Christian Hitz | 4c6de85 | 2011-10-12 09:31:59 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Generic binary BCH encoding/decoding library |
| 3 | * |
Tom Rini | 5b8031c | 2016-01-14 22:05:13 -0500 | [diff] [blame] | 4 | * SPDX-License-Identifier: GPL-2.0 |
Christian Hitz | 4c6de85 | 2011-10-12 09:31:59 +0200 | [diff] [blame] | 5 | * |
| 6 | * Copyright © 2011 Parrot S.A. |
| 7 | * |
| 8 | * Author: Ivan Djelic <ivan.djelic@parrot.com> |
| 9 | * |
| 10 | * Description: |
| 11 | * |
| 12 | * This library provides runtime configurable encoding/decoding of binary |
| 13 | * Bose-Chaudhuri-Hocquenghem (BCH) codes. |
| 14 | * |
| 15 | * Call init_bch to get a pointer to a newly allocated bch_control structure for |
| 16 | * the given m (Galois field order), t (error correction capability) and |
| 17 | * (optional) primitive polynomial parameters. |
| 18 | * |
| 19 | * Call encode_bch to compute and store ecc parity bytes to a given buffer. |
| 20 | * Call decode_bch to detect and locate errors in received data. |
| 21 | * |
| 22 | * On systems supporting hw BCH features, intermediate results may be provided |
| 23 | * to decode_bch in order to skip certain steps. See decode_bch() documentation |
| 24 | * for details. |
| 25 | * |
| 26 | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of |
| 27 | * parameters m and t; thus allowing extra compiler optimizations and providing |
| 28 | * better (up to 2x) encoding performance. Using this option makes sense when |
| 29 | * (m,t) are fixed and known in advance, e.g. when using BCH error correction |
| 30 | * on a particular NAND flash device. |
| 31 | * |
| 32 | * Algorithmic details: |
| 33 | * |
| 34 | * Encoding is performed by processing 32 input bits in parallel, using 4 |
| 35 | * remainder lookup tables. |
| 36 | * |
| 37 | * The final stage of decoding involves the following internal steps: |
| 38 | * a. Syndrome computation |
| 39 | * b. Error locator polynomial computation using Berlekamp-Massey algorithm |
| 40 | * c. Error locator root finding (by far the most expensive step) |
| 41 | * |
| 42 | * In this implementation, step c is not performed using the usual Chien search. |
| 43 | * Instead, an alternative approach described in [1] is used. It consists in |
| 44 | * factoring the error locator polynomial using the Berlekamp Trace algorithm |
| 45 | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial |
| 46 | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields |
| 47 | * much better performance than Chien search for usual (m,t) values (typically |
| 48 | * m >= 13, t < 32, see [1]). |
| 49 | * |
| 50 | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields |
| 51 | * of characteristic 2, in: Western European Workshop on Research in Cryptology |
| 52 | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. |
| 53 | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over |
| 54 | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. |
| 55 | */ |
| 56 | |
| 57 | #include <common.h> |
| 58 | #include <ubi_uboot.h> |
| 59 | |
| 60 | #include <linux/bitops.h> |
| 61 | #include <asm/byteorder.h> |
| 62 | #include <linux/bch.h> |
| 63 | |
| 64 | #if defined(CONFIG_BCH_CONST_PARAMS) |
| 65 | #define GF_M(_p) (CONFIG_BCH_CONST_M) |
| 66 | #define GF_T(_p) (CONFIG_BCH_CONST_T) |
| 67 | #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) |
| 68 | #else |
| 69 | #define GF_M(_p) ((_p)->m) |
| 70 | #define GF_T(_p) ((_p)->t) |
| 71 | #define GF_N(_p) ((_p)->n) |
| 72 | #endif |
| 73 | |
| 74 | #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) |
| 75 | #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) |
| 76 | |
| 77 | #ifndef dbg |
| 78 | #define dbg(_fmt, args...) do {} while (0) |
| 79 | #endif |
| 80 | |
| 81 | /* |
| 82 | * represent a polynomial over GF(2^m) |
| 83 | */ |
| 84 | struct gf_poly { |
| 85 | unsigned int deg; /* polynomial degree */ |
| 86 | unsigned int c[0]; /* polynomial terms */ |
| 87 | }; |
| 88 | |
| 89 | /* given its degree, compute a polynomial size in bytes */ |
| 90 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) |
| 91 | |
| 92 | /* polynomial of degree 1 */ |
| 93 | struct gf_poly_deg1 { |
| 94 | struct gf_poly poly; |
| 95 | unsigned int c[2]; |
| 96 | }; |
| 97 | |
| 98 | /* |
| 99 | * same as encode_bch(), but process input data one byte at a time |
| 100 | */ |
| 101 | static void encode_bch_unaligned(struct bch_control *bch, |
| 102 | const unsigned char *data, unsigned int len, |
| 103 | uint32_t *ecc) |
| 104 | { |
| 105 | int i; |
| 106 | const uint32_t *p; |
| 107 | const int l = BCH_ECC_WORDS(bch)-1; |
| 108 | |
| 109 | while (len--) { |
| 110 | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); |
| 111 | |
| 112 | for (i = 0; i < l; i++) |
| 113 | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); |
| 114 | |
| 115 | ecc[l] = (ecc[l] << 8)^(*p); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * convert ecc bytes to aligned, zero-padded 32-bit ecc words |
| 121 | */ |
| 122 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, |
| 123 | const uint8_t *src) |
| 124 | { |
| 125 | uint8_t pad[4] = {0, 0, 0, 0}; |
| 126 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; |
| 127 | |
| 128 | for (i = 0; i < nwords; i++, src += 4) |
| 129 | dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; |
| 130 | |
| 131 | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); |
| 132 | dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * convert 32-bit ecc words to ecc bytes |
| 137 | */ |
| 138 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, |
| 139 | const uint32_t *src) |
| 140 | { |
| 141 | uint8_t pad[4]; |
| 142 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; |
| 143 | |
