum; |
| 494 | |
| 495 | err = process_pool_aeb(ubi, ai, vh, new_aeb); |
| 496 | if (err) { |
| 497 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 498 | goto out; |
| 499 | } |
| 500 | } else { |
| 501 | /* We are paranoid and fall back to scanning mode */ |
| 502 | ubi_err("fastmap pool PEBs contains damaged PEBs!"); |
| 503 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 504 | goto out; |
| 505 | } |
| 506 | |
| 507 | } |
| 508 | |
| 509 | out: |
| 510 | ubi_free_vid_hdr(ubi, vh); |
| 511 | kfree(ech); |
| 512 | return ret; |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * count_fastmap_pebs - Counts the PEBs found by fastmap. |
| 517 | * @ai: The UBI attach info object |
| 518 | */ |
| 519 | static int count_fastmap_pebs(struct ubi_attach_info *ai) |
| 520 | { |
| 521 | struct ubi_ainf_peb *aeb; |
| 522 | struct ubi_ainf_volume *av; |
| 523 | struct rb_node *rb1, *rb2; |
| 524 | int n = 0; |
| 525 | |
| 526 | list_for_each_entry(aeb, &ai->erase, u.list) |
| 527 | n++; |
| 528 | |
| 529 | list_for_each_entry(aeb, &ai->free, u.list) |
| 530 | n++; |
| 531 | |
| 532 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) |
| 533 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) |
| 534 | n++; |
| 535 | |
| 536 | return n; |
| 537 | } |
| 538 | |
| 539 | /** |
| 540 | * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. |
| 541 | * @ubi: UBI device object |
| 542 | * @ai: UBI attach info object |
| 543 | * @fm: the fastmap to be attached |
| 544 | * |
| 545 | * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. |
| 546 | * < 0 indicates an internal error. |
| 547 | */ |
| 548 | static int ubi_attach_fastmap(struct ubi_device *ubi, |
| 549 | struct ubi_attach_info *ai, |
| 550 | struct ubi_fastmap_layout *fm) |
| 551 | { |
| 552 | struct list_head used, eba_orphans, freef; |
| 553 | struct ubi_ainf_volume *av; |
| 554 | struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; |
| 555 | struct ubi_ec_hdr *ech; |
| 556 | struct ubi_fm_sb *fmsb; |
| 557 | struct ubi_fm_hdr *fmhdr; |
| 558 | struct ubi_fm_scan_pool *fmpl1, *fmpl2; |
| 559 | struct ubi_fm_ec *fmec; |
| 560 | struct ubi_fm_volhdr *fmvhdr; |
| 561 | struct ubi_fm_eba *fm_eba; |
| 562 | int ret, i, j, pool_size, wl_pool_size; |
| 563 | size_t fm_pos = 0, fm_size = ubi->fm_size; |
| 564 | unsigned long long max_sqnum = 0; |
| 565 | void *fm_raw = ubi->fm_buf; |
| 566 | |
| 567 | INIT_LIST_HEAD(&used); |
| 568 | INIT_LIST_HEAD(&freef); |
| 569 | INIT_LIST_HEAD(&eba_orphans); |
| 570 | INIT_LIST_HEAD(&ai->corr); |
| 571 | INIT_LIST_HEAD(&ai->free); |
| 572 | INIT_LIST_HEAD(&ai->erase); |
| 573 | INIT_LIST_HEAD(&ai->alien); |
| 574 | ai->volumes = RB_ROOT; |
| 575 | ai->min_ec = UBI_MAX_ERASECOUNTER; |
| 576 | |
| 577 | ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab", |
| 578 | sizeof(struct ubi_ainf_peb), |
| 579 | 0, 0, NULL); |
| 580 | if (!ai->aeb_slab_cache) { |
| 581 | ret = -ENOMEM; |
| 582 | goto fail; |
| 583 | } |
| 584 | |
| 585 | fmsb = (struct ubi_fm_sb *)(fm_raw); |
| 586 | ai->max_sqnum = fmsb->sqnum; |
| 587 | fm_pos += sizeof(struct ubi_fm_sb); |
| 588 | if (fm_pos >= fm_size) |
| 589 | goto fail_bad; |
| 590 | |
| 591 | fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); |
| 592 | fm_pos += sizeof(*fmhdr); |
| 593 | if (fm_pos >= fm_size) |
| 594 | goto fail_bad; |
| 595 | |
| 596 | if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { |
| 597 | ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x", |
| 598 | be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); |
| 599 | goto fail_bad; |
| 600 | } |
| 601 | |
| 602 | fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 603 | fm_pos += sizeof(*fmpl1); |
| 604 | if (fm_pos >= fm_size) |
| 605 | goto fail_bad; |
| 606 | if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) { |
| 607 | ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", |
| 608 | be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC); |
| 609 | goto fail_bad; |
| 610 | } |
| 611 | |
| 612 | fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 613 | fm_pos += sizeof(*fmpl2); |
| 614 | if (fm_pos >= fm_size) |
| 615 | goto fail_bad; |
| 616 | if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) { |
| 617 | ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", |
| 618 | be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC); |
| 619 | goto fail_bad; |
| 620 | } |
| 621 | |
| 622 | pool_size = be16_to_cpu(fmpl1->size); |
| 623 | wl_pool_size = be16_to_cpu(fmpl2->size); |
| 624 | fm->max_pool_size = be16_to_cpu(fmpl1->max_size); |
| 625 | fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size); |
| 626 | |
