blob: 7ba48c1201587a3e99e96274b4ee69f9c5107df8 [file] [log] [blame]
Marek Vasut0d4e8502011-11-08 23:18:16 +00001/*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 */
27
Tom Warren651eb732012-09-10 08:47:51 -070028#include <common.h>
Marek Vasut0d4e8502011-11-08 23:18:16 +000029#include <linux/mtd/mtd.h>
30#include <linux/mtd/nand.h>
31#include <linux/types.h>
Marek Vasut0d4e8502011-11-08 23:18:16 +000032#include <malloc.h>
33#include <asm/errno.h>
34#include <asm/io.h>
35#include <asm/arch/clock.h>
36#include <asm/arch/imx-regs.h>
37#include <asm/arch/sys_proto.h>
38#include <asm/arch/dma.h>
39
40#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
41
42#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
43#define MXS_NAND_METADATA_SIZE 10
44
45#define MXS_NAND_COMMAND_BUFFER_SIZE 32
46
47#define MXS_NAND_BCH_TIMEOUT 10000
48
49struct mxs_nand_info {
50 int cur_chip;
51
52 uint32_t cmd_queue_len;
Marek Vasut6b9408e2012-03-15 18:33:19 +000053 uint32_t data_buf_size;
Marek Vasut0d4e8502011-11-08 23:18:16 +000054
55 uint8_t *cmd_buf;
56 uint8_t *data_buf;
57 uint8_t *oob_buf;
58
59 uint8_t marking_block_bad;
60 uint8_t raw_oob_mode;
61
62 /* Functions with altered behaviour */
63 int (*hooked_read_oob)(struct mtd_info *mtd,
64 loff_t from, struct mtd_oob_ops *ops);
65 int (*hooked_write_oob)(struct mtd_info *mtd,
66 loff_t to, struct mtd_oob_ops *ops);
67 int (*hooked_block_markbad)(struct mtd_info *mtd,
68 loff_t ofs);
69
70 /* DMA descriptors */
71 struct mxs_dma_desc **desc;
72 uint32_t desc_index;
73};
74
75struct nand_ecclayout fake_ecc_layout;
76
Marek Vasut6b9408e2012-03-15 18:33:19 +000077/*
78 * Cache management functions
79 */
80#ifndef CONFIG_SYS_DCACHE_OFF
81static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
82{
83 uint32_t addr = (uint32_t)info->data_buf;
84
85 flush_dcache_range(addr, addr + info->data_buf_size);
86}
87
88static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
89{
90 uint32_t addr = (uint32_t)info->data_buf;
91
92 invalidate_dcache_range(addr, addr + info->data_buf_size);
93}
94
95static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
96{
97 uint32_t addr = (uint32_t)info->cmd_buf;
98
99 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
100}
101#else
102static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
103static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
104static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
105#endif
106
Marek Vasut0d4e8502011-11-08 23:18:16 +0000107static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
108{
109 struct mxs_dma_desc *desc;
110
111 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
112 printf("MXS NAND: Too many DMA descriptors requested\n");
113 return NULL;
114 }
115
116 desc = info->desc[info->desc_index];
117 info->desc_index++;
118
119 return desc;
120}
121
122static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
123{
124 int i;
125 struct mxs_dma_desc *desc;
126
127 for (i = 0; i < info->desc_index; i++) {
128 desc = info->desc[i];
129 memset(desc, 0, sizeof(struct mxs_dma_desc));
130 desc->address = (dma_addr_t)desc;
131 }
132
133 info->desc_index = 0;
134}
135
136static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
137{
138 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
139}
140
141static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
142{
143 return ecc_strength * 13;
144}
145
146static uint32_t mxs_nand_aux_status_offset(void)
147{
148 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
149}
150
151static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
152 uint32_t page_oob_size)
153{
154 if (page_data_size == 2048)
155 return 8;
156
157 if (page_data_size == 4096) {
158 if (page_oob_size == 128)
159 return 8;
160
161 if (page_oob_size == 218)
162 return 16;
163 }
164
165 return 0;
166}
167
168static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
169 uint32_t ecc_strength)
170{
171 uint32_t chunk_data_size_in_bits;
172 uint32_t chunk_ecc_size_in_bits;
173 uint32_t chunk_total_size_in_bits;
174 uint32_t block_mark_chunk_number;
175 uint32_t block_mark_chunk_bit_offset;
176 uint32_t block_mark_bit_offset;
177
178 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
179 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
180
181 chunk_total_size_in_bits =
182 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
183
184 /* Compute the bit offset of the block mark within the physical page. */
185 block_mark_bit_offset = page_data_size * 8;
186
187 /* Subtract the metadata bits. */
188 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
189
190 /*
191 * Compute the chunk number (starting at zero) in which the block mark
192 * appears.