| 144 | for (i = 0; i < nwords; i++) { |
| 145 | *dst++ = (src[i] >> 24); |
| 146 | *dst++ = (src[i] >> 16) & 0xff; |
| 147 | *dst++ = (src[i] >> 8) & 0xff; |
| 148 | *dst++ = (src[i] >> 0) & 0xff; |
| 149 | } |
| 150 | pad[0] = (src[nwords] >> 24); |
| 151 | pad[1] = (src[nwords] >> 16) & 0xff; |
| 152 | pad[2] = (src[nwords] >> 8) & 0xff; |
| 153 | pad[3] = (src[nwords] >> 0) & 0xff; |
| 154 | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); |
| 155 | } |
| 156 | |
| 157 | /** |
| 158 | * encode_bch - calculate BCH ecc parity of data |
| 159 | * @bch: BCH control structure |
| 160 | * @data: data to encode |
| 161 | * @len: data length in bytes |
| 162 | * @ecc: ecc parity data, must be initialized by caller |
| 163 | * |
| 164 | * The @ecc parity array is used both as input and output parameter, in order to |
| 165 | * allow incremental computations. It should be of the size indicated by member |
| 166 | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. |
| 167 | * |
| 168 | * The exact number of computed ecc parity bits is given by member @ecc_bits of |
| 169 | * @bch; it may be less than m*t for large values of t. |
| 170 | */ |
| 171 | void encode_bch(struct bch_control *bch, const uint8_t *data, |
| 172 | unsigned int len, uint8_t *ecc) |
| 173 | { |
| 174 | const unsigned int l = BCH_ECC_WORDS(bch)-1; |
| 175 | unsigned int i, mlen; |
| 176 | unsigned long m; |
| 177 | uint32_t w, r[l+1]; |
| 178 | const uint32_t * const tab0 = bch->mod8_tab; |
| 179 | const uint32_t * const tab1 = tab0 + 256*(l+1); |
| 180 | const uint32_t * const tab2 = tab1 + 256*(l+1); |
| 181 | const uint32_t * const tab3 = tab2 + 256*(l+1); |
| 182 | const uint32_t *pdata, *p0, *p1, *p2, *p3; |
| 183 | |
| 184 | if (ecc) { |
| 185 | /* load ecc parity bytes into internal 32-bit buffer */ |
| 186 | load_ecc8(bch, bch->ecc_buf, ecc); |
| 187 | } else { |
| 188 | memset(bch->ecc_buf, 0, sizeof(r)); |
| 189 | } |
| 190 | |
| 191 | /* process first unaligned data bytes */ |
| 192 | m = ((unsigned long)data) & 3; |
| 193 | if (m) { |
| 194 | mlen = (len < (4-m)) ? len : 4-m; |
| 195 | encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); |
| 196 | data += mlen; |
| 197 | len -= mlen; |
| 198 | } |
| 199 | |
| 200 | /* process 32-bit aligned data words */ |
| 201 | pdata = (uint32_t *)data; |
| 202 | mlen = len/4; |
| 203 | data += 4*mlen; |
| 204 | len -= 4*mlen; |
| 205 | memcpy(r, bch->ecc_buf, sizeof(r)); |
| 206 | |
| 207 | /* |
| 208 | * split each 32-bit word into 4 polynomials of weight 8 as follows: |
| 209 | * |
| 210 | * 31 ...24 23 ...16 15 ... 8 7 ... 0 |
| 211 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt |
| 212 | * tttttttt mod g = r0 (precomputed) |
| 213 | * zzzzzzzz 00000000 mod g = r1 (precomputed) |
| 214 | * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) |
| 215 | * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) |
| 216 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 |
| 217 | */ |
| 218 | while (mlen--) { |
| 219 | /* input data is read in big-endian format */ |
| 220 | w = r[0]^cpu_to_be32(*pdata++); |
| 221 | p0 = tab0 + (l+1)*((w >> 0) & 0xff); |
| 222 | p1 = tab1 + (l+1)*((w >> 8) & 0xff); |
| 223 | p2 = tab2 + (l+1)*((w >> 16) & 0xff); |
| 224 | p3 = tab3 + (l+1)*((w >> 24) & 0xff); |
| 225 | |
| 226 | for (i = 0; i < l; i++) |
| 227 | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; |
| 228 | |
| 229 | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; |
| 230 | } |
| 231 | memcpy(bch->ecc_buf, r, sizeof(r)); |
| 232 | |
| 233 | /* process last unaligned bytes */ |
| 234 | if (len) |
| 235 | encode_bch_unaligned(bch, data, len, bch->ecc_buf); |
| 236 | |
| 237 | /* store ecc parity bytes into original parity buffer */ |
| 238 | if (ecc) |
| 239 | store_ecc8(bch, ecc, bch->ecc_buf); |
| 240 | } |
| 241 | |
| 242 | static inline int modulo(struct bch_control *bch, unsigned int v) |
| 243 | { |
| 244 | const unsigned int n = GF_N(bch); |
| 245 | while (v >= n) { |
| 246 | v -= n; |
| 247 | v = (v & n) + (v >> GF_M(bch)); |
| 248 | } |
| 249 | return v; |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | * shorter and faster modulo function, only works when v < 2N. |
| 254 | */ |
| 255 | static inline int mod_s(struct bch_control *bch, unsigned int v) |
| 256 | { |
| 257 | const unsigned int n = GF_N(bch); |
| 258 | return (v < n) ? v : v-n; |
| 259 | } |
| 260 | |
| 261 | static inline int deg(unsigned int poly) |
| 262 | { |
| 263 | /* polynomial degree is the most-significant bit index */ |
| 264 | return fls(poly)-1; |
| 265 | } |
| 266 | |
| 267 | static inline int parity(unsigned int x) |
| 268 | { |
| 269 | /* |
| 270 | * public domain code snippet, lifted from |
| 271 | * http://www-graphics.stanford.edu/~seander/bithacks.html |
| 272 | */ |
| 273 | x ^= x >> 1; |
| 274 | x ^= x >> 2; |
| 275 | x = (x & 0x11111111U) * 0x11111111U; |
| 276 | return (x >> 28) & 1; |
| 277 | } |
| 278 | |
| 279 | /* Galois field basic operations: multiply, divide, inverse, etc. */ |
| 280 | |
| 281 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, |
| 282 | unsigned int b) |
| 283 | { |
| 284 | return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ |
| 285 | bch->a_log_tab[b])] : 0; |
| 286 | } |
| 287 | |
| 288 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) |
| 289 | { |
| 290 | return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; |
| 291 | } |
| 292 | |
| 293 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, |
| 294 | unsigned int b) |
| 295 | { |
| 296 | return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ |
| 297 | GF_N(bch)-bch->a_log_tab[b])] : 0; |
| 298 | } |
| 299 | |
| 300 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) |
| 301 | { |
| 302 | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; |