| 627 | if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { |
| 628 | ubi_err("bad pool size: %i", pool_size); |
| 629 | goto fail_bad; |
| 630 | } |
| 631 | |
| 632 | if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { |
| 633 | ubi_err("bad WL pool size: %i", wl_pool_size); |
| 634 | goto fail_bad; |
| 635 | } |
| 636 | |
| 637 | |
| 638 | if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || |
| 639 | fm->max_pool_size < 0) { |
| 640 | ubi_err("bad maximal pool size: %i", fm->max_pool_size); |
| 641 | goto fail_bad; |
| 642 | } |
| 643 | |
| 644 | if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || |
| 645 | fm->max_wl_pool_size < 0) { |
| 646 | ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size); |
| 647 | goto fail_bad; |
| 648 | } |
| 649 | |
| 650 | /* read EC values from free list */ |
| 651 | for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { |
| 652 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 653 | fm_pos += sizeof(*fmec); |
| 654 | if (fm_pos >= fm_size) |
| 655 | goto fail_bad; |
| 656 | |
| 657 | add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), |
| 658 | be32_to_cpu(fmec->ec), 0); |
| 659 | } |
| 660 | |
| 661 | /* read EC values from used list */ |
| 662 | for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { |
| 663 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 664 | fm_pos += sizeof(*fmec); |
| 665 | if (fm_pos >= fm_size) |
| 666 | goto fail_bad; |
| 667 | |
| 668 | add_aeb(ai, &used, be32_to_cpu(fmec->pnum), |
| 669 | be32_to_cpu(fmec->ec), 0); |
| 670 | } |
| 671 | |
| 672 | /* read EC values from scrub list */ |
| 673 | for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { |
| 674 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 675 | fm_pos += sizeof(*fmec); |
| 676 | if (fm_pos >= fm_size) |
| 677 | goto fail_bad; |
| 678 | |
| 679 | add_aeb(ai, &used, be32_to_cpu(fmec->pnum), |
| 680 | be32_to_cpu(fmec->ec), 1); |
| 681 | } |
| 682 | |
| 683 | /* read EC values from erase list */ |
| 684 | for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { |
| 685 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 686 | fm_pos += sizeof(*fmec); |
| 687 | if (fm_pos >= fm_size) |
| 688 | goto fail_bad; |
| 689 | |
| 690 | add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), |
| 691 | be32_to_cpu(fmec->ec), 1); |
| 692 | } |
| 693 | |
| 694 | ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); |
| 695 | ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); |
| 696 | |
| 697 | /* Iterate over all volumes and read their EBA table */ |
| 698 | for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { |
| 699 | fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); |
| 700 | fm_pos += sizeof(*fmvhdr); |
| 701 | if (fm_pos >= fm_size) |
| 702 | goto fail_bad; |
| 703 | |
| 704 | if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { |
| 705 | ubi_err("bad fastmap vol header magic: 0x%x, " \ |
| 706 | "expected: 0x%x", |
| 707 | be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); |
| 708 | goto fail_bad; |
| 709 | } |
| 710 | |
| 711 | av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), |
| 712 | be32_to_cpu(fmvhdr->used_ebs), |
| 713 | be32_to_cpu(fmvhdr->data_pad), |
| 714 | fmvhdr->vol_type, |
| 715 | be32_to_cpu(fmvhdr->last_eb_bytes)); |
| 716 | |
| 717 | if (!av) |
| 718 | goto fail_bad; |
| 719 | |
| 720 | ai->vols_found++; |
| 721 | if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) |
| 722 | ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); |
| 723 | |
| 724 | fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); |
| 725 | fm_pos += sizeof(*fm_eba); |
| 726 | fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); |
| 727 | if (fm_pos >= fm_size) |
| 728 | goto fail_bad; |
| 729 | |
| 730 | if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { |
| 731 | ubi_err("bad fastmap EBA header magic: 0x%x, " \ |
| 732 | "expected: 0x%x", |
| 733 | be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); |
| 734 | goto fail_bad; |
| 735 | } |
| 736 | |
| 737 | for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { |
| 738 | int pnum = be32_to_cpu(fm_eba->pnum[j]); |
| 739 | |
| 740 | if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0) |
| 741 | continue; |
| 742 | |
| 743 | aeb = NULL; |
| 744 | list_for_each_entry(tmp_aeb, &used, u.list) { |
| 745 | if (tmp_aeb->pnum == pnum) { |
| 746 | aeb = tmp_aeb; |
| 747 | break; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | /* This can happen if a PEB is already in an EBA known |
| 752 | * by this fastmap but the PEB itself is not in the used |
| 753 | * list. |