193 */
194 block_mark_chunk_number =
195 block_mark_bit_offset / chunk_total_size_in_bits;
196
197 /*
198 * Compute the bit offset of the block mark within its chunk, and
199 * validate it.
200 */
201 block_mark_chunk_bit_offset = block_mark_bit_offset -
202 (block_mark_chunk_number * chunk_total_size_in_bits);
203
204 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
205 return 1;
206
207 /*
208 * Now that we know the chunk number in which the block mark appears,
209 * we can subtract all the ECC bits that appear before it.
210 */
211 block_mark_bit_offset -=
212 block_mark_chunk_number * chunk_ecc_size_in_bits;
213
214 return block_mark_bit_offset;
215}
216
217static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
218{
219 uint32_t ecc_strength;
220 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
221 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
222}
223
224static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
225{
226 uint32_t ecc_strength;
227 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
228 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
229}
230
231/*
232 * Wait for BCH complete IRQ and clear the IRQ
233 */
234static int mxs_nand_wait_for_bch_complete(void)
235{
Otavio Salvador9c471142012-08-05 09:05:31 +0000236 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
Marek Vasut0d4e8502011-11-08 23:18:16 +0000237 int timeout = MXS_NAND_BCH_TIMEOUT;
238 int ret;
239
Otavio Salvadorfa7a51c2012-08-13 09:53:12 +0000240 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
Marek Vasut0d4e8502011-11-08 23:18:16 +0000241 BCH_CTRL_COMPLETE_IRQ, timeout);
242
243 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
244
245 return ret;
246}
247
248/*
249 * This is the function that we install in the cmd_ctrl function pointer of the
250 * owning struct nand_chip. The only functions in the reference implementation
251 * that use these functions pointers are cmdfunc and select_chip.
252 *
253 * In this driver, we implement our own select_chip, so this function will only
254 * be called by the reference implementation's cmdfunc. For this reason, we can
255 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
256 * Flash.
257 */
258static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
259{
260 struct nand_chip *nand = mtd->priv;
261 struct mxs_nand_info *nand_info = nand->priv;
262 struct mxs_dma_desc *d;
263 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
264 int ret;
265
266 /*
267 * If this condition is true, something is _VERY_ wrong in MTD
268 * subsystem!
269 */
270 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
271 printf("MXS NAND: Command queue too long\n");
272 return;
273 }
274
275 /*
276 * Every operation begins with a command byte and a series of zero or
277 * more address bytes. These are distinguished by either the Address
278 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
279 * asserted. When MTD is ready to execute the command, it will
280 * deasert both latch enables.
281 *
282 * Rather than run a separate DMA operation for every single byte, we
283 * queue them up and run a single DMA operation for the entire series
284 * of command and data bytes.
285 */
286 if (ctrl & (NAND_ALE | NAND_CLE)) {
287 if (data != NAND_CMD_NONE)
288 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
289 return;
290 }
291
292 /*
293 * If control arrives here, MTD has deasserted both the ALE and CLE,
294 * which means it's ready to run an operation. Check if we have any
295 * bytes to send.
296 */
297 if (nand_info->cmd_queue_len == 0)
298 return;
299
300 /* Compile the DMA descriptor -- a descriptor that sends command. */
301 d = mxs_nand_get_dma_desc(nand_info);
302 d->cmd.data =
303 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
304 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
305 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
306 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
307
308 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
309
310 d->cmd.pio_words[0] =
311 GPMI_CTRL0_COMMAND_MODE_WRITE |
312 GPMI_CTRL0_WORD_LENGTH |
313 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
314 GPMI_CTRL0_ADDRESS_NAND_CLE |
315 GPMI_CTRL0_ADDRESS_INCREMENT |
316 nand_info->cmd_queue_len;
317
318 mxs_dma_desc_append(channel, d);
319
Marek Vasut6b9408e2012-03-15 18:33:19 +0000320 /* Flush caches */
321 mxs_nand_flush_cmd_buf(nand_info);
322
Marek Vasut0d4e8502011-11-08 23:18:16 +0000323 /* Execute the DMA chain. */
324 ret = mxs_dma_go(channel);
325 if (ret)
326 printf("MXS NAND: Error sending command\n");
327
328 mxs_nand_return_dma_descs(nand_info);
329
330 /* Reset the command queue. */
331 nand_info->cmd_queue_len = 0;
332}
333
334/*
335 * Test if the NAND flash is ready.
