wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 1 | #ifndef _I386_BITOPS_H |
| 2 | #define _I386_BITOPS_H |
| 3 | |
| 4 | /* |
| 5 | * Copyright 1992, Linus Torvalds. |
| 6 | */ |
| 7 | |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 8 | |
| 9 | /* |
| 10 | * These have to be done with inline assembly: that way the bit-setting |
| 11 | * is guaranteed to be atomic. All bit operations return 0 if the bit |
| 12 | * was cleared before the operation and != 0 if it was not. |
| 13 | * |
| 14 | * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| 15 | */ |
| 16 | |
| 17 | #ifdef CONFIG_SMP |
| 18 | #define LOCK_PREFIX "lock ; " |
| 19 | #else |
| 20 | #define LOCK_PREFIX "" |
| 21 | #endif |
| 22 | |
| 23 | #define ADDR (*(volatile long *) addr) |
| 24 | |
| 25 | /** |
| 26 | * set_bit - Atomically set a bit in memory |
| 27 | * @nr: the bit to set |
| 28 | * @addr: the address to start counting from |
| 29 | * |
| 30 | * This function is atomic and may not be reordered. See __set_bit() |
| 31 | * if you do not require the atomic guarantees. |
| 32 | * Note that @nr may be almost arbitrarily large; this function is not |
| 33 | * restricted to acting on a single-word quantity. |
| 34 | */ |
| 35 | static __inline__ void set_bit(int nr, volatile void * addr) |
| 36 | { |
| 37 | __asm__ __volatile__( LOCK_PREFIX |
| 38 | "btsl %1,%0" |
| 39 | :"=m" (ADDR) |
| 40 | :"Ir" (nr)); |
| 41 | } |
| 42 | |
| 43 | /** |
| 44 | * __set_bit - Set a bit in memory |
| 45 | * @nr: the bit to set |
| 46 | * @addr: the address to start counting from |
| 47 | * |
| 48 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 49 | * If it's called on the same region of memory simultaneously, the effect |
| 50 | * may be that only one operation succeeds. |
| 51 | */ |
| 52 | static __inline__ void __set_bit(int nr, volatile void * addr) |
| 53 | { |
| 54 | __asm__( |
| 55 | "btsl %1,%0" |
| 56 | :"=m" (ADDR) |
| 57 | :"Ir" (nr)); |
| 58 | } |
| 59 | |
| 60 | /** |
| 61 | * clear_bit - Clears a bit in memory |
| 62 | * @nr: Bit to clear |
| 63 | * @addr: Address to start counting from |
| 64 | * |
| 65 | * clear_bit() is atomic and may not be reordered. However, it does |
| 66 | * not contain a memory barrier, so if it is used for locking purposes, |
| 67 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 68 | * in order to ensure changes are visible on other processors. |
| 69 | */ |
| 70 | static __inline__ void clear_bit(int nr, volatile void * addr) |
| 71 | { |
| 72 | __asm__ __volatile__( LOCK_PREFIX |
| 73 | "btrl %1,%0" |
| 74 | :"=m" (ADDR) |
| 75 | :"Ir" (nr)); |
| 76 | } |
| 77 | #define smp_mb__before_clear_bit() barrier() |
| 78 | #define smp_mb__after_clear_bit() barrier() |
| 79 | |
| 80 | /** |
| 81 | * __change_bit - Toggle a bit in memory |
| 82 | * @nr: the bit to set |
| 83 | * @addr: the address to start counting from |
| 84 | * |
| 85 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 86 | * If it's called on the same region of memory simultaneously, the effect |
| 87 | * may be that only one operation succeeds. |
| 88 | */ |
| 89 | static __inline__ void __change_bit(int nr, volatile void * addr) |
| 90 | { |
| 91 | __asm__ __volatile__( |
| 92 | "btcl %1,%0" |
| 93 | :"=m" (ADDR) |
| 94 | :"Ir" (nr)); |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * change_bit - Toggle a bit in memory |