| 754 | * In this case the PEB can be within the fastmap pool |
| 755 | * or while writing the fastmap it was in the protection |
| 756 | * queue. |
| 757 | */ |
| 758 | if (!aeb) { |
| 759 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, |
| 760 | GFP_KERNEL); |
| 761 | if (!aeb) { |
| 762 | ret = -ENOMEM; |
| 763 | |
| 764 | goto fail; |
| 765 | } |
| 766 | |
| 767 | aeb->lnum = j; |
| 768 | aeb->pnum = be32_to_cpu(fm_eba->pnum[j]); |
| 769 | aeb->ec = -1; |
| 770 | aeb->scrub = aeb->copy_flag = aeb->sqnum = 0; |
| 771 | list_add_tail(&aeb->u.list, &eba_orphans); |
| 772 | continue; |
| 773 | } |
| 774 | |
| 775 | aeb->lnum = j; |
| 776 | |
| 777 | if (av->highest_lnum <= aeb->lnum) |
| 778 | av->highest_lnum = aeb->lnum; |
| 779 | |
| 780 | assign_aeb_to_av(ai, aeb, av); |
| 781 | |
| 782 | dbg_bld("inserting PEB:%i (LEB %i) to vol %i", |
| 783 | aeb->pnum, aeb->lnum, av->vol_id); |
| 784 | } |
| 785 | |
| 786 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 787 | if (!ech) { |
| 788 | ret = -ENOMEM; |
| 789 | goto fail; |
| 790 | } |
| 791 | |
| 792 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, |
| 793 | u.list) { |
| 794 | int err; |
| 795 | |
| 796 | if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) { |
| 797 | ubi_err("bad PEB in fastmap EBA orphan list"); |
| 798 | ret = UBI_BAD_FASTMAP; |
| 799 | kfree(ech); |
| 800 | goto fail; |
| 801 | } |
| 802 | |
| 803 | err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0); |
| 804 | if (err && err != UBI_IO_BITFLIPS) { |
| 805 | ubi_err("unable to read EC header! PEB:%i " \ |
| 806 | "err:%i", tmp_aeb->pnum, err); |
| 807 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 808 | kfree(ech); |
| 809 | |
| 810 | goto fail; |
| 811 | } else if (err == UBI_IO_BITFLIPS) |
| 812 | tmp_aeb->scrub = 1; |
| 813 | |
| 814 | tmp_aeb->ec = be64_to_cpu(ech->ec); |
| 815 | assign_aeb_to_av(ai, tmp_aeb, av); |
| 816 | } |
| 817 | |
| 818 | kfree(ech); |
| 819 | } |
| 820 | |
| 821 | ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum, |
| 822 | &eba_orphans, &freef); |
| 823 | if (ret) |
| 824 | goto fail; |
| 825 | |
| 826 | ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum, |
| 827 | &eba_orphans, &freef); |
| 828 | if (ret) |
| 829 | goto fail; |
| 830 | |
| 831 | if (max_sqnum > ai->max_sqnum) |
| 832 | ai->max_sqnum = max_sqnum; |
| 833 | |
| 834 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &freef, u.list) |
| 835 | list_move_tail(&tmp_aeb->u.list, &ai->free); |
| 836 | |
| 837 | ubi_assert(list_empty(&used)); |
| 838 | ubi_assert(list_empty(&eba_orphans)); |
| 839 | ubi_assert(list_empty(&freef)); |
| 840 | |
| 841 | /* |
| 842 | * If fastmap is leaking PEBs (must not happen), raise a |
| 843 | * fat warning and fall back to scanning mode. |
| 844 | * We do this here because in ubi_wl_init() it's too late |
| 845 | * and we cannot fall back to scanning. |
| 846 | */ |
| 847 | #ifndef __UBOOT__ |
| 848 | if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - |
| 849 | ai->bad_peb_count - fm->used_blocks)) |
| 850 | goto fail_bad; |
| 851 | #else |
| 852 | if (count_fastmap_pebs(ai) != ubi->peb_count - |
| 853 | ai->bad_peb_count - fm->used_blocks) { |
| 854 | WARN_ON(1); |
| 855 | goto fail_bad; |
| 856 | } |
| 857 | #endif |
| 858 | |
| 859 | return 0; |
| 860 | |
| 861 | fail_bad: |
| 862 | ret = UBI_BAD_FASTMAP; |
| 863 | fail: |
| 864 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) { |
| 865 | list_del(&tmp_aeb->u.list); |
| 866 | kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| 867 | } |
| 868 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, u.list) { |
| 869 | list_del(&tmp_aeb->u.list); |
| 870 | kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| 871 | } |
| 872 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &freef, u.list) { |
| 873 | list_del(&tmp_aeb->u.list); |
| 874 | kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| 875 | } |
| 876 | |
| 877 | return ret; |
| 878 | } |
| 879 | |
| 880 | /** |
| 881 | * ubi_scan_fastmap - scan the fastmap. |
| 882 | * @ubi: UBI device object |
| 883 | * @ai: UBI attach info to be filled |
| 884 | * @fm_anchor: The fastmap starts at this PEB |
| 885 | * |
| 886 | * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, |
| 887 | * UBI_BAD_FASTMAP if one was found but is not usable. |
| 888 | * < 0 indicates an internal error. |
| 889 | */ |
| 890 | int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 891 | int fm_anchor) |
| 892 | { |
| 893 | struct ubi_fm_sb *fmsb, *fmsb2; |
| 894 | struct ubi_vid_hdr *vh; |
| 895 | struct ubi_ec_hdr *ech; |
| 896 | struct ubi_fastmap_layout *fm; |