336 */
337static int mxs_nand_device_ready(struct mtd_info *mtd)
338{
339 struct nand_chip *chip = mtd->priv;
340 struct mxs_nand_info *nand_info = chip->priv;
Otavio Salvador9c471142012-08-05 09:05:31 +0000341 struct mxs_gpmi_regs *gpmi_regs =
342 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
Marek Vasut0d4e8502011-11-08 23:18:16 +0000343 uint32_t tmp;
344
345 tmp = readl(&gpmi_regs->hw_gpmi_stat);
346 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
347
348 return tmp & 1;
349}
350
351/*
352 * Select the NAND chip.
353 */
354static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
355{
356 struct nand_chip *nand = mtd->priv;
357 struct mxs_nand_info *nand_info = nand->priv;
358
359 nand_info->cur_chip = chip;
360}
361
362/*
363 * Handle block mark swapping.
364 *
365 * Note that, when this function is called, it doesn't know whether it's
366 * swapping the block mark, or swapping it *back* -- but it doesn't matter
367 * because the the operation is the same.
368 */
369static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
370 uint8_t *data_buf, uint8_t *oob_buf)
371{
372 uint32_t bit_offset;
373 uint32_t buf_offset;
374
375 uint32_t src;
376 uint32_t dst;
377
378 bit_offset = mxs_nand_mark_bit_offset(mtd);
379 buf_offset = mxs_nand_mark_byte_offset(mtd);
380
381 /*
382 * Get the byte from the data area that overlays the block mark. Since
383 * the ECC engine applies its own view to the bits in the page, the
384 * physical block mark won't (in general) appear on a byte boundary in
385 * the data.
386 */
387 src = data_buf[buf_offset] >> bit_offset;
388 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
389
390 dst = oob_buf[0];
391
392 oob_buf[0] = src;
393
394 data_buf[buf_offset] &= ~(0xff << bit_offset);
395 data_buf[buf_offset + 1] &= 0xff << bit_offset;
396
397 data_buf[buf_offset] |= dst << bit_offset;
398 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
399}
400
401/*
402 * Read data from NAND.
403 */
404static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
405{
406 struct nand_chip *nand = mtd->priv;
407 struct mxs_nand_info *nand_info = nand->priv;
408 struct mxs_dma_desc *d;
409 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
410 int ret;
411
412 if (length > NAND_MAX_PAGESIZE) {
413 printf("MXS NAND: DMA buffer too big\n");
414 return;
415 }
416
417 if (!buf) {
418 printf("MXS NAND: DMA buffer is NULL\n");
419 return;
420 }
421
422 /* Compile the DMA descriptor - a descriptor that reads data. */
423 d = mxs_nand_get_dma_desc(nand_info);
424 d->cmd.data =
425 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
426 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
427 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
428 (length << MXS_DMA_DESC_BYTES_OFFSET);
429
430 d->cmd.address = (dma_addr_t)nand_info->data_buf;
431
432 d->cmd.pio_words[0] =
433 GPMI_CTRL0_COMMAND_MODE_READ |
434 GPMI_CTRL0_WORD_LENGTH |
435 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
436 GPMI_CTRL0_ADDRESS_NAND_DATA |
437 length;
438
439 mxs_dma_desc_append(channel, d);
440
441 /*
442 * A DMA descriptor that waits for the command to end and the chip to
443 * become ready.
444 *
445 * I think we actually should *not* be waiting for the chip to become
446 * ready because, after all, we don't care. I think the original code
447 * did that and no one has re-thought it yet.
448 */
449 d = mxs_nand_get_dma_desc(nand_info);
450 d->cmd.data =
451 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
452 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
453 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
454
455 d->cmd.address = 0;
456
457 d->cmd.pio_words[0] =
458 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
459 GPMI_CTRL0_WORD_LENGTH |
460 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
461 GPMI_CTRL0_ADDRESS_NAND_DATA;
462
463 mxs_dma_desc_append(channel, d);
464
465 /* Execute the DMA chain. */
466 ret = mxs_dma_go(channel);
467 if (ret) {
468 printf("MXS NAND: DMA read error\n");
469 goto rtn;
470 }
471
Marek Vasut6b9408e2012-03-15 18:33:19 +0000472 /* Invalidate caches */
473 mxs_nand_inval_data_buf(nand_info);
474
Marek Vasut0d4e8502011-11-08 23:18:16 +0000475 memcpy(buf, nand_info->data_buf, length);
476
477rtn:
478 mxs_nand_return_dma_descs(nand_info);
479}
480
481/*
482 * Write data to NAND.