| 99 | * @nr: Bit to clear |
| 100 | * @addr: Address to start counting from |
| 101 | * |
| 102 | * change_bit() is atomic and may not be reordered. |
| 103 | * Note that @nr may be almost arbitrarily large; this function is not |
| 104 | * restricted to acting on a single-word quantity. |
| 105 | */ |
| 106 | static __inline__ void change_bit(int nr, volatile void * addr) |
| 107 | { |
| 108 | __asm__ __volatile__( LOCK_PREFIX |
| 109 | "btcl %1,%0" |
| 110 | :"=m" (ADDR) |
| 111 | :"Ir" (nr)); |
| 112 | } |
| 113 | |
| 114 | /** |
| 115 | * test_and_set_bit - Set a bit and return its old value |
| 116 | * @nr: Bit to set |
| 117 | * @addr: Address to count from |
| 118 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 119 | * This operation is atomic and cannot be reordered. |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 120 | * It also implies a memory barrier. |
| 121 | */ |
| 122 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| 123 | { |
| 124 | int oldbit; |
| 125 | |
| 126 | __asm__ __volatile__( LOCK_PREFIX |
| 127 | "btsl %2,%1\n\tsbbl %0,%0" |
| 128 | :"=r" (oldbit),"=m" (ADDR) |
| 129 | :"Ir" (nr) : "memory"); |
| 130 | return oldbit; |
| 131 | } |
| 132 | |
| 133 | /** |
| 134 | * __test_and_set_bit - Set a bit and return its old value |
| 135 | * @nr: Bit to set |
| 136 | * @addr: Address to count from |
| 137 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 138 | * This operation is non-atomic and can be reordered. |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 139 | * If two examples of this operation race, one can appear to succeed |
| 140 | * but actually fail. You must protect multiple accesses with a lock. |
| 141 | */ |
| 142 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| 143 | { |
| 144 | int oldbit; |
| 145 | |
| 146 | __asm__( |
| 147 | "btsl %2,%1\n\tsbbl %0,%0" |
| 148 | :"=r" (oldbit),"=m" (ADDR) |
| 149 | :"Ir" (nr)); |
| 150 | return oldbit; |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | * test_and_clear_bit - Clear a bit and return its old value |
| 155 | * @nr: Bit to set |
| 156 | * @addr: Address to count from |
| 157 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 158 | * This operation is atomic and cannot be reordered. |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 159 | * It also implies a memory barrier. |
| 160 | */ |
| 161 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| 162 | { |
| 163 | int oldbit; |
| 164 | |
| 165 | __asm__ __volatile__( LOCK_PREFIX |
| 166 | "btrl %2,%1\n\tsbbl %0,%0" |
| 167 | :"=r" (oldbit),"=m" (ADDR) |
| 168 | :"Ir" (nr) : "memory"); |
| 169 | return oldbit; |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * __test_and_clear_bit - Clear a bit and return its old value |
| 174 | * @nr: Bit to set |
| 175 | * @addr: Address to count from |
| 176 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 177 | * This operation is non-atomic and can be reordered. |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 178 | * If two examples of this operation race, one can appear to succeed |
| 179 | * but actually fail. You must protect multiple accesses with a lock. |
| 180 | */ |
| 181 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| 182 | { |
| 183 | int oldbit; |
| 184 | |