| 897 | int i, used_blocks, pnum, ret = 0; |
| 898 | size_t fm_size; |
| 899 | __be32 crc, tmp_crc; |
| 900 | unsigned long long sqnum = 0; |
| 901 | |
| 902 | mutex_lock(&ubi->fm_mutex); |
| 903 | memset(ubi->fm_buf, 0, ubi->fm_size); |
| 904 | |
| 905 | fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); |
| 906 | if (!fmsb) { |
| 907 | ret = -ENOMEM; |
| 908 | goto out; |
| 909 | } |
| 910 | |
| 911 | fm = kzalloc(sizeof(*fm), GFP_KERNEL); |
| 912 | if (!fm) { |
| 913 | ret = -ENOMEM; |
| 914 | kfree(fmsb); |
| 915 | goto out; |
| 916 | } |
| 917 | |
| 918 | ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb)); |
| 919 | if (ret && ret != UBI_IO_BITFLIPS) |
| 920 | goto free_fm_sb; |
| 921 | else if (ret == UBI_IO_BITFLIPS) |
| 922 | fm->to_be_tortured[0] = 1; |
| 923 | |
| 924 | if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { |
| 925 | ubi_err("bad super block magic: 0x%x, expected: 0x%x", |
| 926 | be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); |
| 927 | ret = UBI_BAD_FASTMAP; |
| 928 | goto free_fm_sb; |
| 929 | } |
| 930 | |
| 931 | if (fmsb->version != UBI_FM_FMT_VERSION) { |
| 932 | ubi_err("bad fastmap version: %i, expected: %i", |
| 933 | fmsb->version, UBI_FM_FMT_VERSION); |
| 934 | ret = UBI_BAD_FASTMAP; |
| 935 | goto free_fm_sb; |
| 936 | } |
| 937 | |
| 938 | used_blocks = be32_to_cpu(fmsb->used_blocks); |
| 939 | if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { |
| 940 | ubi_err("number of fastmap blocks is invalid: %i", used_blocks); |
| 941 | ret = UBI_BAD_FASTMAP; |
| 942 | goto free_fm_sb; |
| 943 | } |
| 944 | |
| 945 | fm_size = ubi->leb_size * used_blocks; |
| 946 | if (fm_size != ubi->fm_size) { |
| 947 | ubi_err("bad fastmap size: %zi, expected: %zi", fm_size, |
| 948 | ubi->fm_size); |
| 949 | ret = UBI_BAD_FASTMAP; |
| 950 | goto free_fm_sb; |
| 951 | } |
| 952 | |
| 953 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 954 | if (!ech) { |
| 955 | ret = -ENOMEM; |
| 956 | goto free_fm_sb; |
| 957 | } |
| 958 | |
| 959 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 960 | if (!vh) { |
| 961 | ret = -ENOMEM; |
| 962 | goto free_hdr; |
| 963 | } |
| 964 | |
| 965 | for (i = 0; i < used_blocks; i++) { |
| 966 | int image_seq; |
| 967 | |
| 968 | pnum = be32_to_cpu(fmsb->block_loc[i]); |
| 969 | |
| 970 | if (ubi_io_is_bad(ubi, pnum)) { |
| 971 | ret = UBI_BAD_FASTMAP; |
| 972 | goto free_hdr; |
| 973 | } |
| 974 | |
| 975 | ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| 976 | if (ret && ret != UBI_IO_BITFLIPS) { |
| 977 | ubi_err("unable to read fastmap block# %i EC (PEB: %i)", |
| 978 | i, pnum); |
| 979 | if (ret > 0) |
| 980 | ret = UBI_BAD_FASTMAP; |
| 981 | goto free_hdr; |
| 982 | } else if (ret == UBI_IO_BITFLIPS) |
| 983 | fm->to_be_tortured[i] = 1; |
| 984 | |
| 985 | image_seq = be32_to_cpu(ech->image_seq); |
| 986 | if (!ubi->image_seq) |
| 987 | ubi->image_seq = image_seq; |
| 988 | |
| 989 | /* |
| 990 | * Older UBI implementations have image_seq set to zero, so |
| 991 | * we shouldn't fail if image_seq == 0. |
| 992 | */ |
| 993 | if (image_seq && (image_seq != ubi->image_seq)) { |
| 994 | ubi_err("wrong image seq:%d instead of %d", |
| 995 | be32_to_cpu(ech->image_seq), ubi->image_seq); |
| 996 | ret = UBI_BAD_FASTMAP; |
| 997 | goto free_hdr; |
| 998 | } |
| 999 | |
| 1000 | ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| 1001 | if (ret && ret != UBI_IO_BITFLIPS) { |
| 1002 | ubi_err("unable to read fastmap block# %i (PEB: %i)", |
| 1003 | i, pnum); |
| 1004 | goto free_hdr; |
| 1005 | } |
| 1006 | |
| 1007 | if (i == 0) { |
| 1008 | if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { |
| 1009 | ubi_err("bad fastmap anchor vol_id: 0x%x," \ |
| 1010 | " expected: 0x%x", |
| 1011 | be32_to_cpu(vh->vol_id), |
| 1012 | UBI_FM_SB_VOLUME_ID); |
| 1013 | ret = UBI_BAD_FASTMAP; |
| 1014 | goto free_hdr; |
| 1015 | } |
| 1016 | } else { |
| 1017 | if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { |
| 1018 | ubi_err("bad fastmap data vol_id: 0x%x," \ |
| 1019 | " expected: 0x%x", |
| 1020 | be32_to_cpu(vh->vol_id), |
| 1021 | UBI_FM_DATA_VOLUME_ID); |
| 1022 | ret = UBI_BAD_FASTMAP; |
| 1023 | goto free_hdr; |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | if (sqnum < be64_to_cpu(vh->sqnum)) |
| 1028 | sqnum = be64_to_cpu(vh->sqnum); |
| 1029 | |
| 1030 | ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum, |
| 1031 | ubi->leb_start, ubi->leb_size); |
| 1032 | if (ret && ret != UBI_IO_BITFLIPS) { |
| 1033 | ubi_err("unable to read fastmap block# %i (PEB: %i, " \ |
| 1034 | "err: %i)", i, pnum, ret); |
| 1035 | goto free_hdr; |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | kfree(fmsb); |