483 */
484static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
485 int length)
486{
487 struct nand_chip *nand = mtd->priv;
488 struct mxs_nand_info *nand_info = nand->priv;
489 struct mxs_dma_desc *d;
490 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
491 int ret;
492
493 if (length > NAND_MAX_PAGESIZE) {
494 printf("MXS NAND: DMA buffer too big\n");
495 return;
496 }
497
498 if (!buf) {
499 printf("MXS NAND: DMA buffer is NULL\n");
500 return;
501 }
502
503 memcpy(nand_info->data_buf, buf, length);
504
505 /* Compile the DMA descriptor - a descriptor that writes data. */
506 d = mxs_nand_get_dma_desc(nand_info);
507 d->cmd.data =
508 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
509 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
510 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
511 (length << MXS_DMA_DESC_BYTES_OFFSET);
512
513 d->cmd.address = (dma_addr_t)nand_info->data_buf;
514
515 d->cmd.pio_words[0] =
516 GPMI_CTRL0_COMMAND_MODE_WRITE |
517 GPMI_CTRL0_WORD_LENGTH |
518 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
519 GPMI_CTRL0_ADDRESS_NAND_DATA |
520 length;
521
522 mxs_dma_desc_append(channel, d);
523
Marek Vasut6b9408e2012-03-15 18:33:19 +0000524 /* Flush caches */
525 mxs_nand_flush_data_buf(nand_info);
526
Marek Vasut0d4e8502011-11-08 23:18:16 +0000527 /* Execute the DMA chain. */
528 ret = mxs_dma_go(channel);
529 if (ret)
530 printf("MXS NAND: DMA write error\n");
531
532 mxs_nand_return_dma_descs(nand_info);
533}
534
535/*
536 * Read a single byte from NAND.
537 */
538static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
539{
540 uint8_t buf;
541 mxs_nand_read_buf(mtd, &buf, 1);
542 return buf;
543}
544
545/*
546 * Read a page from NAND.
547 */
548static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
Sergey Lapindfe64e22013-01-14 03:46:50 +0000549 uint8_t *buf, int oob_required,
550 int page)
Marek Vasut0d4e8502011-11-08 23:18:16 +0000551{
552 struct mxs_nand_info *nand_info = nand->priv;
553 struct mxs_dma_desc *d;
554 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
555 uint32_t corrected = 0, failed = 0;
556 uint8_t *status;
557 int i, ret;
558
559 /* Compile the DMA descriptor - wait for ready. */
560 d = mxs_nand_get_dma_desc(nand_info);
561 d->cmd.data =
562 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
563 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
564 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
565
566 d->cmd.address = 0;
567
568 d->cmd.pio_words[0] =
569 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
570 GPMI_CTRL0_WORD_LENGTH |
571 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
572 GPMI_CTRL0_ADDRESS_NAND_DATA;
573
574 mxs_dma_desc_append(channel, d);
575
576 /* Compile the DMA descriptor - enable the BCH block and read. */
577 d = mxs_nand_get_dma_desc(nand_info);
578 d->cmd.data =
579 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
580 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
581
582 d->cmd.address = 0;
583
584 d->cmd.pio_words[0] =
585 GPMI_CTRL0_COMMAND_MODE_READ |
586 GPMI_CTRL0_WORD_LENGTH |
587 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
588 GPMI_CTRL0_ADDRESS_NAND_DATA |
589 (mtd->writesize + mtd->oobsize);
590 d->cmd.pio_words[1] = 0;
591 d->cmd.pio_words[2] =
592 GPMI_ECCCTRL_ENABLE_ECC |
593 GPMI_ECCCTRL_ECC_CMD_DECODE |
594 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
595 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
596 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
597 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
598
599 mxs_dma_desc_append(channel, d);
600
601 /* Compile the DMA descriptor - disable the BCH block. */
602 d = mxs_nand_get_dma_desc(nand_info);
603 d->cmd.data =
604 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
605 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
606 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
607
608 d->cmd.address = 0;
609
610 d->cmd.pio_words[0] =
611 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
612 GPMI_CTRL0_WORD_LENGTH |
613 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
614 GPMI_CTRL0_ADDRESS_NAND_DATA |
615 (mtd->writesize + mtd->oobsize);
616 d->cmd.pio_words[1] = 0;
617 d->cmd.pio_words[2] = 0;
618