| 303 | } |
| 304 | |
| 305 | static inline unsigned int a_pow(struct bch_control *bch, int i) |
| 306 | { |
| 307 | return bch->a_pow_tab[modulo(bch, i)]; |
| 308 | } |
| 309 | |
| 310 | static inline int a_log(struct bch_control *bch, unsigned int x) |
| 311 | { |
| 312 | return bch->a_log_tab[x]; |
| 313 | } |
| 314 | |
| 315 | static inline int a_ilog(struct bch_control *bch, unsigned int x) |
| 316 | { |
| 317 | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t |
| 322 | */ |
| 323 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, |
| 324 | unsigned int *syn) |
| 325 | { |
| 326 | int i, j, s; |
| 327 | unsigned int m; |
| 328 | uint32_t poly; |
| 329 | const int t = GF_T(bch); |
| 330 | |
| 331 | s = bch->ecc_bits; |
| 332 | |
| 333 | /* make sure extra bits in last ecc word are cleared */ |
| 334 | m = ((unsigned int)s) & 31; |
| 335 | if (m) |
| 336 | ecc[s/32] &= ~((1u << (32-m))-1); |
| 337 | memset(syn, 0, 2*t*sizeof(*syn)); |
| 338 | |
| 339 | /* compute v(a^j) for j=1 .. 2t-1 */ |
| 340 | do { |
| 341 | poly = *ecc++; |
| 342 | s -= 32; |
| 343 | while (poly) { |
| 344 | i = deg(poly); |
| 345 | for (j = 0; j < 2*t; j += 2) |
| 346 | syn[j] ^= a_pow(bch, (j+1)*(i+s)); |
| 347 | |
| 348 | poly ^= (1 << i); |
| 349 | } |
| 350 | } while (s > 0); |
| 351 | |
| 352 | /* v(a^(2j)) = v(a^j)^2 */ |
| 353 | for (j = 0; j < t; j++) |
| 354 | syn[2*j+1] = gf_sqr(bch, syn[j]); |
| 355 | } |
| 356 | |
| 357 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) |
| 358 | { |
| 359 | memcpy(dst, src, GF_POLY_SZ(src->deg)); |
| 360 | } |
| 361 | |
| 362 | static int compute_error_locator_polynomial(struct bch_control *bch, |
| 363 | const unsigned int *syn) |
| 364 | { |
| 365 | const unsigned int t = GF_T(bch); |
| 366 | const unsigned int n = GF_N(bch); |
| 367 | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; |
| 368 | struct gf_poly *elp = bch->elp; |
| 369 | struct gf_poly *pelp = bch->poly_2t[0]; |
| 370 | struct gf_poly *elp_copy = bch->poly_2t[1]; |
| 371 | int k, pp = -1; |
| 372 | |
| 373 | memset(pelp, 0, GF_POLY_SZ(2*t)); |
| 374 | memset(elp, 0, GF_POLY_SZ(2*t)); |
| 375 | |
| 376 | pelp->deg = 0; |
| 377 | pelp->c[0] = 1; |
| 378 | elp->deg = 0; |
| 379 | elp->c[0] = 1; |
| 380 | |
| 381 | /* use simplified binary Berlekamp-Massey algorithm */ |
| 382 | for (i = 0; (i < t) && (elp->deg <= t); i++) { |
| 383 | if (d) { |
| 384 | k = 2*i-pp; |
| 385 | gf_poly_copy(elp_copy, elp); |
| 386 | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ |
| 387 | tmp = a_log(bch, d)+n-a_log(bch, pd); |
| 388 | for (j = 0; j <= pelp->deg; j++) { |
| 389 | if (pelp->c[j]) { |
| 390 | l = a_log(bch, pelp->c[j]); |
| 391 | elp->c[j+k] ^= a_pow(bch, tmp+l); |
| 392 | } |
| 393 | } |
| 394 | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ |
| 395 | tmp = pelp->deg+k; |
| 396 | if (tmp > elp->deg) { |
| 397 | elp->deg = tmp; |
| 398 | gf_poly_copy(pelp, elp_copy); |
| 399 | pd = d; |
| 400 | pp = 2*i; |
| 401 | } |
| 402 | } |
| 403 | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ |
| 404 | if (i < t-1) { |
| 405 | d = syn[2*i+2]; |
| 406 | for (j = 1; j <= elp->deg; j++) |
| 407 | d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); |
| 408 | } |
| 409 | } |
| 410 | dbg("elp=%s\n", gf_poly_str(elp)); |
| 411 | return (elp->deg > t) ? -1 : (int)elp->deg; |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * solve a m x m linear system in GF(2) with an expected number of solutions, |
| 416 | * and return the number of found solutions |
| 417 | */ |
| 418 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, |
| 419 | unsigned int *sol, int nsol) |
| 420 | { |
| 421 | const int m = GF_M(bch); |
| 422 | unsigned int tmp, mask; |
| 423 | int rem, c, r, p, k, param[m]; |
| 424 | |
| 425 | k = 0; |
| 426 | mask = 1 << m; |
| 427 | |
| 428 | /* Gaussian elimination */ |
| 429 | for (c = 0; c < m; c++) { |
| 430 | rem = 0; |
| 431 | p = c-k; |
| 432 | /* find suitable row for elimination */ |
| 433 | for (r = p; r < m; r++) { |
| 434 | if (rows[r] & mask) { |
| 435 | if (r != p) { |
| 436 | tmp = rows[r]; |
| 437 | rows[r] = rows[p]; |
| 438 | rows[p] = tmp; |
| 439 | } |
| 440 | rem = r+1; |
| 441 | break; |
| 442 | } |
| 443 | } |
| 444 | if (rem) { |
| 445 | /* perform elimination on remaining rows */ |
| 446 | tmp = rows[p]; |
| 447 | for (r = rem; r < m; r++) { |
| 448 | if (rows[r] & mask) |
| 449 | rows[r] ^= tmp; |
| 450 | } |
| 451 | } else { |
| 452 | /* elimination not needed, store defective row index */ |
| 453 | param[k++] = c; |
| 454 | } |
| 455 | mask >>= 1; |
| 456 | } |
| 457 | /* rewrite system, inserting fake parameter rows */ |
| 458 | if (k > 0) { |
| 459 | p = k; |
| 460 | for (r = m-1; r >= 0; r--) { |
| 461 | if ((r > m-1-k) && rows[r]) |
| 462 | /* system has no solution */ |
| 463 | return 0; |
| 464 | |
| 465 | rows[r] = (p && (r == param[p-1])) ? |
| 466 | p--, 1u << (m-r) : rows[r-p]; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | if (nsol != (1 << k)) |
| 471 | /* unexpected number of solutions */ |
| 472 | return 0; |
| 473 | |
| 474 | for (p = 0; p < nsol; p++) { |
| 475 | /* set parameters for p-th solution */ |
| 476 | for (c = 0; c < k; c++) |
| 477 | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); |
| 478 | |
| 479 | /* compute unique solution */ |
| 480 | tmp = 0; |
| 481 | for (r = m-1; r >= 0; r--) { |
| 482 | mask = rows[r] & (tmp|1); |
| 483 | tmp |= parity(mask) << (m-r); |
| 484 | } |
| 485 | sol[p] = tmp >> 1; |
| 486 | } |
| 487 | return nsol; |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * this function builds and solves a linear system for finding roots of a degree |
| 492 | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). |