| 1040 | fmsb = NULL; |
| 1041 | |
| 1042 | fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); |
| 1043 | tmp_crc = be32_to_cpu(fmsb2->data_crc); |
| 1044 | fmsb2->data_crc = 0; |
| 1045 | crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); |
| 1046 | if (crc != tmp_crc) { |
| 1047 | ubi_err("fastmap data CRC is invalid"); |
| 1048 | ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc); |
| 1049 | ret = UBI_BAD_FASTMAP; |
| 1050 | goto free_hdr; |
| 1051 | } |
| 1052 | |
| 1053 | fmsb2->sqnum = sqnum; |
| 1054 | |
| 1055 | fm->used_blocks = used_blocks; |
| 1056 | |
| 1057 | ret = ubi_attach_fastmap(ubi, ai, fm); |
| 1058 | if (ret) { |
| 1059 | if (ret > 0) |
| 1060 | ret = UBI_BAD_FASTMAP; |
| 1061 | goto free_hdr; |
| 1062 | } |
| 1063 | |
| 1064 | for (i = 0; i < used_blocks; i++) { |
| 1065 | struct ubi_wl_entry *e; |
| 1066 | |
| 1067 | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1068 | if (!e) { |
| 1069 | while (i--) |
| 1070 | kfree(fm->e[i]); |
| 1071 | |
| 1072 | ret = -ENOMEM; |
| 1073 | goto free_hdr; |
| 1074 | } |
| 1075 | |
| 1076 | e->pnum = be32_to_cpu(fmsb2->block_loc[i]); |
| 1077 | e->ec = be32_to_cpu(fmsb2->block_ec[i]); |
| 1078 | fm->e[i] = e; |
| 1079 | } |
| 1080 | |
| 1081 | ubi->fm = fm; |
| 1082 | ubi->fm_pool.max_size = ubi->fm->max_pool_size; |
| 1083 | ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; |
| 1084 | ubi_msg("attached by fastmap"); |
| 1085 | ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size); |
| 1086 | ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); |
| 1087 | ubi->fm_disabled = 0; |
| 1088 | |
| 1089 | ubi_free_vid_hdr(ubi, vh); |
| 1090 | kfree(ech); |
| 1091 | out: |
| 1092 | mutex_unlock(&ubi->fm_mutex); |
| 1093 | if (ret == UBI_BAD_FASTMAP) |
| 1094 | ubi_err("Attach by fastmap failed, doing a full scan!"); |
| 1095 | return ret; |
| 1096 | |
| 1097 | free_hdr: |
| 1098 | ubi_free_vid_hdr(ubi, vh); |
| 1099 | kfree(ech); |
| 1100 | free_fm_sb: |
| 1101 | kfree(fmsb); |
| 1102 | kfree(fm); |
| 1103 | goto out; |
| 1104 | } |
| 1105 | |
| 1106 | /** |
| 1107 | * ubi_write_fastmap - writes a fastmap. |
| 1108 | * @ubi: UBI device object |
| 1109 | * @new_fm: the to be written fastmap |
| 1110 | * |
| 1111 | * Returns 0 on success, < 0 indicates an internal error. |
| 1112 | */ |
| 1113 | static int ubi_write_fastmap(struct ubi_device *ubi, |
| 1114 | struct ubi_fastmap_layout *new_fm) |
| 1115 | { |
| 1116 | size_t fm_pos = 0; |
| 1117 | void *fm_raw; |
| 1118 | struct ubi_fm_sb *fmsb; |
| 1119 | struct ubi_fm_hdr *fmh; |
| 1120 | struct ubi_fm_scan_pool *fmpl1, *fmpl2; |
| 1121 | struct ubi_fm_ec *fec; |
| 1122 | struct ubi_fm_volhdr *fvh; |
| 1123 | struct ubi_fm_eba *feba; |
| 1124 | struct rb_node *node; |
| 1125 | struct ubi_wl_entry *wl_e; |
| 1126 | struct ubi_volume *vol; |
| 1127 | struct ubi_vid_hdr *avhdr, *dvhdr; |
| 1128 | struct ubi_work *ubi_wrk; |
| 1129 | int ret, i, j, free_peb_count, used_peb_count, vol_count; |
| 1130 | int scrub_peb_count, erase_peb_count; |
| 1131 | |
| 1132 | fm_raw = ubi->fm_buf; |
| 1133 | memset(ubi->fm_buf, 0, ubi->fm_size); |
| 1134 | |
| 1135 | avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); |
| 1136 | if (!avhdr) { |
| 1137 | ret = -ENOMEM; |
| 1138 | goto out; |
| 1139 | } |
| 1140 | |
| 1141 | dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID); |
| 1142 | if (!dvhdr) { |
| 1143 | ret = -ENOMEM; |
| 1144 | goto out_kfree; |
| 1145 | } |
| 1146 | |
| 1147 | spin_lock(&ubi->volumes_lock); |
| 1148 | spin_lock(&ubi->wl_lock); |
| 1149 | |
| 1150 | fmsb = (struct ubi_fm_sb *)fm_raw; |
| 1151 | fm_pos += sizeof(*fmsb); |
| 1152 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1153 | |
| 1154 | fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); |
| 1155 | fm_pos += sizeof(*fmh); |
| 1156 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1157 | |
| 1158 | fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); |
| 1159 | fmsb->version = UBI_FM_FMT_VERSION; |
| 1160 | fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); |
| 1161 | /* the max sqnum will be filled in while *reading* the fastmap */ |
| 1162 | fmsb->sqnum = 0; |
| 1163 | |
| 1164 | fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); |
| 1165 | free_peb_count = 0; |
| 1166 | used_peb_count = 0; |
| 1167 | scrub_peb_count = 0; |
| 1168 | erase_peb_count = 0; |
| 1169 | vol_count = 0; |
| 1170 | |
| 1171 | fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 1172 | fm_pos += sizeof(*fmpl1); |
| 1173 | fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); |
| 1174 | fmpl1->size = cpu_to_be16(ubi->fm_pool.size); |