| 185 | __asm__( |
| 186 | "btrl %2,%1\n\tsbbl %0,%0" |
| 187 | :"=r" (oldbit),"=m" (ADDR) |
| 188 | :"Ir" (nr)); |
| 189 | return oldbit; |
| 190 | } |
| 191 | |
| 192 | /* WARNING: non atomic and it can be reordered! */ |
| 193 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| 194 | { |
| 195 | int oldbit; |
| 196 | |
| 197 | __asm__ __volatile__( |
| 198 | "btcl %2,%1\n\tsbbl %0,%0" |
| 199 | :"=r" (oldbit),"=m" (ADDR) |
| 200 | :"Ir" (nr) : "memory"); |
| 201 | return oldbit; |
| 202 | } |
| 203 | |
| 204 | /** |
| 205 | * test_and_change_bit - Change a bit and return its new value |
| 206 | * @nr: Bit to set |
| 207 | * @addr: Address to count from |
| 208 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 209 | * This operation is atomic and cannot be reordered. |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 210 | * It also implies a memory barrier. |
| 211 | */ |
| 212 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| 213 | { |
| 214 | int oldbit; |
| 215 | |
| 216 | __asm__ __volatile__( LOCK_PREFIX |
| 217 | "btcl %2,%1\n\tsbbl %0,%0" |
| 218 | :"=r" (oldbit),"=m" (ADDR) |
| 219 | :"Ir" (nr) : "memory"); |
| 220 | return oldbit; |
| 221 | } |
| 222 | |
| 223 | #if 0 /* Fool kernel-doc since it doesn't do macros yet */ |
| 224 | /** |
| 225 | * test_bit - Determine whether a bit is set |
| 226 | * @nr: bit number to test |
| 227 | * @addr: Address to start counting from |
| 228 | */ |
| 229 | static int test_bit(int nr, const volatile void * addr); |
| 230 | #endif |
| 231 | |
| 232 | static __inline__ int constant_test_bit(int nr, const volatile void * addr) |
| 233 | { |
| 234 | return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; |
| 235 | } |
| 236 | |
| 237 | static __inline__ int variable_test_bit(int nr, volatile void * addr) |
| 238 | { |
| 239 | int oldbit; |
| 240 | |
| 241 | __asm__ __volatile__( |
| 242 | "btl %2,%1\n\tsbbl %0,%0" |
| 243 | :"=r" (oldbit) |
| 244 | :"m" (ADDR),"Ir" (nr)); |
| 245 | return oldbit; |
| 246 | } |
| 247 | |
| 248 | #define test_bit(nr,addr) \ |
| 249 | (__builtin_constant_p(nr) ? \ |
| 250 | constant_test_bit((nr),(addr)) : \ |
| 251 | variable_test_bit((nr),(addr))) |
| 252 | |
| 253 | /** |
| 254 | * find_first_zero_bit - find the first zero bit in a memory region |
| 255 | * @addr: The address to start the search at |
| 256 | * @size: The maximum size to search |
| 257 | * |
| 258 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 259 | * containing a bit. |
| 260 | */ |
| 261 | static __inline__ int find_first_zero_bit(void * addr, unsigned size) |
| 262 | { |
| 263 | int d0, d1, d2; |
| 264 | int res; |
| 265 | |
| 266 | if (!size) |
| 267 | return 0; |
| 268 | /* This looks at memory. Mark it volatile to tell gcc not to move it around */ |
| 269 | __asm__ __volatile__( |
| 270 | "movl $-1,%%eax\n\t" |
| 271 | "xorl %%edx,%%edx\n\t" |
| 272 | "repe; scasl\n\t" |
| 273 | "je 1f\n\t" |
| 274 | "xorl -4(%%edi),%%eax\n\t" |
| 275 | "subl $4,%%edi\n\t" |
| 276 | "bsfl %%eax,%%edx\n" |
| 277 | "1:\tsubl %%ebx,%%edi\n\t" |
| 278 | "shll $3,%%edi\n\t" |
| 279 | "addl %%edi,%%edx" |
| 280 | :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2) |
| 281 | :"1" ((size + 31) >> 5), "2" (addr), "b" (addr)); |
| 282 | return res; |
| 283 | } |
| 284 | |
| 285 | /** |
