blob: 1a77eba39cbb430a99fcad34b6768dcccfe4bf96 [file] [log] [blame]
Tom Rini4549e782018-05-06 18:27:01 -04001// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
Patrick Delaunaya6151912018-03-12 10:46:15 +01002/*
3 * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
Patrick Delaunaya6151912018-03-12 10:46:15 +01004 */
5
6#include <common.h>
7#include <clk-uclass.h>
8#include <div64.h>
9#include <dm.h>
10#include <regmap.h>
11#include <spl.h>
12#include <syscon.h>
13#include <linux/io.h>
Patrick Delaunay266fa4d2018-03-12 10:46:16 +010014#include <linux/iopoll.h>
Patrick Delaunaya6151912018-03-12 10:46:15 +010015#include <dt-bindings/clock/stm32mp1-clks.h>
Patrick Delaunay266fa4d2018-03-12 10:46:16 +010016#include <dt-bindings/clock/stm32mp1-clksrc.h>
17
18#if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
19/* activate clock tree initialization in the driver */
20#define STM32MP1_CLOCK_TREE_INIT
21#endif
Patrick Delaunaya6151912018-03-12 10:46:15 +010022
23#define MAX_HSI_HZ 64000000
24
Patrick Delaunay266fa4d2018-03-12 10:46:16 +010025/* TIMEOUT */
26#define TIMEOUT_200MS 200000
27#define TIMEOUT_1S 1000000
28
Patrick Delaunay938e0e32018-03-20 11:41:25 +010029/* STGEN registers */
30#define STGENC_CNTCR 0x00
31#define STGENC_CNTSR 0x04
32#define STGENC_CNTCVL 0x08
33#define STGENC_CNTCVU 0x0C
34#define STGENC_CNTFID0 0x20
35
36#define STGENC_CNTCR_EN BIT(0)
37
Patrick Delaunaya6151912018-03-12 10:46:15 +010038/* RCC registers */
39#define RCC_OCENSETR 0x0C
40#define RCC_OCENCLRR 0x10
41#define RCC_HSICFGR 0x18
42#define RCC_MPCKSELR 0x20
43#define RCC_ASSCKSELR 0x24
44#define RCC_RCK12SELR 0x28
45#define RCC_MPCKDIVR 0x2C
46#define RCC_AXIDIVR 0x30
47#define RCC_APB4DIVR 0x3C
48#define RCC_APB5DIVR 0x40
49#define RCC_RTCDIVR 0x44
50#define RCC_MSSCKSELR 0x48
51#define RCC_PLL1CR 0x80
52#define RCC_PLL1CFGR1 0x84
53#define RCC_PLL1CFGR2 0x88
54#define RCC_PLL1FRACR 0x8C
55#define RCC_PLL1CSGR 0x90
56#define RCC_PLL2CR 0x94
57#define RCC_PLL2CFGR1 0x98
58#define RCC_PLL2CFGR2 0x9C
59#define RCC_PLL2FRACR 0xA0
60#define RCC_PLL2CSGR 0xA4
61#define RCC_I2C46CKSELR 0xC0
62#define RCC_CPERCKSELR 0xD0
63#define RCC_STGENCKSELR 0xD4
64#define RCC_DDRITFCR 0xD8
65#define RCC_BDCR 0x140
66#define RCC_RDLSICR 0x144
67#define RCC_MP_APB4ENSETR 0x200
68#define RCC_MP_APB5ENSETR 0x208
69#define RCC_MP_AHB5ENSETR 0x210
70#define RCC_MP_AHB6ENSETR 0x218
71#define RCC_OCRDYR 0x808
72#define RCC_DBGCFGR 0x80C
73#define RCC_RCK3SELR 0x820
74#define RCC_RCK4SELR 0x824
75#define RCC_MCUDIVR 0x830
76#define RCC_APB1DIVR 0x834
77#define RCC_APB2DIVR 0x838
78#define RCC_APB3DIVR 0x83C
79#define RCC_PLL3CR 0x880
80#define RCC_PLL3CFGR1 0x884
81#define RCC_PLL3CFGR2 0x888
82#define RCC_PLL3FRACR 0x88C
83#define RCC_PLL3CSGR 0x890
84#define RCC_PLL4CR 0x894
85#define RCC_PLL4CFGR1 0x898
86#define RCC_PLL4CFGR2 0x89C
87#define RCC_PLL4FRACR 0x8A0
88#define RCC_PLL4CSGR 0x8A4
89#define RCC_I2C12CKSELR 0x8C0
90#define RCC_I2C35CKSELR 0x8C4
91#define RCC_UART6CKSELR 0x8E4
92#define RCC_UART24CKSELR 0x8E8
93#define RCC_UART35CKSELR 0x8EC
94#define RCC_UART78CKSELR 0x8F0
95#define RCC_SDMMC12CKSELR 0x8F4
96#define RCC_SDMMC3CKSELR 0x8F8
97#define RCC_ETHCKSELR 0x8FC
98#define RCC_QSPICKSELR 0x900
99#define RCC_FMCCKSELR 0x904
100#define RCC_USBCKSELR 0x91C
101#define RCC_MP_APB1ENSETR 0xA00
102#define RCC_MP_APB2ENSETR 0XA08
Fabrice Gasnierf198bba2018-04-26 17:00:47 +0200103#define RCC_MP_APB3ENSETR 0xA10
Patrick Delaunaya6151912018-03-12 10:46:15 +0100104#define RCC_MP_AHB2ENSETR 0xA18
105#define RCC_MP_AHB4ENSETR 0xA28
106
107/* used for most of SELR register */
108#define RCC_SELR_SRC_MASK GENMASK(2, 0)
109#define RCC_SELR_SRCRDY BIT(31)
110
111/* Values of RCC_MPCKSELR register */
112#define RCC_MPCKSELR_HSI 0
113#define RCC_MPCKSELR_HSE 1
114#define RCC_MPCKSELR_PLL 2
115#define RCC_MPCKSELR_PLL_MPUDIV 3
116
117/* Values of RCC_ASSCKSELR register */
118#define RCC_ASSCKSELR_HSI 0
119#define RCC_ASSCKSELR_HSE 1
120#define RCC_ASSCKSELR_PLL 2
121
122/* Values of RCC_MSSCKSELR register */
123#define RCC_MSSCKSELR_HSI 0
124#define RCC_MSSCKSELR_HSE 1
125#define RCC_MSSCKSELR_CSI 2
126#define RCC_MSSCKSELR_PLL 3
127
128/* Values of RCC_CPERCKSELR register */
129#define RCC_CPERCKSELR_HSI 0
130#define RCC_CPERCKSELR_CSI 1
131#define RCC_CPERCKSELR_HSE 2
132
133/* used for most of DIVR register : max div for RTC */
134#define RCC_DIVR_DIV_MASK GENMASK(5, 0)
135#define RCC_DIVR_DIVRDY BIT(31)
136
137/* Masks for specific DIVR registers */
138#define RCC_APBXDIV_MASK GENMASK(2, 0)
139#define RCC_MPUDIV_MASK GENMASK(2, 0)
140#define RCC_AXIDIV_MASK GENMASK(2, 0)
141#define RCC_MCUDIV_MASK GENMASK(3, 0)
142
143/* offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
144#define RCC_MP_ENCLRR_OFFSET 4
145
146/* Fields of RCC_BDCR register */
147#define RCC_BDCR_LSEON BIT(0)
148#define RCC_BDCR_LSEBYP BIT(1)
149#define RCC_BDCR_LSERDY BIT(2)
150#define RCC_BDCR_LSEDRV_MASK GENMASK(5, 4)
151#define RCC_BDCR_LSEDRV_SHIFT 4
152#define RCC_BDCR_LSECSSON BIT(8)
153#define RCC_BDCR_RTCCKEN BIT(20)
154#define RCC_BDCR_RTCSRC_MASK GENMASK(17, 16)
155#define RCC_BDCR_RTCSRC_SHIFT 16
156
157/* Fields of RCC_RDLSICR register */
158#define RCC_RDLSICR_LSION BIT(0)
159#define RCC_RDLSICR_LSIRDY BIT(1)
160
161/* used for ALL PLLNCR registers */
162#define RCC_PLLNCR_PLLON BIT(0)
163#define RCC_PLLNCR_PLLRDY BIT(1)
164#define RCC_PLLNCR_DIVPEN BIT(4)
165#define RCC_PLLNCR_DIVQEN BIT(5)
166#define RCC_PLLNCR_DIVREN BIT(6)
167#define RCC_PLLNCR_DIVEN_SHIFT 4
168
169/* used for ALL PLLNCFGR1 registers */
170#define RCC_PLLNCFGR1_DIVM_SHIFT 16
171#define RCC_PLLNCFGR1_DIVM_MASK GENMASK(21, 16)
172#define RCC_PLLNCFGR1_DIVN_SHIFT 0
173#define RCC_PLLNCFGR1_DIVN_MASK GENMASK(8, 0)
174/* only for PLL3 and PLL4 */
175#define RCC_PLLNCFGR1_IFRGE_SHIFT 24
176#define RCC_PLLNCFGR1_IFRGE_MASK GENMASK(25, 24)
177
178/* used for ALL PLLNCFGR2 registers */
179#define RCC_PLLNCFGR2_DIVX_MASK GENMASK(6, 0)
180#define RCC_PLLNCFGR2_DIVP_SHIFT 0
181#define RCC_PLLNCFGR2_DIVP_MASK GENMASK(6, 0)
182#define RCC_PLLNCFGR2_DIVQ_SHIFT 8
183#define RCC_PLLNCFGR2_DIVQ_MASK GENMASK(14, 8)
184#define RCC_PLLNCFGR2_DIVR_SHIFT 16
185#define RCC_PLLNCFGR2_DIVR_MASK GENMASK(22, 16)
186
187/* used for ALL PLLNFRACR registers */
188#define RCC_PLLNFRACR_FRACV_SHIFT 3
189#define RCC_PLLNFRACR_FRACV_MASK GENMASK(15, 3)
190#define RCC_PLLNFRACR_FRACLE BIT(16)
191
192/* used for ALL PLLNCSGR registers */
193#define RCC_PLLNCSGR_INC_STEP_SHIFT 16
194#define RCC_PLLNCSGR_INC_STEP_MASK GENMASK(30, 16)
195#define RCC_PLLNCSGR_MOD_PER_SHIFT 0