| 1175 | fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size); |
| 1176 | |
| 1177 | for (i = 0; i < ubi->fm_pool.size; i++) |
| 1178 | fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); |
| 1179 | |
| 1180 | fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 1181 | fm_pos += sizeof(*fmpl2); |
| 1182 | fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); |
| 1183 | fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size); |
| 1184 | fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); |
| 1185 | |
| 1186 | for (i = 0; i < ubi->fm_wl_pool.size; i++) |
| 1187 | fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); |
| 1188 | |
| 1189 | for (node = rb_first(&ubi->free); node; node = rb_next(node)) { |
| 1190 | wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| 1191 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1192 | |
| 1193 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1194 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1195 | |
| 1196 | free_peb_count++; |
| 1197 | fm_pos += sizeof(*fec); |
| 1198 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1199 | } |
| 1200 | fmh->free_peb_count = cpu_to_be32(free_peb_count); |
| 1201 | |
| 1202 | for (node = rb_first(&ubi->used); node; node = rb_next(node)) { |
| 1203 | wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| 1204 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1205 | |
| 1206 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1207 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1208 | |
| 1209 | used_peb_count++; |
| 1210 | fm_pos += sizeof(*fec); |
| 1211 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1212 | } |
| 1213 | fmh->used_peb_count = cpu_to_be32(used_peb_count); |
| 1214 | |
| 1215 | for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) { |
| 1216 | wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| 1217 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1218 | |
| 1219 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1220 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1221 | |
| 1222 | scrub_peb_count++; |
| 1223 | fm_pos += sizeof(*fec); |
| 1224 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1225 | } |
| 1226 | fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); |
| 1227 | |
| 1228 | |
| 1229 | list_for_each_entry(ubi_wrk, &ubi->works, list) { |
| 1230 | if (ubi_is_erase_work(ubi_wrk)) { |
| 1231 | wl_e = ubi_wrk->e; |
| 1232 | ubi_assert(wl_e); |
| 1233 | |
| 1234 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1235 | |
| 1236 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1237 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1238 | |
| 1239 | erase_peb_count++; |
| 1240 | fm_pos += sizeof(*fec); |
| 1241 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1242 | } |
| 1243 | } |
| 1244 | fmh->erase_peb_count = cpu_to_be32(erase_peb_count); |
| 1245 | |
| 1246 | for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { |
| 1247 | vol = ubi->volumes[i]; |
| 1248 | |
| 1249 | if (!vol) |
| 1250 | continue; |
| 1251 | |
| 1252 | vol_count++; |
| 1253 | |
| 1254 | fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); |
| 1255 | fm_pos += sizeof(*fvh); |
| 1256 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1257 | |
| 1258 | fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); |
| 1259 | fvh->vol_id = cpu_to_be32(vol->vol_id); |
| 1260 | fvh->vol_type = vol->vol_type; |
| 1261 | fvh->used_ebs = cpu_to_be32(vol->used_ebs); |
| 1262 | fvh->data_pad = cpu_to_be32(vol->data_pad); |
| 1263 | fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); |
| 1264 | |
| 1265 | ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || |
| 1266 | vol->vol_type == UBI_STATIC_VOLUME); |
| 1267 | |
| 1268 | feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); |
| 1269 | fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); |
| 1270 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1271 | |
| 1272 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1273 | feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]); |
| 1274 | |
| 1275 | feba->reserved_pebs = cpu_to_be32(j); |
| 1276 | feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); |
| 1277 | } |
| 1278 | fmh->vol_count = cpu_to_be32(vol_count); |
| 1279 | fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); |
| 1280 | |
| 1281 | avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1282 | avhdr->lnum = 0; |
| 1283 | |
| 1284 | spin_unlock(&ubi->wl_lock); |
| 1285 | spin_unlock(&ubi->volumes_lock); |
| 1286 | |
| 1287 | dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); |