619 mxs_dma_desc_append(channel, d);
620
621 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
622 d = mxs_nand_get_dma_desc(nand_info);
623 d->cmd.data =
624 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
625 MXS_DMA_DESC_DEC_SEM;
626
627 d->cmd.address = 0;
628
629 mxs_dma_desc_append(channel, d);
630
631 /* Execute the DMA chain. */
632 ret = mxs_dma_go(channel);
633 if (ret) {
634 printf("MXS NAND: DMA read error\n");
635 goto rtn;
636 }
637
638 ret = mxs_nand_wait_for_bch_complete();
639 if (ret) {
640 printf("MXS NAND: BCH read timeout\n");
641 goto rtn;
642 }
643
Marek Vasut6b9408e2012-03-15 18:33:19 +0000644 /* Invalidate caches */
645 mxs_nand_inval_data_buf(nand_info);
646
Marek Vasut0d4e8502011-11-08 23:18:16 +0000647 /* Read DMA completed, now do the mark swapping. */
648 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
649
650 /* Loop over status bytes, accumulating ECC status. */
651 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
652 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
653 if (status[i] == 0x00)
654 continue;
655
656 if (status[i] == 0xff)
657 continue;
658
659 if (status[i] == 0xfe) {
660 failed++;
661 continue;
662 }
663
664 corrected += status[i];
665 }
666
667 /* Propagate ECC status to the owning MTD. */
668 mtd->ecc_stats.failed += failed;
669 mtd->ecc_stats.corrected += corrected;
670
671 /*
672 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
673 * details about our policy for delivering the OOB.
674 *
675 * We fill the caller's buffer with set bits, and then copy the block
676 * mark to the caller's buffer. Note that, if block mark swapping was
677 * necessary, it has already been done, so we can rely on the first
678 * byte of the auxiliary buffer to contain the block mark.
679 */
680 memset(nand->oob_poi, 0xff, mtd->oobsize);
681
682 nand->oob_poi[0] = nand_info->oob_buf[0];
683
684 memcpy(buf, nand_info->data_buf, mtd->writesize);
685
686rtn:
687 mxs_nand_return_dma_descs(nand_info);
688
689 return ret;
690}
691
692/*
693 * Write a page to NAND.
694 */
Sergey Lapindfe64e22013-01-14 03:46:50 +0000695static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
696 struct nand_chip *nand, const uint8_t *buf,
697 int oob_required)
Marek Vasut0d4e8502011-11-08 23:18:16 +0000698{
699 struct mxs_nand_info *nand_info = nand->priv;
700 struct mxs_dma_desc *d;
701 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
702 int ret;
703
704 memcpy(nand_info->data_buf, buf, mtd->writesize);
705 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
706
707 /* Handle block mark swapping. */
708 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
709
710 /* Compile the DMA descriptor - write data. */
711 d = mxs_nand_get_dma_desc(nand_info);
712 d->cmd.data =
713 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
714 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
715 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
716
717 d->cmd.address = 0;
718
719 d->cmd.pio_words[0] =
720 GPMI_CTRL0_COMMAND_MODE_WRITE |
721 GPMI_CTRL0_WORD_LENGTH |
722 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
723 GPMI_CTRL0_ADDRESS_NAND_DATA;
724 d->cmd.pio_words[1] = 0;
725 d->cmd.pio_words[2] =
726 GPMI_ECCCTRL_ENABLE_ECC |
727 GPMI_ECCCTRL_ECC_CMD_ENCODE |
728 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
729 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
730 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
731 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
732
733 mxs_dma_desc_append(channel, d);
734
Marek Vasut6b9408e2012-03-15 18:33:19 +0000735 /* Flush caches */
736 mxs_nand_flush_data_buf(nand_info);
737
Marek Vasut0d4e8502011-11-08 23:18:16 +0000738 /* Execute the DMA chain. */
739 ret = mxs_dma_go(channel);
740 if (ret) {
741 printf("MXS NAND: DMA write error\n");
742 goto rtn;
743 }
744
745 ret = mxs_nand_wait_for_bch_complete();
746 if (ret) {
747 printf("MXS NAND: BCH write timeout\n");
748 goto rtn;
749 }
750
751rtn:
752 mxs_nand_return_dma_descs(nand_info);
Sergey Lapindfe64e22013-01-14 03:46:50 +0000753 return 0;
Marek Vasut0d4e8502011-11-08 23:18:16 +0000754}
755
756/*
757 * Read OOB from NAND.
758 *
759 * This function is a veneer that replaces the function originally installed by
760 * the NAND Flash MTD code.