196#define RCC_PLLNCSGR_MOD_PER_MASK GENMASK(12, 0)
197#define RCC_PLLNCSGR_SSCG_MODE_SHIFT 15
198#define RCC_PLLNCSGR_SSCG_MODE_MASK BIT(15)
199
200/* used for RCC_OCENSETR and RCC_OCENCLRR registers */
201#define RCC_OCENR_HSION BIT(0)
202#define RCC_OCENR_CSION BIT(4)
203#define RCC_OCENR_HSEON BIT(8)
204#define RCC_OCENR_HSEBYP BIT(10)
205#define RCC_OCENR_HSECSSON BIT(11)
206
207/* Fields of RCC_OCRDYR register */
208#define RCC_OCRDYR_HSIRDY BIT(0)
209#define RCC_OCRDYR_HSIDIVRDY BIT(2)
210#define RCC_OCRDYR_CSIRDY BIT(4)
211#define RCC_OCRDYR_HSERDY BIT(8)
212
213/* Fields of DDRITFCR register */
214#define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
215#define RCC_DDRITFCR_DDRCKMOD_SHIFT 20
216#define RCC_DDRITFCR_DDRCKMOD_SSR 0
217
218/* Fields of RCC_HSICFGR register */
219#define RCC_HSICFGR_HSIDIV_MASK GENMASK(1, 0)
220
221/* used for MCO related operations */
222#define RCC_MCOCFG_MCOON BIT(12)
223#define RCC_MCOCFG_MCODIV_MASK GENMASK(7, 4)
224#define RCC_MCOCFG_MCODIV_SHIFT 4
225#define RCC_MCOCFG_MCOSRC_MASK GENMASK(2, 0)
226
227enum stm32mp1_parent_id {
228/*
229 * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
230 * they are used as index in osc[] as entry point
231 */
232 _HSI,
233 _HSE,
234 _CSI,
235 _LSI,
236 _LSE,
237 _I2S_CKIN,
238 _USB_PHY_48,
239 NB_OSC,
240
241/* other parent source */
242 _HSI_KER = NB_OSC,
243 _HSE_KER,
244 _HSE_KER_DIV2,
245 _CSI_KER,
246 _PLL1_P,
247 _PLL1_Q,
248 _PLL1_R,
249 _PLL2_P,
250 _PLL2_Q,
251 _PLL2_R,
252 _PLL3_P,
253 _PLL3_Q,
254 _PLL3_R,
255 _PLL4_P,
256 _PLL4_Q,
257 _PLL4_R,
258 _ACLK,
259 _PCLK1,
260 _PCLK2,
261 _PCLK3,
262 _PCLK4,
263 _PCLK5,
264 _HCLK6,
265 _HCLK2,
266 _CK_PER,
267 _CK_MPU,
268 _CK_MCU,
269 _PARENT_NB,
270 _UNKNOWN_ID = 0xff,
271};
272
273enum stm32mp1_parent_sel {
274 _I2C12_SEL,
275 _I2C35_SEL,
276 _I2C46_SEL,
277 _UART6_SEL,
278 _UART24_SEL,
279 _UART35_SEL,
280 _UART78_SEL,
281 _SDMMC12_SEL,
282 _SDMMC3_SEL,
283 _ETH_SEL,
284 _QSPI_SEL,
285 _FMC_SEL,
286 _USBPHY_SEL,
287 _USBO_SEL,
288 _STGEN_SEL,
289 _PARENT_SEL_NB,
290 _UNKNOWN_SEL = 0xff,
291};
292
293enum stm32mp1_pll_id {
294 _PLL1,
295 _PLL2,
296 _PLL3,
297 _PLL4,
298 _PLL_NB
299};
300
301enum stm32mp1_div_id {
302 _DIV_P,
303 _DIV_Q,
304 _DIV_R,
305 _DIV_NB,
306};
307
308enum stm32mp1_clksrc_id {
309 CLKSRC_MPU,
310 CLKSRC_AXI,
311 CLKSRC_MCU,
312 CLKSRC_PLL12,
313 CLKSRC_PLL3,
314 CLKSRC_PLL4,
315 CLKSRC_RTC,
316 CLKSRC_MCO1,
317 CLKSRC_MCO2,
318 CLKSRC_NB
319};
320
321enum stm32mp1_clkdiv_id {
322 CLKDIV_MPU,
323 CLKDIV_AXI,
324 CLKDIV_MCU,
325 CLKDIV_APB1,
326 CLKDIV_APB2,
327 CLKDIV_APB3,
328 CLKDIV_APB4,
329 CLKDIV_APB5,
330 CLKDIV_RTC,
331 CLKDIV_MCO1,
332 CLKDIV_MCO2,
333 CLKDIV_NB
334};
335
336enum stm32mp1_pllcfg {
337 PLLCFG_M,
338 PLLCFG_N,
339 PLLCFG_P,
340 PLLCFG_Q,
341 PLLCFG_R,
342 PLLCFG_O,
343 PLLCFG_NB
344};
345
346enum stm32mp1_pllcsg {
347 PLLCSG_MOD_PER,
348 PLLCSG_INC_STEP,
349 PLLCSG_SSCG_MODE,
350 PLLCSG_NB
351};
352
353enum stm32mp1_plltype {
354 PLL_800,
355 PLL_1600,
356 PLL_TYPE_NB
357};
358
359struct stm32mp1_pll {
360 u8 refclk_min;
361 u8 refclk_max;
362 u8 divn_max;
363};
364
365struct stm32mp1_clk_gate {
366 u16 offset;
367 u8 bit;
368 u8 index;
369 u8 set_clr;
370 u8 sel;
371 u8 fixed;
372};
373
374struct stm32mp1_clk_sel {
375 u16 offset;
376 u8 src;
377 u8 msk;
378 u8 nb_parent;
379 const u8 *parent;
380};
381
382#define REFCLK_SIZE 4
383struct stm32mp1_clk_pll {
384 enum stm32mp1_plltype plltype;
385 u16 rckxselr;
386 u16 pllxcfgr1;
387 u16 pllxcfgr2;
388 u16 pllxfracr;
389 u16 pllxcr;
390 u16 pllxcsgr;
391 u8 refclk[REFCLK_SIZE];
392};
393
394struct stm32mp1_clk_data {
395 const struct stm32mp1_clk_gate *gate;
396 const struct stm32mp1_clk_sel *sel;
397 const struct stm32mp1_clk_pll *pll;
398 const int nb_gate;
399};
400
401struct stm32mp1_clk_priv {
402 fdt_addr_t base;
403 const struct stm32mp1_clk_data *data;
404 ulong osc[NB_OSC];
405 struct udevice *osc_dev[NB_OSC];
406};
407
408#define STM32MP1_CLK(off, b, idx, s) \
409 { \
410 .offset = (off), \
411 .bit = (b), \
412 .index = (idx), \
413 .set_clr = 0, \
414 .sel = (s), \
415 .fixed = _UNKNOWN_ID, \
416 }
417
418#define STM32MP1_CLK_F(off, b, idx, f) \
419 { \
420 .offset = (off), \
421 .bit = (b), \
422 .index = (idx), \
423 .set_clr = 0, \
424 .sel = _UNKNOWN_SEL, \
425 .fixed = (f), \
426 }
427
428#define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
429 { \
430 .offset = (off), \
431 .bit = (b), \
432 .index = (idx), \
433 .set_clr = 1, \
434 .sel = (s), \
435 .fixed = _UNKNOWN_ID, \
436 }
437
438#define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
439 { \
440 .offset = (off), \
441 .bit = (b), \
442 .index = (idx), \
443 .set_clr = 1, \
444 .sel = _UNKNOWN_SEL, \
445 .fixed = (f), \
446 }
447
448#define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
449 [(idx)] = { \
450 .offset = (off), \
451 .src = (s), \
452 .msk = (m), \
453 .parent = (p), \
454 .nb_parent = ARRAY_SIZE((p)) \
455 }
456
457#define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
458 p1, p2, p3, p4) \
459 [(idx)] = { \
460 .plltype = (type), \
461 .rckxselr = (off1), \
462 .pllxcfgr1 = (off2), \
463 .pllxcfgr2 = (off3), \
464 .pllxfracr = (off4), \
465 .pllxcr = (off5), \
466 .pllxcsgr = (off6), \
467 .refclk[0] = (p1), \
468 .refclk[1] = (p2), \
469 .refclk[2] = (p3), \
470 .refclk[3] = (p4), \
471 }
472
473static const u8 stm32mp1_clks[][2] = {
474 {CK_PER, _CK_PER},
475 {CK_MPU, _CK_MPU},
476 {CK_AXI, _ACLK},
477 {CK_MCU, _CK_MCU},
478 {CK_HSE, _HSE},
479 {CK_CSI, _CSI},
480 {CK_LSI, _LSI},
481 {CK_LSE, _LSE},
482 {CK_HSI, _HSI},
483 {CK_HSE_DIV2, _HSE_KER_DIV2},
484};
485
486static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
487 STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
488 STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
489 STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
490 STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
491 STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
492 STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
493 STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
494 STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
495 STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
496 STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
497 STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
498
499 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
500 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
501 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
502 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