| 1288 | ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr); |
| 1289 | if (ret) { |
| 1290 | ubi_err("unable to write vid_hdr to fastmap SB!"); |
| 1291 | goto out_kfree; |
| 1292 | } |
| 1293 | |
| 1294 | for (i = 0; i < new_fm->used_blocks; i++) { |
| 1295 | fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); |
| 1296 | fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); |
| 1297 | } |
| 1298 | |
| 1299 | fmsb->data_crc = 0; |
| 1300 | fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, |
| 1301 | ubi->fm_size)); |
| 1302 | |
| 1303 | for (i = 1; i < new_fm->used_blocks; i++) { |
| 1304 | dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1305 | dvhdr->lnum = cpu_to_be32(i); |
| 1306 | dbg_bld("writing fastmap data to PEB %i sqnum %llu", |
| 1307 | new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); |
| 1308 | ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr); |
| 1309 | if (ret) { |
| 1310 | ubi_err("unable to write vid_hdr to PEB %i!", |
| 1311 | new_fm->e[i]->pnum); |
| 1312 | goto out_kfree; |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | for (i = 0; i < new_fm->used_blocks; i++) { |
| 1317 | ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size), |
| 1318 | new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size); |
| 1319 | if (ret) { |
| 1320 | ubi_err("unable to write fastmap to PEB %i!", |
| 1321 | new_fm->e[i]->pnum); |
| 1322 | goto out_kfree; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | ubi_assert(new_fm); |
| 1327 | ubi->fm = new_fm; |
| 1328 | |
| 1329 | dbg_bld("fastmap written!"); |
| 1330 | |
| 1331 | out_kfree: |
| 1332 | ubi_free_vid_hdr(ubi, avhdr); |
| 1333 | ubi_free_vid_hdr(ubi, dvhdr); |
| 1334 | out: |
| 1335 | return ret; |
| 1336 | } |
| 1337 | |
| 1338 | /** |
| 1339 | * erase_block - Manually erase a PEB. |
| 1340 | * @ubi: UBI device object |
| 1341 | * @pnum: PEB to be erased |
| 1342 | * |
| 1343 | * Returns the new EC value on success, < 0 indicates an internal error. |
| 1344 | */ |
| 1345 | static int erase_block(struct ubi_device *ubi, int pnum) |
| 1346 | { |
| 1347 | int ret; |
| 1348 | struct ubi_ec_hdr *ec_hdr; |
| 1349 | long long ec; |
| 1350 | |
| 1351 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 1352 | if (!ec_hdr) |
| 1353 | return -ENOMEM; |
| 1354 | |
| 1355 | ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); |
| 1356 | if (ret < 0) |
| 1357 | goto out; |
| 1358 | else if (ret && ret != UBI_IO_BITFLIPS) { |
| 1359 | ret = -EINVAL; |
| 1360 | goto out; |
| 1361 | } |
| 1362 | |
| 1363 | ret = ubi_io_sync_erase(ubi, pnum, 0); |
| 1364 | if (ret < 0) |
| 1365 | goto out; |
| 1366 | |
| 1367 | ec = be64_to_cpu(ec_hdr->ec); |
| 1368 | ec += ret; |
| 1369 | if (ec > UBI_MAX_ERASECOUNTER) { |
| 1370 | ret = -EINVAL; |
| 1371 | goto out; |
| 1372 | } |
| 1373 | |
| 1374 | ec_hdr->ec = cpu_to_be64(ec); |
| 1375 | ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); |
| 1376 | if (ret < 0) |
| 1377 | goto out; |
| 1378 | |
| 1379 | ret = ec; |
| 1380 | out: |
| 1381 | kfree(ec_hdr); |
| 1382 | return ret; |
| 1383 | } |
| 1384 | |
| 1385 | /** |
| 1386 | * invalidate_fastmap - destroys a fastmap. |
| 1387 | * @ubi: UBI device object |
| 1388 | * @fm: the fastmap to be destroyed |
| 1389 | * |
| 1390 | * Returns 0 on success, < 0 indicates an internal error. |
| 1391 | */ |
| 1392 | static int invalidate_fastmap(struct ubi_device *ubi, |
| 1393 | struct ubi_fastmap_layout *fm) |
| 1394 | { |
| 1395 | int ret; |
| 1396 | struct ubi_vid_hdr *vh; |
| 1397 | |
| 1398 | ret = erase_block(ubi, fm->e[0]->pnum); |
| 1399 | if (ret < 0) |
| 1400 | return ret; |
| 1401 | |
| 1402 | vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); |
| 1403 | if (!vh) |
| 1404 | return -ENOMEM; |
| 1405 | |
| 1406 | /* deleting the current fastmap SB is not enough, an old SB may exist, |
| 1407 | * so create a (corrupted) SB such that fastmap will find it and fall |
| 1408 | * back to scanning mode in any case */ |
| 1409 | vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1410 | ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh); |
| 1411 | |
| 1412 | return ret; |
| 1413 | } |
| 1414 | |
| 1415 | /** |
| 1416 | * ubi_update_fastmap - will be called by UBI if a volume changes or |
| 1417 | * a fastmap pool becomes full. |
| 1418 | * @ubi: UBI device object |
| 1419 | * |
| 1420 | * Returns 0 on success, < 0 indicates an internal error. |
| 1421 | */ |
| 1422 | int ubi_update_fastmap(struct ubi_device *ubi) |
| 1423 | { |
| 1424 | int ret, i; |
| 1425 | struct ubi_fastmap_layout *new_fm, *old_fm; |
| 1426 | struct ubi_wl_entry *tmp_e; |
| 1427 | |
| 1428 | mutex_lock(&ubi->fm_mutex); |