761 */
762static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
763 struct mtd_oob_ops *ops)
764{
765 struct nand_chip *chip = mtd->priv;
766 struct mxs_nand_info *nand_info = chip->priv;
767 int ret;
768
Sergey Lapindfe64e22013-01-14 03:46:50 +0000769 if (ops->mode == MTD_OPS_RAW)
Marek Vasut0d4e8502011-11-08 23:18:16 +0000770 nand_info->raw_oob_mode = 1;
771 else
772 nand_info->raw_oob_mode = 0;
773
774 ret = nand_info->hooked_read_oob(mtd, from, ops);
775
776 nand_info->raw_oob_mode = 0;
777
778 return ret;
779}
780
781/*
782 * Write OOB to NAND.
783 *
784 * This function is a veneer that replaces the function originally installed by
785 * the NAND Flash MTD code.
786 */
787static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
788 struct mtd_oob_ops *ops)
789{
790 struct nand_chip *chip = mtd->priv;
791 struct mxs_nand_info *nand_info = chip->priv;
792 int ret;
793
Sergey Lapindfe64e22013-01-14 03:46:50 +0000794 if (ops->mode == MTD_OPS_RAW)
Marek Vasut0d4e8502011-11-08 23:18:16 +0000795 nand_info->raw_oob_mode = 1;
796 else
797 nand_info->raw_oob_mode = 0;
798
799 ret = nand_info->hooked_write_oob(mtd, to, ops);
800
801 nand_info->raw_oob_mode = 0;
802
803 return ret;
804}
805
806/*
807 * Mark a block bad in NAND.
808 *
809 * This function is a veneer that replaces the function originally installed by
810 * the NAND Flash MTD code.
811 */
812static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
813{
814 struct nand_chip *chip = mtd->priv;
815 struct mxs_nand_info *nand_info = chip->priv;
816 int ret;
817
818 nand_info->marking_block_bad = 1;
819
820 ret = nand_info->hooked_block_markbad(mtd, ofs);
821
822 nand_info->marking_block_bad = 0;
823
824 return ret;
825}
826
827/*
828 * There are several places in this driver where we have to handle the OOB and
829 * block marks. This is the function where things are the most complicated, so
830 * this is where we try to explain it all. All the other places refer back to
831 * here.
832 *
833 * These are the rules, in order of decreasing importance:
834 *
835 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
836 * write operations take measures to protect it.
837 *
838 * 2) In read operations, the first byte of the OOB we return must reflect the
839 * true state of the block mark, no matter where that block mark appears in
840 * the physical page.
841 *
842 * 3) ECC-based read operations return an OOB full of set bits (since we never
843 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
844 * return).
845 *
846 * 4) "Raw" read operations return a direct view of the physical bytes in the
847 * page, using the conventional definition of which bytes are data and which
848 * are OOB. This gives the caller a way to see the actual, physical bytes
849 * in the page, without the distortions applied by our ECC engine.
850 *
851 * What we do for this specific read operation depends on whether we're doing
852 * "raw" read, or an ECC-based read.
853 *
854 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
855 * easy. When reading a page, for example, the NAND Flash MTD code calls our
856 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
857 * ECC-based or raw view of the page is implicit in which function it calls
858 * (there is a similar pair of ECC-based/raw functions for writing).
859 *
860 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
861 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
862 * caller wants an ECC-based or raw view of the page is not propagated down to
863 * this driver.
864 *
865 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
866 * ecc.read_oob and ecc.write_oob function pointers in the owning
867 * struct mtd_info with our own functions. These hook functions set the
868 * raw_oob_mode field so that, when control finally arrives here, we'll know
869 * what to do.
870 */
871static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
Sergey Lapindfe64e22013-01-14 03:46:50 +0000872 int page)
Marek Vasut0d4e8502011-11-08 23:18:16 +0000873{
874 struct mxs_nand_info *nand_info = nand->priv;
875
876 /*
877 * First, fill in the OOB buffer. If we're doing a raw read, we need to
878 * get the bytes from the physical page. If we're not doing a raw read,
879 * we need to fill the buffer with set bits.
880 */
881 if (nand_info->raw_oob_mode) {
882 /*
883 * If control arrives here, we're doing a "raw" read. Send the
884 * command to read the conventional OOB and read it.
885 */
886 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
887 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
888 } else {
889 /*
890 * If control arrives here, we're not doing a "raw" read. Fill
891 * the OOB buffer with set bits and correct the block mark.
892 */
893 memset(nand->oob_poi, 0xff, mtd->oobsize);
894
895 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
896 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
897 }
898
899 return 0;
900
901}
902
903/*
904 * Write OOB data to NAND.