503 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
504 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
505 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
506 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
507 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
508 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
509
510 STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
511
Fabrice Gasnierf198bba2018-04-26 17:00:47 +0200512 STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
513
Patrick Delaunaya6151912018-03-12 10:46:15 +0100514 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
515 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
516 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
517
518 STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
519 STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
520
521 STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
522 STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
523
524 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
525 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
526 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
527 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
528 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
529 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
530 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
531 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
532 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
533 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
534 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
535
536 STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
537
538 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK, _UNKNOWN_SEL),
539 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
540 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
541 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 10, ETHMAC_K, _ETH_SEL),
542 STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
543 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
544 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
545 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
546 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
547 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
548
549 STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
550};
551
552static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
553static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
554static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
555static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
556 _HSE_KER};
557static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
558 _HSE_KER};
559static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
560 _HSE_KER};
561static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
562 _HSE_KER};
563static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
564static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
565static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
566static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
567static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
568static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
569static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
570static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
571
572static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
573 STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
574 STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
575 STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
576 STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
577 STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
578 uart24_parents),
579 STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
580 uart35_parents),
581 STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
582 uart78_parents),
583 STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
584 sdmmc12_parents),
585 STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
586 sdmmc3_parents),
587 STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
588 STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
589 STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
590 STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
591 STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
592 STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
593};
594
595#ifdef STM32MP1_CLOCK_TREE_INIT
596/* define characteristic of PLL according type */
597#define DIVN_MIN 24
598static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
599 [PLL_800] = {
600 .refclk_min = 4,
601 .refclk_max = 16,
602 .divn_max = 99,
603 },
604 [PLL_1600] = {
605 .refclk_min = 8,
606 .refclk_max = 16,
607 .divn_max = 199,
608 },
609};
610#endif /* STM32MP1_CLOCK_TREE_INIT */
611
612static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
613 STM32MP1_CLK_PLL(_PLL1, PLL_1600,
614 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
615 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
616 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
617 STM32MP1_CLK_PLL(_PLL2, PLL_1600,
618 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
619 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
620 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
621 STM32MP1_CLK_PLL(_PLL3, PLL_800,
622 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
623 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
624 _HSI, _HSE, _CSI, _UNKNOWN_ID),
625 STM32MP1_CLK_PLL(_PLL4, PLL_800,
626 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
627 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
628 _HSI, _HSE, _CSI, _I2S_CKIN),
629};
630
631/* Prescaler table lookups for clock computation */
632/* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
633static const u8 stm32mp1_mcu_div[16] = {
634 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
635};
636
637/* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
638#define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
639#define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
640static const u8 stm32mp1_mpu_apbx_div[8] = {
641 0, 1, 2, 3, 4, 4, 4, 4
642};
643
644/* div = /1 /2 /3 /4 */
645static const u8 stm32mp1_axi_div[8] = {
646 1, 2, 3, 4, 4, 4, 4, 4
647};
648
649#ifdef DEBUG
650static const char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
651 [_HSI] = "HSI",
652 [_HSE] = "HSE",
653 [_CSI] = "CSI",
654 [_LSI] = "LSI",
655 [_LSE] = "LSE",
656 [_I2S_CKIN] = "I2S_CKIN",