| 286 | * find_next_zero_bit - find the first zero bit in a memory region |
| 287 | * @addr: The address to base the search on |
| 288 | * @offset: The bitnumber to start searching at |
| 289 | * @size: The maximum size to search |
| 290 | */ |
| 291 | static __inline__ int find_next_zero_bit (void * addr, int size, int offset) |
| 292 | { |
| 293 | unsigned long * p = ((unsigned long *) addr) + (offset >> 5); |
| 294 | int set = 0, bit = offset & 31, res; |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 295 | |
wdenk | 2262cfe | 2002-11-18 00:14:45 +0000 | [diff] [blame] | 296 | if (bit) { |
| 297 | /* |
| 298 | * Look for zero in first byte |
| 299 | */ |
| 300 | __asm__("bsfl %1,%0\n\t" |
| 301 | "jne 1f\n\t" |
| 302 | "movl $32, %0\n" |
| 303 | "1:" |
| 304 | : "=r" (set) |
| 305 | : "r" (~(*p >> bit))); |
| 306 | if (set < (32 - bit)) |
| 307 | return set + offset; |
| 308 | set = 32 - bit; |
| 309 | p++; |
| 310 | } |
| 311 | /* |
| 312 | * No zero yet, search remaining full bytes for a zero |
| 313 | */ |
| 314 | res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr)); |
| 315 | return (offset + set + res); |
| 316 | } |
| 317 | |
| 318 | /** |
| 319 | * ffz - find first zero in word. |
| 320 | * @word: The word to search |
| 321 | * |
| 322 | * Undefined if no zero exists, so code should check against ~0UL first. |
| 323 | */ |
| 324 | static __inline__ unsigned long ffz(unsigned long word) |
| 325 | { |
| 326 | __asm__("bsfl %1,%0" |
| 327 | :"=r" (word) |
| 328 | :"r" (~word)); |
| 329 | return word; |
| 330 | } |
| 331 | |
| 332 | #ifdef __KERNEL__ |
| 333 | |
| 334 | /** |
| 335 | * ffs - find first bit set |
| 336 | * @x: the word to search |
| 337 | * |
| 338 | * This is defined the same way as |
| 339 | * the libc and compiler builtin ffs routines, therefore |
| 340 | * differs in spirit from the above ffz (man ffs). |
| 341 | */ |
| 342 | static __inline__ int ffs(int x) |
| 343 | { |
| 344 | int r; |
| 345 | |
| 346 | __asm__("bsfl %1,%0\n\t" |
| 347 | "jnz 1f\n\t" |
| 348 | "movl $-1,%0\n" |
| 349 | "1:" : "=r" (r) : "g" (x)); |
| 350 | return r+1; |
| 351 | } |
| 352 | |
| 353 | /** |
| 354 | * hweightN - returns the hamming weight of a N-bit word |
| 355 | * @x: the word to weigh |
| 356 | * |
| 357 | * The Hamming Weight of a number is the total number of bits set in it. |
| 358 | */ |
| 359 | |
| 360 | #define hweight32(x) generic_hweight32(x) |
| 361 | #define hweight16(x) generic_hweight16(x) |
| 362 | #define hweight8(x) generic_hweight8(x) |
| 363 | |
| 364 | #endif /* __KERNEL__ */ |
| 365 | |
| 366 | #ifdef __KERNEL__ |
| 367 | |
| 368 | #define ext2_set_bit __test_and_set_bit |
| 369 | #define ext2_clear_bit __test_and_clear_bit |
| 370 | #define ext2_test_bit test_bit |
| 371 | #define ext2_find_first_zero_bit find_first_zero_bit |
| 372 | #define ext2_find_next_zero_bit find_next_zero_bit |
| 373 | |
| 374 | /* Bitmap functions for the minix filesystem. */ |
| 375 | #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) |
| 376 | #define minix_set_bit(nr,addr) __set_bit(nr,addr) |
| 377 | #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) |
| 378 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 379 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 380 | |
| 381 | #endif /* __KERNEL__ */ |
| 382 | |
| 383 | #endif /* _I386_BITOPS_H */ |