| 493 | */ |
| 494 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, |
| 495 | unsigned int b, unsigned int c, |
| 496 | unsigned int *roots) |
| 497 | { |
| 498 | int i, j, k; |
| 499 | const int m = GF_M(bch); |
| 500 | unsigned int mask = 0xff, t, rows[16] = {0,}; |
| 501 | |
| 502 | j = a_log(bch, b); |
| 503 | k = a_log(bch, a); |
| 504 | rows[0] = c; |
| 505 | |
| 506 | /* buid linear system to solve X^4+aX^2+bX+c = 0 */ |
| 507 | for (i = 0; i < m; i++) { |
| 508 | rows[i+1] = bch->a_pow_tab[4*i]^ |
| 509 | (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ |
| 510 | (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); |
| 511 | j++; |
| 512 | k += 2; |
| 513 | } |
| 514 | /* |
| 515 | * transpose 16x16 matrix before passing it to linear solver |
| 516 | * warning: this code assumes m < 16 |
| 517 | */ |
| 518 | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { |
| 519 | for (k = 0; k < 16; k = (k+j+1) & ~j) { |
| 520 | t = ((rows[k] >> j)^rows[k+j]) & mask; |
| 521 | rows[k] ^= (t << j); |
| 522 | rows[k+j] ^= t; |
| 523 | } |
| 524 | } |
| 525 | return solve_linear_system(bch, rows, roots, 4); |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) |
| 530 | */ |
| 531 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, |
| 532 | unsigned int *roots) |
| 533 | { |
| 534 | int n = 0; |
| 535 | |
| 536 | if (poly->c[0]) |
| 537 | /* poly[X] = bX+c with c!=0, root=c/b */ |
| 538 | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ |
| 539 | bch->a_log_tab[poly->c[1]]); |
| 540 | return n; |
| 541 | } |
| 542 | |
| 543 | /* |
| 544 | * compute roots of a degree 2 polynomial over GF(2^m) |
| 545 | */ |
| 546 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, |
| 547 | unsigned int *roots) |
| 548 | { |
| 549 | int n = 0, i, l0, l1, l2; |
| 550 | unsigned int u, v, r; |
| 551 | |
| 552 | if (poly->c[0] && poly->c[1]) { |
| 553 | |
| 554 | l0 = bch->a_log_tab[poly->c[0]]; |
| 555 | l1 = bch->a_log_tab[poly->c[1]]; |
| 556 | l2 = bch->a_log_tab[poly->c[2]]; |
| 557 | |
| 558 | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ |
| 559 | u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); |
| 560 | /* |
| 561 | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): |
| 562 | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = |
| 563 | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) |
| 564 | * i.e. r and r+1 are roots iff Tr(u)=0 |
| 565 | */ |
| 566 | r = 0; |
| 567 | v = u; |
| 568 | while (v) { |
| 569 | i = deg(v); |
| 570 | r ^= bch->xi_tab[i]; |
| 571 | v ^= (1 << i); |
| 572 | } |
| 573 | /* verify root */ |
| 574 | if ((gf_sqr(bch, r)^r) == u) { |
| 575 | /* reverse z=a/bX transformation and compute log(1/r) */ |
| 576 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- |
| 577 | bch->a_log_tab[r]+l2); |
| 578 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- |
| 579 | bch->a_log_tab[r^1]+l2); |
| 580 | } |
| 581 | } |
| 582 | return n; |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * compute roots of a degree 3 polynomial over GF(2^m) |
| 587 | */ |
| 588 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, |
| 589 | unsigned int *roots) |
| 590 | { |
| 591 | int i, n = 0; |
| 592 | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; |
| 593 | |
| 594 | if (poly->c[0]) { |
| 595 | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ |
| 596 | e3 = poly->c[3]; |
| 597 | c2 = gf_div(bch, poly->c[0], e3); |
| 598 | b2 = gf_div(bch, poly->c[1], e3); |
| 599 | a2 = gf_div(bch, poly->c[2], e3); |
| 600 | |
| 601 | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ |
| 602 | c = gf_mul(bch, a2, c2); /* c = a2c2 */ |
| 603 | b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ |
| 604 | a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ |
| 605 | |
| 606 | /* find the 4 roots of this affine polynomial */ |
| 607 | if (find_affine4_roots(bch, a, b, c, tmp) == 4) { |
| 608 | /* remove a2 from final list of roots */ |
| 609 | for (i = 0; i < 4; i++) { |
| 610 | if (tmp[i] != a2) |
| 611 | roots[n++] = a_ilog(bch, tmp[i]); |
| 612 | } |
| 613 | } |
| 614 | } |
| 615 | return n; |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * compute roots of a degree 4 polynomial over GF(2^m) |
| 620 | */ |
| 621 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, |
| 622 | unsigned int *roots) |
| 623 | { |
| 624 | int i, l, n = 0; |
| 625 | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; |
| 626 | |
| 627 | if (poly->c[0] == 0) |
| 628 | return 0; |
| 629 | |
| 630 | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ |
| 631 | e4 = poly->c[4]; |
| 632 | d = gf_div(bch, poly->c[0], e4); |
| 633 | c = gf_div(bch, poly->c[1], e4); |
| 634 | b = gf_div(bch, poly->c[2], e4); |
| 635 | a = gf_div(bch, poly->c[3], e4); |
| 636 | |
| 637 | /* use Y=1/X transformation to get an affine polynomial */ |
| 638 | if (a) { |
| 639 | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ |
| 640 | if (c) { |
| 641 | /* compute e such that e^2 = c/a */ |
| 642 | f = gf_div(bch, c, a); |
| 643 | l = a_log(bch, f); |
| 644 | l += (l & 1) ? GF_N(bch) : 0; |
| 645 | e = a_pow(bch, l/2); |
| 646 | /* |
| 647 | * use transformation z=X+e: |
| 648 | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d |
| 649 | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d |
| 650 | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d |
| 651 | * z^4 + az^3 + b'z^2 + d' |
| 652 | */ |
| 653 | d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; |
| 654 | b = gf_mul(bch, a, e)^b; |
| 655 | } |
| 656 | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ |
| 657 | if (d == 0) |
| 658 | /* assume all roots have multiplicity 1 */ |
| 659 | return 0; |
| 660 | |
| 661 | c2 = gf_inv(bch, d); |