657 [_HSI_KER] = "HSI_KER",
658 [_HSE_KER] = "HSE_KER",
659 [_HSE_KER_DIV2] = "HSE_KER_DIV2",
660 [_CSI_KER] = "CSI_KER",
661 [_PLL1_P] = "PLL1_P",
662 [_PLL1_Q] = "PLL1_Q",
663 [_PLL1_R] = "PLL1_R",
664 [_PLL2_P] = "PLL2_P",
665 [_PLL2_Q] = "PLL2_Q",
666 [_PLL2_R] = "PLL2_R",
667 [_PLL3_P] = "PLL3_P",
668 [_PLL3_Q] = "PLL3_Q",
669 [_PLL3_R] = "PLL3_R",
670 [_PLL4_P] = "PLL4_P",
671 [_PLL4_Q] = "PLL4_Q",
672 [_PLL4_R] = "PLL4_R",
673 [_ACLK] = "ACLK",
674 [_PCLK1] = "PCLK1",
675 [_PCLK2] = "PCLK2",
676 [_PCLK3] = "PCLK3",
677 [_PCLK4] = "PCLK4",
678 [_PCLK5] = "PCLK5",
679 [_HCLK6] = "KCLK6",
680 [_HCLK2] = "HCLK2",
681 [_CK_PER] = "CK_PER",
682 [_CK_MPU] = "CK_MPU",
683 [_CK_MCU] = "CK_MCU",
684 [_USB_PHY_48] = "USB_PHY_48"
685};
686
687static const char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
688 [_I2C12_SEL] = "I2C12",
689 [_I2C35_SEL] = "I2C35",
690 [_I2C46_SEL] = "I2C46",
691 [_UART6_SEL] = "UART6",
692 [_UART24_SEL] = "UART24",
693 [_UART35_SEL] = "UART35",
694 [_UART78_SEL] = "UART78",
695 [_SDMMC12_SEL] = "SDMMC12",
696 [_SDMMC3_SEL] = "SDMMC3",
697 [_ETH_SEL] = "ETH",
698 [_QSPI_SEL] = "QSPI",
699 [_FMC_SEL] = "FMC",
700 [_USBPHY_SEL] = "USBPHY",
701 [_USBO_SEL] = "USBO",
702 [_STGEN_SEL] = "STGEN"
703};
704#endif
705
706static const struct stm32mp1_clk_data stm32mp1_data = {
707 .gate = stm32mp1_clk_gate,
708 .sel = stm32mp1_clk_sel,
709 .pll = stm32mp1_clk_pll,
710 .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
711};
712
713static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
714{
715 if (idx >= NB_OSC) {
716 debug("%s: clk id %d not found\n", __func__, idx);
717 return 0;
718 }
719
720 debug("%s: clk id %d = %x : %ld kHz\n", __func__, idx,
721 (u32)priv->osc[idx], priv->osc[idx] / 1000);
722
723 return priv->osc[idx];
724}
725
726static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
727{
728 const struct stm32mp1_clk_gate *gate = priv->data->gate;
729 int i, nb_clks = priv->data->nb_gate;
730
731 for (i = 0; i < nb_clks; i++) {
732 if (gate[i].index == id)
733 break;
734 }
735
736 if (i == nb_clks) {
737 printf("%s: clk id %d not found\n", __func__, (u32)id);
738 return -EINVAL;
739 }
740
741 return i;
742}
743
744static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
745 int i)
746{
747 const struct stm32mp1_clk_gate *gate = priv->data->gate;
748
749 if (gate[i].sel > _PARENT_SEL_NB) {
750 printf("%s: parents for clk id %d not found\n",
751 __func__, i);
752 return -EINVAL;
753 }
754
755 return gate[i].sel;
756}
757
758static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
759 int i)
760{
761 const struct stm32mp1_clk_gate *gate = priv->data->gate;
762
763 if (gate[i].fixed == _UNKNOWN_ID)
764 return -ENOENT;
765
766 return gate[i].fixed;
767}
768
769static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
770 unsigned long id)
771{
772 const struct stm32mp1_clk_sel *sel = priv->data->sel;
773 int i;
774 int s, p;
775
776 for (i = 0; i < ARRAY_SIZE(stm32mp1_clks); i++)
777 if (stm32mp1_clks[i][0] == id)
778 return stm32mp1_clks[i][1];
779
780 i = stm32mp1_clk_get_id(priv, id);
781 if (i < 0)
782 return i;
783
784 p = stm32mp1_clk_get_fixed_parent(priv, i);
785 if (p >= 0 && p < _PARENT_NB)
786 return p;
787
788 s = stm32mp1_clk_get_sel(priv, i);
789 if (s < 0)
790 return s;
791
792 p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
793
794 if (p < sel[s].nb_parent) {
795#ifdef DEBUG
796 debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
797 stm32mp1_clk_parent_name[sel[s].parent[p]],
798 stm32mp1_clk_parent_sel_name[s],
799 (u32)id);
800#endif
801 return sel[s].parent[p];
802 }
803
804 pr_err("%s: no parents defined for clk id %d\n",
805 __func__, (u32)id);
806
807 return -EINVAL;
808}
809
810static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
811 int pll_id, int div_id)
812{
813 const struct stm32mp1_clk_pll *pll = priv->data->pll;
814 int divm, divn, divy, src;
815 ulong refclk, dfout;
816 u32 selr, cfgr1, cfgr2, fracr;
817 const u8 shift[_DIV_NB] = {
818 [_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
819 [_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
820 [_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT };
821
822 debug("%s(%d, %d)\n", __func__, pll_id, div_id);
823 if (div_id > _DIV_NB)
824 return 0;
825
826 selr = readl(priv->base + pll[pll_id].rckxselr);
827 cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
828 cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
829 fracr = readl(priv->base + pll[pll_id].pllxfracr);
830
831 debug("PLL%d : selr=%x cfgr1=%x cfgr2=%x fracr=%x\n",
832 pll_id, selr, cfgr1, cfgr2, fracr);
833
834 divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
835 divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
836 divy = (cfgr2 >> shift[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
837
838 debug(" DIVN=%d DIVM=%d DIVY=%d\n", divn, divm, divy);
839
840 src = selr & RCC_SELR_SRC_MASK;
841 refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
842
843 debug(" refclk = %d kHz\n", (u32)(refclk / 1000));
844
845 /*
846 * For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
847 * So same final result than PLL2 et 4
848 * with FRACV :
849 * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
850 * / (DIVM + 1) * (DIVy + 1)
851 * without FRACV
852 * Fck_pll_y = Fck_ref * ((DIVN + 1) / (DIVM + 1) *(DIVy + 1)
853 */
854 if (fracr & RCC_PLLNFRACR_FRACLE) {
855 u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
856 >> RCC_PLLNFRACR_FRACV_SHIFT;
857 dfout = (ulong)lldiv((unsigned long long)refclk *
858 (((divn + 1) << 13) + fracv),
859 ((unsigned long long)(divm + 1) *
860 (divy + 1)) << 13);
861 } else {
862 dfout = (ulong)(refclk * (divn + 1) / (divm + 1) * (divy + 1));
863 }
864 debug(" => dfout = %d kHz\n", (u32)(dfout / 1000));
865
866 return dfout;
867}
868
869static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
870{
871 u32 reg;
872 ulong clock = 0;
873
874 switch (p) {
875 case _CK_MPU:
876 /* MPU sub system */
877 reg = readl(priv->base + RCC_MPCKSELR);
878 switch (reg & RCC_SELR_SRC_MASK) {
879 case RCC_MPCKSELR_HSI:
880 clock = stm32mp1_clk_get_fixed(priv, _HSI);
881 break;
882 case RCC_MPCKSELR_HSE:
883 clock = stm32mp1_clk_get_fixed(priv, _HSE);
884 break;
885 case RCC_MPCKSELR_PLL:
886 case RCC_MPCKSELR_PLL_MPUDIV:
887 clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
888 if (p == RCC_MPCKSELR_PLL_MPUDIV) {
889 reg = readl(priv->base + RCC_MPCKDIVR);
890 clock /= stm32mp1_mpu_div[reg &
891 RCC_MPUDIV_MASK];
892 }
893 break;
894 }
895 break;
896 /* AXI sub system */
897 case _ACLK:
898 case _HCLK2:
899 case _HCLK6:
900 case _PCLK4:
901 case _PCLK5:
902 reg = readl(priv->base + RCC_ASSCKSELR);
903 switch (reg & RCC_SELR_SRC_MASK) {
904 case RCC_ASSCKSELR_HSI:
905 clock = stm32mp1_clk_get_fixed(priv, _HSI);
906 break;
907 case RCC_ASSCKSELR_HSE:
908 clock = stm32mp1_clk_get_fixed(priv, _HSE);
909 break;
910 case RCC_ASSCKSELR_PLL:
911 clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
912 break;
913 }
914
915 /* System clock divider */
916 reg = readl(priv->base + RCC_AXIDIVR);
917 clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
918
919 switch (p) {
920 case _PCLK4:
921 reg = readl(priv->base + RCC_APB4DIVR);
922 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
923 break;
924 case _PCLK5:
925 reg = readl(priv->base + RCC_APB5DIVR);
926 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
927 break;
928 default:
929 break;
930 }
931 break;
932 /* MCU sub system */
933 case _CK_MCU:
934 case _PCLK1:
935 case _PCLK2:
936 case _PCLK3:
937 reg = readl(priv->base + RCC_MSSCKSELR);
938 switch (reg & RCC_SELR_SRC_MASK) {
939 case RCC_MSSCKSELR_HSI:
940 clock = stm32mp1_clk_get_fixed(priv, _HSI);
941 break;
942 case RCC_MSSCKSELR_HSE:
943 clock = stm32mp1_clk_get_fixed(priv, _HSE);
944 break;
945 case RCC_MSSCKSELR_CSI:
946 clock = stm32mp1_clk_get_fixed(priv, _CSI);
947 break;
948 case RCC_MSSCKSELR_PLL:
949 clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
950 break;
951 }
952
953 /* MCU clock divider */
954 reg = readl(priv->base + RCC_MCUDIVR);
955 clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
956
957 switch (p) {
958 case _PCLK1:
959 reg = readl(priv->base + RCC_APB1DIVR);
960 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
961 break;
962 case _PCLK2:
963 reg = readl(priv->base + RCC_APB2DIVR);
964 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
965 break;
966 case _PCLK3:
967 reg = readl(priv->base + RCC_APB3DIVR);
968 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
969 break;
970 case _CK_MCU:
971 default:
972 break;
973 }
974 break;
975 case _CK_PER:
976 reg = readl(priv->base + RCC_CPERCKSELR);
977 switch (reg & RCC_SELR_SRC_MASK) {
978 case RCC_CPERCKSELR_HSI:
979 clock = stm32mp1_clk_get_fixed(priv, _HSI);
980 break;
981 case RCC_CPERCKSELR_HSE:
982 clock = stm32mp1_clk_get_fixed(priv, _HSE);
983 break;
984 case RCC_CPERCKSELR_CSI:
985 clock = stm32mp1_clk_get_fixed(priv, _CSI);
986 break;
987 }
988 break;
989 case _HSI:
990 case _HSI_KER:
991 clock = stm32mp1_clk_get_fixed(priv, _HSI);
992 break;
993 case _CSI:
994 case _CSI_KER:
995 clock = stm32mp1_clk_get_fixed(priv, _CSI);
996 break;
997 case _HSE:
998 case _HSE_KER:
999 case _HSE_KER_DIV2:
1000 clock = stm32mp1_clk_get_fixed(priv, _HSE);
1001 if (p == _HSE_KER_DIV2)
1002 clock >>= 1;
1003 break;
1004 case _LSI:
1005 clock = stm32mp1_clk_get_fixed(priv, _LSI);
1006 break;
1007 case _LSE:
1008 clock = stm32mp1_clk_get_fixed(priv, _LSE);
1009 break;
1010 /* PLL */
1011 case _PLL1_P:
1012 case _PLL1_Q:
1013 case _PLL1_R:
1014 clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1015 break;
1016 case _PLL2_P:
1017 case _PLL2_Q:
1018 case _PLL2_R:
1019 clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1020 break;
1021 case _PLL3_P:
1022 case _PLL3_Q:
1023 case _PLL3_R:
1024 clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1025 break;
1026 case _PLL4_P:
1027 case _PLL4_Q:
1028 case _PLL4_R:
1029 clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1030 break;
1031 /* other */
1032 case _USB_PHY_48:
1033 clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
1034 break;
1035
1036 default:
1037 break;
1038 }
1039
1040 debug("%s(%d) clock = %lx : %ld kHz\n",
1041 __func__, p, clock, clock / 1000);
1042
1043 return clock;
1044}
1045
1046static int stm32mp1_clk_enable(struct clk *clk)
1047{
1048 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1049 const struct stm32mp1_clk_gate *gate = priv->data->gate;
1050 int i = stm32mp1_clk_get_id(priv, clk->id);
1051
1052 if (i < 0)
1053 return i;
1054
1055 if (gate[i].set_clr)
1056 writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1057 else
1058 setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1059
1060 debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1061
1062 return 0;
1063}
1064
1065static int stm32mp1_clk_disable(struct clk *clk)
1066{
1067 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1068 const struct stm32mp1_clk_gate *gate = priv->data->gate;
1069 int i = stm32mp1_clk_get_id(priv, clk->id);
1070
1071 if (i < 0)
1072 return i;
1073
1074 if (gate[i].set_clr)
1075 writel(BIT(gate[i].bit),
1076 priv->base + gate[i].offset
1077 + RCC_MP_ENCLRR_OFFSET);
1078 else
1079 clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1080
1081 debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1082
1083 return 0;
1084}
1085
1086static ulong stm32mp1_clk_get_rate(struct clk *clk)
1087{
1088 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1089 int p = stm32mp1_clk_get_parent(priv, clk->id);
1090 ulong rate;
1091
1092 if (p < 0)
1093 return 0;
1094
1095 rate = stm32mp1_clk_get(priv, p);
1096
1097#ifdef DEBUG
1098 debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
1099 __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1100#endif
1101 return rate;
1102}
1103
Patrick Delaunay266fa4d2018-03-12 10:46:16 +01001104#ifdef STM32MP1_CLOCK_TREE_INIT
1105static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1106 u32 mask_on)
1107{
1108 u32 address = rcc + offset;
1109
1110 if (enable)
1111 setbits_le32(address, mask_on);
1112 else
1113 clrbits_le32(address, mask_on);
1114}
1115
1116static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1117{
1118 if (enable)
1119 setbits_le32(rcc + RCC_OCENSETR, mask_on);
1120 else
1121 setbits_le32(rcc + RCC_OCENCLRR, mask_on);
1122}
1123
1124static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1125 u32 mask_rdy)
1126{
1127 u32 mask_test = 0;
1128 u32 address = rcc + offset;
1129 u32 val;
1130 int ret;
1131
1132 if (enable)
1133 mask_test = mask_rdy;
1134
1135 ret = readl_poll_timeout(address, val,
1136 (val & mask_rdy) == mask_test,
1137 TIMEOUT_1S);
1138
1139 if (ret)
1140 pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1141 mask_rdy, address, enable, readl(address));
1142
1143 return ret;
1144}
1145
1146static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int lsedrv)
1147{
1148 u32 value;
1149
1150 if (bypass)
1151 setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1152
1153 /*
1154 * warning: not recommended to switch directly from "high drive"
1155 * to "medium low drive", and vice-versa.