905 */
906static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
907 int page)
908{
909 struct mxs_nand_info *nand_info = nand->priv;
910 uint8_t block_mark = 0;
911
912 /*
913 * There are fundamental incompatibilities between the i.MX GPMI NFC and
914 * the NAND Flash MTD model that make it essentially impossible to write
915 * the out-of-band bytes.
916 *
917 * We permit *ONE* exception. If the *intent* of writing the OOB is to
918 * mark a block bad, we can do that.
919 */
920
921 if (!nand_info->marking_block_bad) {
922 printf("NXS NAND: Writing OOB isn't supported\n");
923 return -EIO;
924 }
925
926 /* Write the block mark. */
927 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
928 nand->write_buf(mtd, &block_mark, 1);
929 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
930
931 /* Check if it worked. */
932 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
933 return -EIO;
934
935 return 0;
936}
937
938/*
939 * Claims all blocks are good.
940 *
941 * In principle, this function is *only* called when the NAND Flash MTD system
942 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
943 * the driver for bad block information.
944 *
945 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
946 * this function is *only* called when we take it away.
947 *
948 * Thus, this function is only called when we want *all* blocks to look good,
949 * so it *always* return success.
950 */
951static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
952{
953 return 0;
954}
955
956/*
957 * Nominally, the purpose of this function is to look for or create the bad
958 * block table. In fact, since the we call this function at the very end of
959 * the initialization process started by nand_scan(), and we doesn't have a
960 * more formal mechanism, we "hook" this function to continue init process.
961 *
962 * At this point, the physical NAND Flash chips have been identified and
963 * counted, so we know the physical geometry. This enables us to make some
964 * important configuration decisions.
965 *
966 * The return value of this function propogates directly back to this driver's
967 * call to nand_scan(). Anything other than zero will cause this driver to
968 * tear everything down and declare failure.
969 */
970static int mxs_nand_scan_bbt(struct mtd_info *mtd)
971{
972 struct nand_chip *nand = mtd->priv;
973 struct mxs_nand_info *nand_info = nand->priv;
Otavio Salvador9c471142012-08-05 09:05:31 +0000974 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
Marek Vasut0d4e8502011-11-08 23:18:16 +0000975 uint32_t tmp;
976
977 /* Configure BCH and set NFC geometry */
Otavio Salvadorfa7a51c2012-08-13 09:53:12 +0000978 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
Marek Vasut0d4e8502011-11-08 23:18:16 +0000979
980 /* Configure layout 0 */
981 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
982 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
983 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
984 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
985 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
986 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
987 writel(tmp, &bch_regs->hw_bch_flash0layout0);
988
989 tmp = (mtd->writesize + mtd->oobsize)
990 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
991 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
992 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
993 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
994 writel(tmp, &bch_regs->hw_bch_flash0layout1);
995
996 /* Set *all* chip selects to use layout 0 */
997 writel(0, &bch_regs->hw_bch_layoutselect);
998
999 /* Enable BCH complete interrupt */
1000 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1001
1002 /* Hook some operations at the MTD level. */
Sergey Lapindfe64e22013-01-14 03:46:50 +00001003 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1004 nand_info->hooked_read_oob = mtd->_read_oob;
1005 mtd->_read_oob = mxs_nand_hook_read_oob;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001006 }
1007
Sergey Lapindfe64e22013-01-14 03:46:50 +00001008 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1009 nand_info->hooked_write_oob = mtd->_write_oob;
1010 mtd->_write_oob = mxs_nand_hook_write_oob;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001011 }
1012
Sergey Lapindfe64e22013-01-14 03:46:50 +00001013 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1014 nand_info->hooked_block_markbad = mtd->_block_markbad;
1015 mtd->_block_markbad = mxs_nand_hook_block_markbad;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001016 }
1017
1018 /* We use the reference implementation for bad block management. */
1019 return nand_default_bbt(mtd);
1020}
1021
1022/*
1023 * Allocate DMA buffers
1024 */
1025int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1026{
1027 uint8_t *buf;
1028 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1029
Marek Vasut6b9408e2012-03-15 18:33:19 +00001030 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1031
Marek Vasut0d4e8502011-11-08 23:18:16 +00001032 /* DMA buffers */
Marek Vasut6b9408e2012-03-15 18:33:19 +00001033 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001034 if (!buf) {
1035 printf("MXS NAND: Error allocating DMA buffers\n");
1036 return -ENOMEM;
1037 }
1038
Marek Vasut6b9408e2012-03-15 18:33:19 +00001039 memset(buf, 0, nand_info->data_buf_size);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001040
1041 nand_info->data_buf = buf;
1042 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001043 /* Command buffers */
1044 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1045 MXS_NAND_COMMAND_BUFFER_SIZE);
1046 if (!nand_info->cmd_buf) {
1047 free(buf);
1048 printf("MXS NAND: Error allocating command buffers\n");
1049 return -ENOMEM;
1050 }
1051 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1052 nand_info->cmd_queue_len = 0;
1053
1054 return 0;
1055}
1056
1057/*
1058 * Initializes the NFC hardware.