| 662 | b2 = gf_div(bch, a, d); |
| 663 | a2 = gf_div(bch, b, d); |
| 664 | } else { |
| 665 | /* polynomial is already affine */ |
| 666 | c2 = d; |
| 667 | b2 = c; |
| 668 | a2 = b; |
| 669 | } |
| 670 | /* find the 4 roots of this affine polynomial */ |
| 671 | if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { |
| 672 | for (i = 0; i < 4; i++) { |
| 673 | /* post-process roots (reverse transformations) */ |
| 674 | f = a ? gf_inv(bch, roots[i]) : roots[i]; |
| 675 | roots[i] = a_ilog(bch, f^e); |
| 676 | } |
| 677 | n = 4; |
| 678 | } |
| 679 | return n; |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * build monic, log-based representation of a polynomial |
| 684 | */ |
| 685 | static void gf_poly_logrep(struct bch_control *bch, |
| 686 | const struct gf_poly *a, int *rep) |
| 687 | { |
| 688 | int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); |
| 689 | |
| 690 | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ |
| 691 | for (i = 0; i < d; i++) |
| 692 | rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * compute polynomial Euclidean division remainder in GF(2^m)[X] |
| 697 | */ |
| 698 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, |
| 699 | const struct gf_poly *b, int *rep) |
| 700 | { |
| 701 | int la, p, m; |
| 702 | unsigned int i, j, *c = a->c; |
| 703 | const unsigned int d = b->deg; |
| 704 | |
| 705 | if (a->deg < d) |
| 706 | return; |
| 707 | |
| 708 | /* reuse or compute log representation of denominator */ |
| 709 | if (!rep) { |
| 710 | rep = bch->cache; |
| 711 | gf_poly_logrep(bch, b, rep); |
| 712 | } |
| 713 | |
| 714 | for (j = a->deg; j >= d; j--) { |
| 715 | if (c[j]) { |
| 716 | la = a_log(bch, c[j]); |
| 717 | p = j-d; |
| 718 | for (i = 0; i < d; i++, p++) { |
| 719 | m = rep[i]; |
| 720 | if (m >= 0) |
| 721 | c[p] ^= bch->a_pow_tab[mod_s(bch, |
| 722 | m+la)]; |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | a->deg = d-1; |
| 727 | while (!c[a->deg] && a->deg) |
| 728 | a->deg--; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * compute polynomial Euclidean division quotient in GF(2^m)[X] |
| 733 | */ |
| 734 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, |
| 735 | const struct gf_poly *b, struct gf_poly *q) |
| 736 | { |
| 737 | if (a->deg >= b->deg) { |
| 738 | q->deg = a->deg-b->deg; |
| 739 | /* compute a mod b (modifies a) */ |
| 740 | gf_poly_mod(bch, a, b, NULL); |
| 741 | /* quotient is stored in upper part of polynomial a */ |
| 742 | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); |
| 743 | } else { |
| 744 | q->deg = 0; |
| 745 | q->c[0] = 0; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] |
| 751 | */ |
| 752 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, |
| 753 | struct gf_poly *b) |
| 754 | { |
| 755 | struct gf_poly *tmp; |
| 756 | |
| 757 | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); |
| 758 | |
| 759 | if (a->deg < b->deg) { |
| 760 | tmp = b; |
| 761 | b = a; |
| 762 | a = tmp; |
| 763 | } |
| 764 | |
| 765 | while (b->deg > 0) { |
| 766 | gf_poly_mod(bch, a, b, NULL); |
| 767 | tmp = b; |
| 768 | b = a; |
| 769 | a = tmp; |
| 770 | } |
| 771 | |
| 772 | dbg("%s\n", gf_poly_str(a)); |
| 773 | |
| 774 | return a; |
| 775 | } |
| 776 | |
| 777 | /* |
| 778 | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f |
| 779 | * This is used in Berlekamp Trace algorithm for splitting polynomials |
| 780 | */ |
| 781 | static void compute_trace_bk_mod(struct bch_control *bch, int k, |
| 782 | const struct gf_poly *f, struct gf_poly *z, |
| 783 | struct gf_poly *out) |
| 784 | { |
| 785 | const int m = GF_M(bch); |
| 786 | int i, j; |
| 787 | |
| 788 | /* z contains z^2j mod f */ |
| 789 | z->deg = 1; |
| 790 | z->c[0] = 0; |
| 791 | z->c[1] = bch->a_pow_tab[k]; |
| 792 | |
| 793 | out->deg = 0; |
| 794 | memset(out, 0, GF_POLY_SZ(f->deg)); |
| 795 | |
| 796 | /* compute f log representation only once */ |
| 797 | gf_poly_logrep(bch, f, bch->cache); |
| 798 | |
| 799 | for (i = 0; i < m; i++) { |
| 800 | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ |
| 801 | for (j = z->deg; j >= 0; j--) { |
| 802 | out->c[j] ^= z->c[j]; |
| 803 | z->c[2*j] = gf_sqr(bch, z->c[j]); |
| 804 | z->c[2*j+1] = 0; |
| 805 | } |
| 806 | if (z->deg > out->deg) |
| 807 | out->deg = z->deg; |
| 808 | |
| 809 | if (i < m-1) { |
| 810 | z->deg *= 2; |
| 811 | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ |
| 812 | gf_poly_mod(bch, z, f, bch->cache); |
| 813 | } |
| 814 | } |
| 815 | while (!out->c[out->deg] && out->deg) |
| 816 | out->deg--; |
| 817 | |
| 818 | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * factor a polynomial using Berlekamp Trace algorithm (BTA) |
| 823 | */ |
| 824 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, |
| 825 | struct gf_poly **g, struct gf_poly **h) |
| 826 | { |
| 827 | struct gf_poly *f2 = bch->poly_2t[0]; |
| 828 | struct gf_poly *q = bch->poly_2t[1]; |
| 829 | struct gf_poly *tk = bch->poly_2t[2]; |
| 830 | struct gf_poly *z = bch->poly_2t[3]; |
| 831 | struct gf_poly *gcd; |
| 832 | |
| 833 | dbg("factoring %s...\n", gf_poly_str(f)); |
| 834 | |
| 835 | *g = f; |
| 836 | *h = NULL; |
| 837 | |
| 838 | /* tk = Tr(a^k.X) mod f */ |
| 839 | compute_trace_bk_mod(bch, k, f, z, tk); |
| 840 | |
| 841 | if (tk->deg > 0) { |
| 842 | /* compute g = gcd(f, tk) (destructive operation) */ |
| 843 | gf_poly_copy(f2, f); |
| 844 | gcd = gf_poly_gcd(bch, f2, tk); |
| 845 | if (gcd->deg < f->deg) { |
| 846 | /* compute h=f/gcd(f,tk); this will modify f and q */ |
| 847 | gf_poly_div(bch, f, gcd, q); |
| 848 | /* store g and h in-place (clobbering f) */ |
| 849 | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; |
| 850 | gf_poly_copy(*g, gcd); |
| 851 | gf_poly_copy(*h, q); |