| 1429 | |
| 1430 | ubi_refill_pools(ubi); |
| 1431 | |
| 1432 | if (ubi->ro_mode || ubi->fm_disabled) { |
| 1433 | mutex_unlock(&ubi->fm_mutex); |
| 1434 | return 0; |
| 1435 | } |
| 1436 | |
| 1437 | ret = ubi_ensure_anchor_pebs(ubi); |
| 1438 | if (ret) { |
| 1439 | mutex_unlock(&ubi->fm_mutex); |
| 1440 | return ret; |
| 1441 | } |
| 1442 | |
| 1443 | new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); |
| 1444 | if (!new_fm) { |
| 1445 | mutex_unlock(&ubi->fm_mutex); |
| 1446 | return -ENOMEM; |
| 1447 | } |
| 1448 | |
| 1449 | new_fm->used_blocks = ubi->fm_size / ubi->leb_size; |
| 1450 | |
| 1451 | for (i = 0; i < new_fm->used_blocks; i++) { |
| 1452 | new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1453 | if (!new_fm->e[i]) { |
| 1454 | while (i--) |
| 1455 | kfree(new_fm->e[i]); |
| 1456 | |
| 1457 | kfree(new_fm); |
| 1458 | mutex_unlock(&ubi->fm_mutex); |
| 1459 | return -ENOMEM; |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | old_fm = ubi->fm; |
| 1464 | ubi->fm = NULL; |
| 1465 | |
| 1466 | if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { |
| 1467 | ubi_err("fastmap too large"); |
| 1468 | ret = -ENOSPC; |
| 1469 | goto err; |
| 1470 | } |
| 1471 | |
| 1472 | for (i = 1; i < new_fm->used_blocks; i++) { |
| 1473 | spin_lock(&ubi->wl_lock); |
| 1474 | tmp_e = ubi_wl_get_fm_peb(ubi, 0); |
| 1475 | spin_unlock(&ubi->wl_lock); |
| 1476 | |
| 1477 | if (!tmp_e && !old_fm) { |
| 1478 | int j; |
| 1479 | ubi_err("could not get any free erase block"); |
| 1480 | |
| 1481 | for (j = 1; j < i; j++) |
| 1482 | ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); |
| 1483 | |
| 1484 | ret = -ENOSPC; |
| 1485 | goto err; |
| 1486 | } else if (!tmp_e && old_fm) { |
| 1487 | ret = erase_block(ubi, old_fm->e[i]->pnum); |
| 1488 | if (ret < 0) { |
| 1489 | int j; |
| 1490 | |
| 1491 | for (j = 1; j < i; j++) |
| 1492 | ubi_wl_put_fm_peb(ubi, new_fm->e[j], |
| 1493 | j, 0); |
| 1494 | |
| 1495 | ubi_err("could not erase old fastmap PEB"); |
| 1496 | goto err; |
| 1497 | } |
| 1498 | |
| 1499 | new_fm->e[i]->pnum = old_fm->e[i]->pnum; |
| 1500 | new_fm->e[i]->ec = old_fm->e[i]->ec; |
| 1501 | } else { |
| 1502 | new_fm->e[i]->pnum = tmp_e->pnum; |
| 1503 | new_fm->e[i]->ec = tmp_e->ec; |
| 1504 | |
| 1505 | if (old_fm) |
| 1506 | ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, |
| 1507 | old_fm->to_be_tortured[i]); |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | spin_lock(&ubi->wl_lock); |
| 1512 | tmp_e = ubi_wl_get_fm_peb(ubi, 1); |
| 1513 | spin_unlock(&ubi->wl_lock); |
| 1514 | |
| 1515 | if (old_fm) { |
| 1516 | /* no fresh anchor PEB was found, reuse the old one */ |
| 1517 | if (!tmp_e) { |
| 1518 | ret = erase_block(ubi, old_fm->e[0]->pnum); |
| 1519 | if (ret < 0) { |
| 1520 | int i; |
| 1521 | ubi_err("could not erase old anchor PEB"); |
| 1522 | |
| 1523 | for (i = 1; i < new_fm->used_blocks; i++) |
| 1524 | ubi_wl_put_fm_peb(ubi, new_fm->e[i], |
| 1525 | i, 0); |
| 1526 | goto err; |
| 1527 | } |
| 1528 | |
| 1529 | new_fm->e[0]->pnum = old_fm->e[0]->pnum; |
| 1530 | new_fm->e[0]->ec = ret; |
| 1531 | } else { |
| 1532 | /* we've got a new anchor PEB, return the old one */ |
| 1533 | ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, |
| 1534 | old_fm->to_be_tortured[0]); |
| 1535 | |
| 1536 | new_fm->e[0]->pnum = tmp_e->pnum; |
| 1537 | new_fm->e[0]->ec = tmp_e->ec; |
| 1538 | } |
| 1539 | } else { |
| 1540 | if (!tmp_e) { |
| 1541 | int i; |
| 1542 | ubi_err("could not find any anchor PEB"); |
| 1543 | |
| 1544 | for (i = 1; i < new_fm->used_blocks; i++) |
| 1545 | ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); |
| 1546 | |
| 1547 | ret = -ENOSPC; |
| 1548 | goto err; |
| 1549 | } |
| 1550 | |
| 1551 | new_fm->e[0]->pnum = tmp_e->pnum; |
| 1552 | new_fm->e[0]->ec = tmp_e->ec; |
| 1553 | } |
| 1554 | |
| 1555 | down_write(&ubi->work_sem); |
| 1556 | down_write(&ubi->fm_sem); |
| 1557 | ret = ubi_write_fastmap(ubi, new_fm); |
| 1558 | up_write(&ubi->fm_sem); |
| 1559 | up_write(&ubi->work_sem); |
| 1560 | |
| 1561 | if (ret) |
| 1562 | goto err; |
| 1563 | |
| 1564 | out_unlock: |
| 1565 | mutex_unlock(&ubi->fm_mutex); |
| 1566 | kfree(old_fm); |
| 1567 | return ret; |
| 1568 | |
| 1569 | err: |
| 1570 | kfree(new_fm); |
| 1571 | |
| 1572 | ubi_warn("Unable to write new fastmap, err=%i", ret); |
| 1573 | |
| 1574 | ret = 0; |
| 1575 | if (old_fm) { |
| 1576 | ret = invalidate_fastmap(ubi, old_fm); |
| 1577 | if (ret < 0) |
| 1578 | ubi_err("Unable to invalidiate current fastmap!"); |
| 1579 | else if (ret) |
| 1580 | ret = 0; |
| 1581 | } |
| 1582 | goto out_unlock; |
| 1583 | } |