1156 */
1157 value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1158 >> RCC_BDCR_LSEDRV_SHIFT;
1159
1160 while (value != lsedrv) {
1161 if (value > lsedrv)
1162 value--;
1163 else
1164 value++;
1165
1166 clrsetbits_le32(rcc + RCC_BDCR,
1167 RCC_BDCR_LSEDRV_MASK,
1168 value << RCC_BDCR_LSEDRV_SHIFT);
1169 }
1170
1171 stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1172}
1173
1174static void stm32mp1_lse_wait(fdt_addr_t rcc)
1175{
1176 stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1177}
1178
1179static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1180{
1181 stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1182 stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1183}
1184
1185static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int css)
1186{
1187 if (bypass)
1188 setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1189
1190 stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1191 stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1192
1193 if (css)
1194 setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1195}
1196
1197static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1198{
1199 stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
1200 stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1201}
1202
1203static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1204{
1205 stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1206 stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1207}
1208
1209static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1210{
1211 u32 address = rcc + RCC_OCRDYR;
1212 u32 val;
1213 int ret;
1214
1215 clrsetbits_le32(rcc + RCC_HSICFGR,
1216 RCC_HSICFGR_HSIDIV_MASK,
1217 RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1218
1219 ret = readl_poll_timeout(address, val,
1220 val & RCC_OCRDYR_HSIDIVRDY,
1221 TIMEOUT_200MS);
1222 if (ret)
1223 pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
1224 address, readl(address));
1225
1226 return ret;
1227}
1228
1229static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1230{
1231 u8 hsidiv;
1232 u32 hsidivfreq = MAX_HSI_HZ;
1233
1234 for (hsidiv = 0; hsidiv < 4; hsidiv++,
1235 hsidivfreq = hsidivfreq / 2)
1236 if (hsidivfreq == hsifreq)
1237 break;
1238
1239 if (hsidiv == 4) {
1240 pr_err("clk-hsi frequency invalid");
1241 return -1;
1242 }
1243
1244 if (hsidiv > 0)
1245 return stm32mp1_set_hsidiv(rcc, hsidiv);
1246
1247 return 0;
1248}
1249
1250static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1251{
1252 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1253
1254 writel(RCC_PLLNCR_PLLON, priv->base + pll[pll_id].pllxcr);
1255}
1256
1257static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1258{
1259 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1260 u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1261 u32 val;
1262 int ret;
1263
1264 ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1265 TIMEOUT_200MS);
1266
1267 if (ret) {
1268 pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
1269 pll_id, pllxcr, readl(pllxcr));
1270 return ret;
1271 }
1272
1273 /* start the requested output */
1274 setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1275
1276 return 0;
1277}
1278
1279static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1280{
1281 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1282 u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1283 u32 val;
1284
1285 /* stop all output */
1286 clrbits_le32(pllxcr,
1287 RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1288
1289 /* stop PLL */
1290 clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1291
1292 /* wait PLL stopped */
1293 return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1294 TIMEOUT_200MS);
1295}
1296
1297static void pll_config_output(struct stm32mp1_clk_priv *priv,
1298 int pll_id, u32 *pllcfg)
1299{
1300 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1301 fdt_addr_t rcc = priv->base;
1302 u32 value;
1303
1304 value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1305 & RCC_PLLNCFGR2_DIVP_MASK;
1306 value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1307 & RCC_PLLNCFGR2_DIVQ_MASK;
1308 value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1309 & RCC_PLLNCFGR2_DIVR_MASK;
1310 writel(value, rcc + pll[pll_id].pllxcfgr2);
1311}
1312
1313static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1314 u32 *pllcfg, u32 fracv)
1315{
1316 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1317 fdt_addr_t rcc = priv->base;
1318 enum stm32mp1_plltype type = pll[pll_id].plltype;
1319 int src;
1320 ulong refclk;
1321 u8 ifrge = 0;
1322 u32 value;
1323
1324 src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1325
1326 refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1327 (pllcfg[PLLCFG_M] + 1);
1328
1329 if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1330 refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1331 debug("invalid refclk = %x\n", (u32)refclk);
1332 return -EINVAL;
1333 }
1334 if (type == PLL_800 && refclk >= 8000000)
1335 ifrge = 1;
1336
1337 value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1338 & RCC_PLLNCFGR1_DIVN_MASK;
1339 value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1340 & RCC_PLLNCFGR1_DIVM_MASK;
1341 value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1342 & RCC_PLLNCFGR1_IFRGE_MASK;
1343 writel(value, rcc + pll[pll_id].pllxcfgr1);
1344
1345 /* fractional configuration: load sigma-delta modulator (SDM) */
1346
1347 /* Write into FRACV the new fractional value , and FRACLE to 0 */
1348 writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1349 rcc + pll[pll_id].pllxfracr);
1350
1351 /* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1352 setbits_le32(rcc + pll[pll_id].pllxfracr,
1353 RCC_PLLNFRACR_FRACLE);
1354
1355 pll_config_output(priv, pll_id, pllcfg);
1356
1357 return 0;
1358}
1359
1360static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1361{
1362 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1363 u32 pllxcsg;
1364
1365 pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1366 RCC_PLLNCSGR_MOD_PER_MASK) |
1367 ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1368 RCC_PLLNCSGR_INC_STEP_MASK) |