| 852 | } |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * find roots of a polynomial, using BTZ algorithm; see the beginning of this |
| 858 | * file for details |
| 859 | */ |
| 860 | static int find_poly_roots(struct bch_control *bch, unsigned int k, |
| 861 | struct gf_poly *poly, unsigned int *roots) |
| 862 | { |
| 863 | int cnt; |
| 864 | struct gf_poly *f1, *f2; |
| 865 | |
| 866 | switch (poly->deg) { |
| 867 | /* handle low degree polynomials with ad hoc techniques */ |
| 868 | case 1: |
| 869 | cnt = find_poly_deg1_roots(bch, poly, roots); |
| 870 | break; |
| 871 | case 2: |
| 872 | cnt = find_poly_deg2_roots(bch, poly, roots); |
| 873 | break; |
| 874 | case 3: |
| 875 | cnt = find_poly_deg3_roots(bch, poly, roots); |
| 876 | break; |
| 877 | case 4: |
| 878 | cnt = find_poly_deg4_roots(bch, poly, roots); |
| 879 | break; |
| 880 | default: |
| 881 | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ |
| 882 | cnt = 0; |
| 883 | if (poly->deg && (k <= GF_M(bch))) { |
| 884 | factor_polynomial(bch, k, poly, &f1, &f2); |
| 885 | if (f1) |
| 886 | cnt += find_poly_roots(bch, k+1, f1, roots); |
| 887 | if (f2) |
| 888 | cnt += find_poly_roots(bch, k+1, f2, roots+cnt); |
| 889 | } |
| 890 | break; |
| 891 | } |
| 892 | return cnt; |
| 893 | } |
| 894 | |
| 895 | #if defined(USE_CHIEN_SEARCH) |
| 896 | /* |
| 897 | * exhaustive root search (Chien) implementation - not used, included only for |
| 898 | * reference/comparison tests |
| 899 | */ |
| 900 | static int chien_search(struct bch_control *bch, unsigned int len, |
| 901 | struct gf_poly *p, unsigned int *roots) |
| 902 | { |
| 903 | int m; |
| 904 | unsigned int i, j, syn, syn0, count = 0; |
| 905 | const unsigned int k = 8*len+bch->ecc_bits; |
| 906 | |
| 907 | /* use a log-based representation of polynomial */ |
| 908 | gf_poly_logrep(bch, p, bch->cache); |
| 909 | bch->cache[p->deg] = 0; |
| 910 | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); |
| 911 | |
| 912 | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { |
| 913 | /* compute elp(a^i) */ |
| 914 | for (j = 1, syn = syn0; j <= p->deg; j++) { |
| 915 | m = bch->cache[j]; |
| 916 | if (m >= 0) |
| 917 | syn ^= a_pow(bch, m+j*i); |
| 918 | } |
| 919 | if (syn == 0) { |
| 920 | roots[count++] = GF_N(bch)-i; |
| 921 | if (count == p->deg) |
| 922 | break; |
| 923 | } |
| 924 | } |
| 925 | return (count == p->deg) ? count : 0; |
| 926 | } |
| 927 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) |
| 928 | #endif /* USE_CHIEN_SEARCH */ |
| 929 | |
| 930 | /** |
| 931 | * decode_bch - decode received codeword and find bit error locations |
| 932 | * @bch: BCH control structure |
| 933 | * @data: received data, ignored if @calc_ecc is provided |
| 934 | * @len: data length in bytes, must always be provided |
| 935 | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc |
| 936 | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data |
| 937 | * @syn: hw computed syndrome data (if NULL, syndrome is calculated) |
| 938 | * @errloc: output array of error locations |
| 939 | * |
| 940 | * Returns: |
| 941 | * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if |
| 942 | * invalid parameters were provided |
| 943 | * |
| 944 | * Depending on the available hw BCH support and the need to compute @calc_ecc |
| 945 | * separately (using encode_bch()), this function should be called with one of |
| 946 | * the following parameter configurations - |
| 947 | * |
| 948 | * by providing @data and @recv_ecc only: |
| 949 | * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) |
| 950 | * |
| 951 | * by providing @recv_ecc and @calc_ecc: |
| 952 | * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) |
| 953 | * |
| 954 | * by providing ecc = recv_ecc XOR calc_ecc: |
| 955 | * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) |
| 956 | * |
| 957 | * by providing syndrome results @syn: |
| 958 | * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) |
| 959 | * |
| 960 | * Once decode_bch() has successfully returned with a positive value, error |
| 961 | * locations returned in array @errloc should be interpreted as follows - |
| 962 | * |
| 963 | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for |
| 964 | * data correction) |
| 965 | * |
| 966 | * if (errloc[n] < 8*len), then n-th error is located in data and can be |
| 967 | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); |
| 968 | * |
| 969 | * Note that this function does not perform any data correction by itself, it |
| 970 | * merely indicates error locations. |
| 971 | */ |
| 972 | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, |
| 973 | const uint8_t *recv_ecc, const uint8_t *calc_ecc, |
| 974 | const unsigned int *syn, unsigned int *errloc) |
| 975 | { |
| 976 | const unsigned int ecc_words = BCH_ECC_WORDS(bch); |
| 977 | unsigned int nbits; |
| 978 | int i, err, nroots; |
| 979 | uint32_t sum; |
| 980 | |
| 981 | /* sanity check: make sure data length can be handled */ |
| 982 | if (8*len > (bch->n-bch->ecc_bits)) |
| 983 | return -EINVAL; |
| 984 | |
| 985 | /* if caller does not provide syndromes, compute them */ |
| 986 | if (!syn) { |
| 987 | if (!calc_ecc) { |
| 988 | /* compute received data ecc into an internal buffer */ |
| 989 | if (!data || !recv_ecc) |
| 990 | return -EINVAL; |
| 991 | encode_bch(bch, data, len, NULL); |
| 992 | } else { |
| 993 | /* load provided calculated ecc */ |
| 994 | load_ecc8(bch, bch->ecc_buf, calc_ecc); |
| 995 | } |
| 996 | /* load received ecc or assume it was XORed in calc_ecc */ |
| 997 | if (recv_ecc) { |
| 998 | load_ecc8(bch, bch->ecc_buf2, recv_ecc); |
| 999 | /* XOR received and calculated ecc */ |
| 1000 | for (i = 0, sum = 0; i < (int)ecc_words; i++) { |
| 1001 | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; |