1059 */
1060int mxs_nand_init(struct mxs_nand_info *info)
1061{
Otavio Salvador9c471142012-08-05 09:05:31 +00001062 struct mxs_gpmi_regs *gpmi_regs =
1063 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
Wolfram Sang0b38fff2012-12-05 10:48:47 +00001064 struct mxs_bch_regs *bch_regs =
1065 (struct mxs_bch_regs *)MXS_BCH_BASE;
Marek Vasut96666a32012-04-08 17:34:46 +00001066 int i = 0, j;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001067
1068 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1069 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1070 if (!info->desc)
1071 goto err1;
1072
1073 /* Allocate the DMA descriptors. */
1074 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1075 info->desc[i] = mxs_dma_desc_alloc();
1076 if (!info->desc[i])
1077 goto err2;
1078 }
1079
1080 /* Init the DMA controller. */
Marek Vasut96666a32012-04-08 17:34:46 +00001081 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1082 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1083 if (mxs_dma_init_channel(j))
1084 goto err3;
1085 }
Marek Vasut0d4e8502011-11-08 23:18:16 +00001086
1087 /* Reset the GPMI block. */
Otavio Salvadorfa7a51c2012-08-13 09:53:12 +00001088 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
Wolfram Sang0b38fff2012-12-05 10:48:47 +00001089 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001090
1091 /*
1092 * Choose NAND mode, set IRQ polarity, disable write protection and
1093 * select BCH ECC.
1094 */
1095 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1096 GPMI_CTRL1_GPMI_MODE,
1097 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1098 GPMI_CTRL1_BCH_MODE);
1099
1100 return 0;
1101
Marek Vasut96666a32012-04-08 17:34:46 +00001102err3:
1103 for (--j; j >= 0; j--)
1104 mxs_dma_release(j);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001105err2:
1106 free(info->desc);
1107err1:
1108 for (--i; i >= 0; i--)
1109 mxs_dma_desc_free(info->desc[i]);
1110 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1111 return -ENOMEM;
1112}
1113
1114/*!
1115 * This function is called during the driver binding process.
1116 *
1117 * @param pdev the device structure used to store device specific
1118 * information that is used by the suspend, resume and
1119 * remove functions
1120 *
1121 * @return The function always returns 0.
1122 */
1123int board_nand_init(struct nand_chip *nand)
1124{
1125 struct mxs_nand_info *nand_info;
1126 int err;
1127
1128 nand_info = malloc(sizeof(struct mxs_nand_info));
1129 if (!nand_info) {
1130 printf("MXS NAND: Failed to allocate private data\n");
1131 return -ENOMEM;
1132 }
1133 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1134
1135 err = mxs_nand_alloc_buffers(nand_info);
1136 if (err)
1137 goto err1;
1138
1139 err = mxs_nand_init(nand_info);
1140 if (err)
1141 goto err2;
1142
1143 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1144
1145 nand->priv = nand_info;
1146 nand->options |= NAND_NO_SUBPAGE_WRITE;
1147
1148 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1149
1150 nand->dev_ready = mxs_nand_device_ready;
1151 nand->select_chip = mxs_nand_select_chip;
1152 nand->block_bad = mxs_nand_block_bad;
1153 nand->scan_bbt = mxs_nand_scan_bbt;
1154
1155 nand->read_byte = mxs_nand_read_byte;
1156
1157 nand->read_buf = mxs_nand_read_buf;
1158 nand->write_buf = mxs_nand_write_buf;
1159
1160 nand->ecc.read_page = mxs_nand_ecc_read_page;
1161 nand->ecc.write_page = mxs_nand_ecc_write_page;
1162 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1163 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1164
1165 nand->ecc.layout = &fake_ecc_layout;
1166 nand->ecc.mode = NAND_ECC_HW;
1167 nand->ecc.bytes = 9;
1168 nand->ecc.size = 512;
Sergey Lapindfe64e22013-01-14 03:46:50 +00001169 nand->ecc.strength = 8;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001170
1171 return 0;
1172
1173err2:
1174 free(nand_info->data_buf);
1175 free(nand_info->cmd_buf);
1176err1:
1177 free(nand_info);
1178 return err;
1179}