1369 ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1370 RCC_PLLNCSGR_SSCG_MODE_MASK);
1371
1372 writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1373}
1374
1375static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1376{
1377 u32 address = priv->base + (clksrc >> 4);
1378 u32 val;
1379 int ret;
1380
1381 clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1382 ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1383 TIMEOUT_200MS);
1384 if (ret)
1385 pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1386 clksrc, address, readl(address));
1387
1388 return ret;
1389}
1390
Patrick Delaunay938e0e32018-03-20 11:41:25 +01001391static void stgen_config(struct stm32mp1_clk_priv *priv)
1392{
1393 int p;
1394 u32 stgenc, cntfid0;
1395 ulong rate;
1396
1397 stgenc = (u32)syscon_get_first_range(STM32MP_SYSCON_STGEN);
1398
1399 cntfid0 = readl(stgenc + STGENC_CNTFID0);
1400 p = stm32mp1_clk_get_parent(priv, STGEN_K);
1401 rate = stm32mp1_clk_get(priv, p);
1402
1403 if (cntfid0 != rate) {
1404 pr_debug("System Generic Counter (STGEN) update\n");
1405 clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1406 writel(0x0, stgenc + STGENC_CNTCVL);
1407 writel(0x0, stgenc + STGENC_CNTCVU);
1408 writel(rate, stgenc + STGENC_CNTFID0);
1409 setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1410
1411 __asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1412
1413 /* need to update gd->arch.timer_rate_hz with new frequency */
1414 timer_init();
1415 pr_debug("gd->arch.timer_rate_hz = %x\n",
1416 (u32)gd->arch.timer_rate_hz);
1417 pr_debug("Tick = %x\n", (u32)(get_ticks()));
1418 }
1419}
1420
Patrick Delaunay266fa4d2018-03-12 10:46:16 +01001421static int set_clkdiv(unsigned int clkdiv, u32 address)
1422{
1423 u32 val;
1424 int ret;
1425
1426 clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1427 ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1428 TIMEOUT_200MS);
1429 if (ret)
1430 pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1431 clkdiv, address, readl(address));
1432
1433 return ret;
1434}
1435
1436static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1437 u32 clksrc, u32 clkdiv)
1438{
1439 u32 address = priv->base + (clksrc >> 4);
1440
1441 /*
1442 * binding clksrc : bit15-4 offset
1443 * bit3: disable
1444 * bit2-0: MCOSEL[2:0]
1445 */
1446 if (clksrc & 0x8) {
1447 clrbits_le32(address, RCC_MCOCFG_MCOON);
1448 } else {
1449 clrsetbits_le32(address,
1450 RCC_MCOCFG_MCOSRC_MASK,
1451 clksrc & RCC_MCOCFG_MCOSRC_MASK);
1452 clrsetbits_le32(address,
1453 RCC_MCOCFG_MCODIV_MASK,
1454 clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1455 setbits_le32(address, RCC_MCOCFG_MCOON);
1456 }
1457}
1458
1459static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1460 unsigned int clksrc,
1461 int lse_css)
1462{
1463 u32 address = priv->base + RCC_BDCR;
1464
1465 if (readl(address) & RCC_BDCR_RTCCKEN)
1466 goto skip_rtc;
1467
1468 if (clksrc == CLK_RTC_DISABLED)
1469 goto skip_rtc;
1470
1471 clrsetbits_le32(address,
1472 RCC_BDCR_RTCSRC_MASK,
1473 clksrc << RCC_BDCR_RTCSRC_SHIFT);
1474
1475 setbits_le32(address, RCC_BDCR_RTCCKEN);
1476
1477skip_rtc:
1478 if (lse_css)
1479 setbits_le32(address, RCC_BDCR_LSECSSON);
1480}
1481
1482static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1483{
1484 u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1485 u32 value = pkcs & 0xF;
1486 u32 mask = 0xF;
1487
1488 if (pkcs & BIT(31)) {
1489 mask <<= 4;
1490 value <<= 4;
1491 }
1492 clrsetbits_le32(address, mask, value);
1493}
1494
1495static int stm32mp1_clktree(struct udevice *dev)
1496{
1497 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1498 fdt_addr_t rcc = priv->base;
1499 unsigned int clksrc[CLKSRC_NB];
1500 unsigned int clkdiv[CLKDIV_NB];
1501 unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1502 ofnode plloff[_PLL_NB];
1503 int ret;
1504 int i, len;
1505 int lse_css = 0;
1506 const u32 *pkcs_cell;
1507
1508 /* check mandatory field */
1509 ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1510 if (ret < 0) {
1511 debug("field st,clksrc invalid: error %d\n", ret);
1512 return -FDT_ERR_NOTFOUND;
1513 }
1514
1515 ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1516 if (ret < 0) {
1517 debug("field st,clkdiv invalid: error %d\n", ret);
1518 return -FDT_ERR_NOTFOUND;
1519 }
1520
1521 /* check mandatory field in each pll */
1522 for (i = 0; i < _PLL_NB; i++) {
1523 char name[12];
1524
1525 sprintf(name, "st,pll@%d", i);
1526 plloff[i] = dev_read_subnode(dev, name);
1527 if (!ofnode_valid(plloff[i]))
1528 continue;
1529 ret = ofnode_read_u32_array(plloff[i], "cfg",
1530 pllcfg[i], PLLCFG_NB);
1531 if (ret < 0) {
1532 debug("field cfg invalid: error %d\n", ret);
1533 return -FDT_ERR_NOTFOUND;
1534 }
1535 }
1536
1537 debug("configuration MCO\n");
1538 stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1539 stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1540
1541 debug("switch ON osillator\n");
1542 /*
1543 * switch ON oscillator found in device-tree,
1544 * HSI already ON after bootrom
1545 */
1546 if (priv->osc[_LSI])
1547 stm32mp1_lsi_set(rcc, 1);
1548
1549 if (priv->osc[_LSE]) {
1550 int bypass;
1551 int lsedrv;
1552 struct udevice *dev = priv->osc_dev[_LSE];
1553
1554 bypass = dev_read_bool(dev, "st,bypass");
1555 lse_css = dev_read_bool(dev, "st,css");
1556 lsedrv = dev_read_u32_default(dev, "st,drive",
1557 LSEDRV_MEDIUM_HIGH);
1558
1559 stm32mp1_lse_enable(rcc, bypass, lsedrv);
1560 }
1561
1562 if (priv->osc[_HSE]) {
1563 int bypass, css;
1564 struct udevice *dev = priv->osc_dev[_HSE];
1565
1566 bypass = dev_read_bool(dev, "st,bypass");
1567 css = dev_read_bool(dev, "st,css");
1568
1569 stm32mp1_hse_enable(rcc, bypass, css);
1570 }
1571 /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1572 * => switch on CSI even if node is not present in device tree
1573 */
1574 stm32mp1_csi_set(rcc, 1);
1575
1576 /* come back to HSI */
1577 debug("come back to HSI\n");
1578 set_clksrc(priv, CLK_MPU_HSI);
1579 set_clksrc(priv, CLK_AXI_HSI);
1580 set_clksrc(priv, CLK_MCU_HSI);
1581
1582 debug("pll stop\n");
1583 for (i = 0; i < _PLL_NB; i++)
1584 pll_stop(priv, i);
1585
1586 /* configure HSIDIV */