| 1002 | sum |= bch->ecc_buf[i]; |
| 1003 | } |
| 1004 | if (!sum) |
| 1005 | /* no error found */ |
| 1006 | return 0; |
| 1007 | } |
| 1008 | compute_syndromes(bch, bch->ecc_buf, bch->syn); |
| 1009 | syn = bch->syn; |
| 1010 | } |
| 1011 | |
| 1012 | err = compute_error_locator_polynomial(bch, syn); |
| 1013 | if (err > 0) { |
| 1014 | nroots = find_poly_roots(bch, 1, bch->elp, errloc); |
| 1015 | if (err != nroots) |
| 1016 | err = -1; |
| 1017 | } |
| 1018 | if (err > 0) { |
| 1019 | /* post-process raw error locations for easier correction */ |
| 1020 | nbits = (len*8)+bch->ecc_bits; |
| 1021 | for (i = 0; i < err; i++) { |
| 1022 | if (errloc[i] >= nbits) { |
| 1023 | err = -1; |
| 1024 | break; |
| 1025 | } |
| 1026 | errloc[i] = nbits-1-errloc[i]; |
| 1027 | errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); |
| 1028 | } |
| 1029 | } |
| 1030 | return (err >= 0) ? err : -EBADMSG; |
| 1031 | } |
| 1032 | |
| 1033 | /* |
| 1034 | * generate Galois field lookup tables |
| 1035 | */ |
| 1036 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) |
| 1037 | { |
| 1038 | unsigned int i, x = 1; |
| 1039 | const unsigned int k = 1 << deg(poly); |
| 1040 | |
| 1041 | /* primitive polynomial must be of degree m */ |
| 1042 | if (k != (1u << GF_M(bch))) |
| 1043 | return -1; |
| 1044 | |
| 1045 | for (i = 0; i < GF_N(bch); i++) { |
| 1046 | bch->a_pow_tab[i] = x; |
| 1047 | bch->a_log_tab[x] = i; |
| 1048 | if (i && (x == 1)) |
| 1049 | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ |
| 1050 | return -1; |
| 1051 | x <<= 1; |
| 1052 | if (x & k) |
| 1053 | x ^= poly; |
| 1054 | } |
| 1055 | bch->a_pow_tab[GF_N(bch)] = 1; |
| 1056 | bch->a_log_tab[0] = 0; |
| 1057 | |
| 1058 | return 0; |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * compute generator polynomial remainder tables for fast encoding |
| 1063 | */ |
| 1064 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) |
| 1065 | { |
| 1066 | int i, j, b, d; |
| 1067 | uint32_t data, hi, lo, *tab; |
| 1068 | const int l = BCH_ECC_WORDS(bch); |
| 1069 | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); |
| 1070 | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); |
| 1071 | |
| 1072 | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); |
| 1073 | |
| 1074 | for (i = 0; i < 256; i++) { |
| 1075 | /* p(X)=i is a small polynomial of weight <= 8 */ |
| 1076 | for (b = 0; b < 4; b++) { |
| 1077 | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ |
| 1078 | tab = bch->mod8_tab + (b*256+i)*l; |
| 1079 | data = i << (8*b); |
| 1080 | while (data) { |
| 1081 | d = deg(data); |
| 1082 | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ |
| 1083 | data ^= g[0] >> (31-d); |
| 1084 | for (j = 0; j < ecclen; j++) { |
| 1085 | hi = (d < 31) ? g[j] << (d+1) : 0; |
| 1086 | lo = (j+1 < plen) ? |
| 1087 | g[j+1] >> (31-d) : 0; |
| 1088 | tab[j] ^= hi|lo; |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | /* |
| 1096 | * build a base for factoring degree 2 polynomials |
| 1097 | */ |
| 1098 | static int build_deg2_base(struct bch_control *bch) |
| 1099 | { |
| 1100 | const int m = GF_M(bch); |
| 1101 | int i, j, r; |
| 1102 | unsigned int sum, x, y, remaining, ak = 0, xi[m]; |
| 1103 | |
| 1104 | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ |
| 1105 | for (i = 0; i < m; i++) { |
| 1106 | for (j = 0, sum = 0; j < m; j++) |
| 1107 | sum ^= a_pow(bch, i*(1 << j)); |
| 1108 | |
| 1109 | if (sum) { |
| 1110 | ak = bch->a_pow_tab[i]; |
| 1111 | break; |
| 1112 | } |
| 1113 | } |
| 1114 | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ |
| 1115 | remaining = m; |
| 1116 | memset(xi, 0, sizeof(xi)); |
| 1117 | |
| 1118 | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { |
| 1119 | y = gf_sqr(bch, x)^x; |
| 1120 | for (i = 0; i < 2; i++) { |
| 1121 | r = a_log(bch, y); |
| 1122 | if (y && (r < m) && !xi[r]) { |
| 1123 | bch->xi_tab[r] = x; |
| 1124 | xi[r] = 1; |
| 1125 | remaining--; |
| 1126 | dbg("x%d = %x\n", r, x); |
| 1127 | break; |
| 1128 | } |
| 1129 | y ^= ak; |
| 1130 | } |
| 1131 | } |
| 1132 | /* should not happen but check anyway */ |
| 1133 | return remaining ? -1 : 0; |
| 1134 | } |
| 1135 | |
| 1136 | static void *bch_alloc(size_t size, int *err) |
| 1137 | { |
| 1138 | void *ptr; |
| 1139 | |
| 1140 | ptr = kmalloc(size, GFP_KERNEL); |
| 1141 | if (ptr == NULL) |
| 1142 | *err = 1; |
| 1143 | return ptr; |
| 1144 | } |
| 1145 | |
| 1146 | /* |
| 1147 | * compute generator polynomial for given (m,t) parameters. |
| 1148 | */ |
| 1149 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) |
| 1150 | { |
| 1151 | const unsigned int m = GF_M(bch); |
| 1152 | const unsigned int t = GF_T(bch); |
| 1153 | int n, err = 0; |
| 1154 | unsigned int i, j, nbits, r, word, *roots; |
| 1155 | struct gf_poly *g; |
| 1156 | uint32_t *genpoly; |
| 1157 | |
| 1158 | g = bch_alloc(GF_POLY_SZ(m*t), &err); |
| 1159 | roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); |
| 1160 | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); |
| 1161 | |
| 1162 | if (err) { |
| 1163 | kfree(genpoly); |
| 1164 | genpoly = NULL; |
| 1165 | goto finish; |
| 1166 | } |
| 1167 | |
| 1168 | /* enumerate all roots of g(X) */ |
| 1169 | memset(roots , 0, (bch->n+1)*sizeof(*roots)); |
| 1170 | for (i = 0; i < t; i++) { |
| 1171 | for (j = 0, r = 2*i+1; j < m; j++) { |
| 1172 | roots[r] = 1; |
| 1173 | r = mod_s(bch, 2*r); |
| 1174 | } |
| 1175 | } |
| 1176 | /* build generator polynomial g(X) */ |
| 1177 | g->deg = 0; |
| 1178 | g->c[0] = 1; |
| 1179 | for (i = 0; i < GF_N(bch); i++) { |
| 1180 | if (roots[i]) { |
| 1181 | /* multiply g(X) by (X+root) */ |
| 1182 | r = bch->a_pow_tab[i]; |
| 1183 | g->c[g->deg+1] = 1; |
| 1184 | for (j = g->deg; j > 0; j--) |
| 1185 | g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; |
| 1186 | |
| 1187 | g->c[0] = gf_mul(bch, g->c[0], r); |
| 1188 | g->deg++; |
| 1189 | } |
| 1190 | } |
| 1191 | /* store left-justified binary representation of g(X) */ |
| 1192 | n = g->deg+1; |
| 1193 | i = 0; |
| 1194 | |
| 1195 | while (n > 0) { |
| 1196 | nbits = (n > 32) ? 32 : n; |
| 1197 | for (j = 0, word = 0; j < nbits; j++) { |
| 1198 | if (g->c[n-1-j]) |
| 1199 | word |= 1u << (31-j); |
| 1200 | } |
| 1201 | genpoly[i++] = word; |
| 1202 | n -= nbits; |
| 1203 | } |
| 1204 | bch->ecc_bits = g->deg; |
| 1205 | |
| 1206 | finish: |
| 1207 | kfree(g); |
| 1208 | kfree(roots); |
| 1209 | |
| 1210 | return genpoly; |
| 1211 | } |
| 1212 | |
| 1213 | /** |
| 1214 | * init_bch - initialize a BCH encoder/decoder |
| 1215 | * @m: Galois field order, should be in the range 5-15 |
| 1216 | * @t: maximum error correction capability, in bits |
| 1217 | * @prim_poly: user-provided primitive polynomial (or 0 to use default) |
| 1218 | * |
| 1219 | * Returns: |
| 1220 | * a newly allocated BCH control structure if successful, NULL otherwise |
| 1221 | * |
| 1222 | * This initialization can take some time, as lookup tables are built for fast |
| 1223 | * encoding/decoding; make sure not to call this function from a time critical |
| 1224 | * path. Usually, init_bch() should be called on module/driver init and |
| 1225 | * free_bch() should be called to release memory on exit. |
| 1226 | * |
| 1227 | * You may provide your own primitive polynomial of degree @m in argument |
| 1228 | * @prim_poly, or let init_bch() use its default polynomial. |
| 1229 | * |
| 1230 | * Once init_bch() has successfully returned a pointer to a newly allocated |
| 1231 | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of |
| 1232 | * the structure. |
| 1233 | */ |
| 1234 | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) |
| 1235 | { |
| 1236 | int err = 0; |
| 1237 | unsigned int i, words; |
| 1238 | uint32_t *genpoly; |
| 1239 | struct bch_control *bch = NULL; |
| 1240 | |
| 1241 | const int min_m = 5; |
| 1242 | const int max_m = 15; |
| 1243 | |
| 1244 | /* default primitive polynomials */ |
| 1245 | static const unsigned int prim_poly_tab[] = { |
| 1246 | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, |
| 1247 | 0x402b, 0x8003, |
| 1248 | }; |
| 1249 | |
| 1250 | #if defined(CONFIG_BCH_CONST_PARAMS) |
| 1251 | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { |
| 1252 | printk(KERN_ERR "bch encoder/decoder was configured to support " |
| 1253 | "parameters m=%d, t=%d only!\n", |
| 1254 | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); |
| 1255 | goto fail; |
| 1256 | } |
| 1257 | #endif |
| 1258 | if ((m < min_m) || (m > max_m)) |
| 1259 | /* |
| 1260 | * values of m greater than 15 are not currently supported; |
| 1261 | * supporting m > 15 would require changing table base type |
| 1262 | * (uint16_t) and a small patch in matrix transposition |
| 1263 | */ |
| 1264 | goto fail; |
| 1265 | |
| 1266 | /* sanity checks */ |
| 1267 | if ((t < 1) || (m*t >= ((1 << m)-1))) |
| 1268 | /* invalid t value */ |
| 1269 | goto fail; |
| 1270 | |
| 1271 | /* select a primitive polynomial for generating GF(2^m) */ |
| 1272 | if (prim_poly == 0) |
| 1273 | prim_poly = prim_poly_tab[m-min_m]; |
| 1274 | |
| 1275 | bch = kzalloc(sizeof(*bch), GFP_KERNEL); |
| 1276 | if (bch == NULL) |
| 1277 | goto fail; |
| 1278 | |
| 1279 | bch->m = m; |
| 1280 | bch->t = t; |
| 1281 | bch->n = (1 << m)-1; |
| 1282 | words = DIV_ROUND_UP(m*t, 32); |
| 1283 | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); |
| 1284 | bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); |
| 1285 | bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); |
| 1286 | bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); |
| 1287 | bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); |
| 1288 | bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); |
| 1289 | bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); |
| 1290 | bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); |
| 1291 | bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); |
| 1292 | bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); |
| 1293 | |
| 1294 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) |
| 1295 | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); |
| 1296 | |
| 1297 | if (err) |
| 1298 | goto fail; |
| 1299 | |
| 1300 | err = build_gf_tables(bch, prim_poly); |
| 1301 | if (err) |
| 1302 | goto fail; |
| 1303 | |
| 1304 | /* use generator polynomial for computing encoding tables */ |
| 1305 | genpoly = compute_generator_polynomial(bch); |
| 1306 | if (genpoly == NULL) |
| 1307 | goto fail; |
| 1308 | |
| 1309 | build_mod8_tables(bch, genpoly); |
| 1310 | kfree(genpoly); |
| 1311 | |
| 1312 | err = build_deg2_base(bch); |
| 1313 | if (err) |
| 1314 | goto fail; |
| 1315 | |
| 1316 | return bch; |
| 1317 | |
| 1318 | fail: |
| 1319 | free_bch(bch); |
| 1320 | return NULL; |
| 1321 | } |
| 1322 | |
| 1323 | /** |
| 1324 | * free_bch - free the BCH control structure |
| 1325 | * @bch: BCH control structure to release |
| 1326 | */ |
| 1327 | void free_bch(struct bch_control *bch) |
| 1328 | { |
| 1329 | unsigned int i; |
| 1330 | |
| 1331 | if (bch) { |
| 1332 | kfree(bch->a_pow_tab); |
| 1333 | kfree(bch->a_log_tab); |
| 1334 | kfree(bch->mod8_tab); |
| 1335 | kfree(bch->ecc_buf); |
| 1336 | kfree(bch->ecc_buf2); |
| 1337 | kfree(bch->xi_tab); |
| 1338 | kfree(bch->syn); |
| 1339 | kfree(bch->cache); |
| 1340 | kfree(bch->elp); |
| 1341 | |
| 1342 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) |
| 1343 | kfree(bch->poly_2t[i]); |
| 1344 | |
| 1345 | kfree(bch); |
| 1346 | } |
| 1347 | } |