1587 debug("configure HSIDIV\n");
Patrick Delaunay938e0e32018-03-20 11:41:25 +01001588 if (priv->osc[_HSI]) {
Patrick Delaunay266fa4d2018-03-12 10:46:16 +01001589 stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
Patrick Delaunay938e0e32018-03-20 11:41:25 +01001590 stgen_config(priv);
1591 }
Patrick Delaunay266fa4d2018-03-12 10:46:16 +01001592
1593 /* select DIV */
1594 debug("select DIV\n");
1595 /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1596 writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
1597 set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
1598 set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
1599 set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
1600 set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
1601 set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
1602 set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
1603 set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
1604
1605 /* no ready bit for RTC */
1606 writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
1607
1608 /* configure PLLs source */
1609 debug("configure PLLs source\n");
1610 set_clksrc(priv, clksrc[CLKSRC_PLL12]);
1611 set_clksrc(priv, clksrc[CLKSRC_PLL3]);
1612 set_clksrc(priv, clksrc[CLKSRC_PLL4]);
1613
1614 /* configure and start PLLs */
1615 debug("configure PLLs\n");
1616 for (i = 0; i < _PLL_NB; i++) {
1617 u32 fracv;
1618 u32 csg[PLLCSG_NB];
1619
1620 debug("configure PLL %d @ %d\n", i,
1621 ofnode_to_offset(plloff[i]));
1622 if (!ofnode_valid(plloff[i]))
1623 continue;
1624
1625 fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
1626 pll_config(priv, i, pllcfg[i], fracv);
1627 ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
1628 if (!ret) {
1629 pll_csg(priv, i, csg);
1630 } else if (ret != -FDT_ERR_NOTFOUND) {
1631 debug("invalid csg node for pll@%d res=%d\n", i, ret);
1632 return ret;
1633 }
1634 pll_start(priv, i);
1635 }
1636
1637 /* wait and start PLLs ouptut when ready */
1638 for (i = 0; i < _PLL_NB; i++) {
1639 if (!ofnode_valid(plloff[i]))
1640 continue;
1641 debug("output PLL %d\n", i);
1642 pll_output(priv, i, pllcfg[i][PLLCFG_O]);
1643 }
1644
1645 /* wait LSE ready before to use it */
1646 if (priv->osc[_LSE])
1647 stm32mp1_lse_wait(rcc);
1648
1649 /* configure with expected clock source */
1650 debug("CLKSRC\n");
1651 set_clksrc(priv, clksrc[CLKSRC_MPU]);
1652 set_clksrc(priv, clksrc[CLKSRC_AXI]);
1653 set_clksrc(priv, clksrc[CLKSRC_MCU]);
1654 set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
1655
1656 /* configure PKCK */
1657 debug("PKCK\n");
1658 pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
1659 if (pkcs_cell) {
1660 bool ckper_disabled = false;
1661
1662 for (i = 0; i < len / sizeof(u32); i++) {
1663 u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
1664
1665 if (pkcs == CLK_CKPER_DISABLED) {
1666 ckper_disabled = true;
1667 continue;
1668 }
1669 pkcs_config(priv, pkcs);
1670 }
1671 /* CKPER is source for some peripheral clock
1672 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1673 * only if previous clock is still ON
1674 * => deactivated CKPER only after switching clock
1675 */
1676 if (ckper_disabled)
1677 pkcs_config(priv, CLK_CKPER_DISABLED);
1678 }
1679
Patrick Delaunay938e0e32018-03-20 11:41:25 +01001680 /* STGEN clock source can change with CLK_STGEN_XXX */
1681 stgen_config(priv);
1682
Patrick Delaunay266fa4d2018-03-12 10:46:16 +01001683 debug("oscillator off\n");
1684 /* switch OFF HSI if not found in device-tree */
1685 if (!priv->osc[_HSI])
1686 stm32mp1_hsi_set(rcc, 0);
1687
1688 /* Software Self-Refresh mode (SSR) during DDR initilialization */
1689 clrsetbits_le32(priv->base + RCC_DDRITFCR,
1690 RCC_DDRITFCR_DDRCKMOD_MASK,
1691 RCC_DDRITFCR_DDRCKMOD_SSR <<
1692 RCC_DDRITFCR_DDRCKMOD_SHIFT);
1693
1694 return 0;
1695}
1696#endif /* STM32MP1_CLOCK_TREE_INIT */
1697
Patrick Delaunaya6151912018-03-12 10:46:15 +01001698static void stm32mp1_osc_clk_init(const char *name,
1699 struct stm32mp1_clk_priv *priv,
1700 int index)
1701{
1702 struct clk clk;
1703 struct udevice *dev = NULL;
1704
1705 priv->osc[index] = 0;
1706 clk.id = 0;
1707 if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
1708 if (clk_request(dev, &clk))
1709 pr_err("%s request", name);
1710 else
1711 priv->osc[index] = clk_get_rate(&clk);
1712 }
1713 priv->osc_dev[index] = dev;
1714}
1715
1716static void stm32mp1_osc_init(struct udevice *dev)
1717{
1718 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1719 int i;
1720 const char *name[NB_OSC] = {
1721 [_LSI] = "clk-lsi",
1722 [_LSE] = "clk-lse",
1723 [_HSI] = "clk-hsi",
1724 [_HSE] = "clk-hse",
1725 [_CSI] = "clk-csi",
1726 [_I2S_CKIN] = "i2s_ckin",
1727 [_USB_PHY_48] = "ck_usbo_48m"};
1728
1729 for (i = 0; i < NB_OSC; i++) {
1730 stm32mp1_osc_clk_init(name[i], priv, i);
1731 debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
1732 }
1733}
1734
1735static int stm32mp1_clk_probe(struct udevice *dev)
1736{
1737 int result = 0;
1738 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1739
1740 priv->base = dev_read_addr(dev->parent);
1741 if (priv->base == FDT_ADDR_T_NONE)
1742 return -EINVAL;
1743
1744 priv->data = (void *)&stm32mp1_data;
1745
1746 if (!priv->data->gate || !priv->data->sel ||
1747 !priv->data->pll)
1748 return -EINVAL;
1749
1750 stm32mp1_osc_init(dev);
1751
Patrick Delaunay266fa4d2018-03-12 10:46:16 +01001752#ifdef STM32MP1_CLOCK_TREE_INIT
1753 /* clock tree init is done only one time, before relocation */
1754 if (!(gd->flags & GD_FLG_RELOC))
1755 result = stm32mp1_clktree(dev);
1756#endif
1757
Patrick Delaunaya6151912018-03-12 10:46:15 +01001758 return result;
1759}
1760
1761static const struct clk_ops stm32mp1_clk_ops = {
1762 .enable = stm32mp1_clk_enable,
1763 .disable = stm32mp1_clk_disable,
1764 .get_rate = stm32mp1_clk_get_rate,
1765};
1766
1767static const struct udevice_id stm32mp1_clk_ids[] = {
1768 { .compatible = "st,stm32mp1-rcc-clk" },
1769 { }
1770};
1771
1772U_BOOT_DRIVER(stm32mp1_clock) = {
1773 .name = "stm32mp1_clk",
1774 .id = UCLASS_CLK,
1775 .of_match = stm32mp1_clk_ids,
1776 .ops = &stm32mp1_clk_ops,
1777 .priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
1778 .probe = stm32mp1_clk_probe,
1779};