Jon Loeliger | debb735 | 2006-04-26 17:58:56 -0500 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2004 Freescale Semiconductor. |
| 3 | * (C) Copyright 2003 Motorola Inc. |
| 4 | * Xianghua Xiao (X.Xiao@motorola.com) |
| 5 | * |
| 6 | * See file CREDITS for list of people who contributed to this |
| 7 | * project. |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License as |
| 11 | * published by the Free Software Foundation; either version 2 of |
| 12 | * the License, or (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 22 | * MA 02111-1307 USA |
| 23 | */ |
| 24 | |
| 25 | #include <common.h> |
| 26 | #include <asm/processor.h> |
| 27 | #include <i2c.h> |
| 28 | #include <spd.h> |
| 29 | #include <asm/mmu.h> |
| 30 | |
| 31 | |
| 32 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| 33 | extern void dma_init(void); |
| 34 | extern uint dma_check(void); |
| 35 | extern int dma_xfer(void *dest, uint count, void *src); |
| 36 | #endif |
| 37 | |
| 38 | #ifdef CONFIG_SPD_EEPROM |
| 39 | |
| 40 | #ifndef CFG_READ_SPD |
| 41 | #define CFG_READ_SPD i2c_read |
| 42 | #endif |
| 43 | |
| 44 | /* |
| 45 | * Convert picoseconds into clock cycles (rounding up if needed). |
| 46 | */ |
| 47 | |
| 48 | int |
| 49 | picos_to_clk(int picos) |
| 50 | { |
| 51 | int clks; |
| 52 | |
| 53 | clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); |
| 54 | if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { |
| 55 | clks++; |
| 56 | } |
| 57 | |
| 58 | return clks; |
| 59 | } |
| 60 | |
| 61 | |
| 62 | /* |
| 63 | * Calculate the Density of each Physical Rank. |
| 64 | * Returned size is in bytes. |
| 65 | * |
| 66 | * Study these table from Byte 31 of JEDEC SPD Spec. |
| 67 | * |
| 68 | * DDR I DDR II |
| 69 | * Bit Size Size |
| 70 | * --- ----- ------ |
| 71 | * 7 high 512MB 512MB |
| 72 | * 6 256MB 256MB |
| 73 | * 5 128MB 128MB |
| 74 | * 4 64MB 16GB |
| 75 | * 3 32MB 8GB |
| 76 | * 2 16MB 4GB |
| 77 | * 1 2GB 2GB |
| 78 | * 0 low 1GB 1GB |
| 79 | * |
| 80 | * Reorder Table to be linear by stripping the bottom |
| 81 | * 2 or 5 bits off and shifting them up to the top. |
| 82 | */ |
| 83 | |
| 84 | unsigned int |
| 85 | compute_banksize(unsigned int mem_type, unsigned char row_dens) |
| 86 | { |
| 87 | unsigned int bsize; |
| 88 | |
| 89 | if (mem_type == SPD_MEMTYPE_DDR) { |
| 90 | /* Bottom 2 bits up to the top. */ |
| 91 | bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; |
| 92 | debug("DDR: DDR I rank density = 0x%08x\n", bsize); |
| 93 | } else { |
| 94 | /* Bottom 5 bits up to the top. */ |
| 95 | bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; |
| 96 | debug("DDR: DDR II rank density = 0x%08x\n", bsize); |
| 97 | } |
| 98 | return bsize; |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /* |
| 103 | * Convert a two-nibble BCD value into a cycle time. |
| 104 | * While the spec calls for nano-seconds, picos are returned. |
| 105 | * |
| 106 | * This implements the tables for bytes 9, 23 and 25 for both |
| 107 | * DDR I and II. No allowance for distinguishing the invalid |
| 108 | * fields absent for DDR I yet present in DDR II is made. |
| 109 | * (That is, cycle times of .25, .33, .66 and .75 ns are |
| 110 | * allowed for both DDR II and I.) |
| 111 | */ |
| 112 | |
| 113 | unsigned int |
| 114 | convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) |
| 115 | { |
| 116 | /* |
| 117 | * Table look up the lower nibble, allow DDR I & II. |
| 118 | */ |
| 119 | unsigned int tenths_ps[16] = { |
| 120 | 0, |
| 121 | 100, |
| 122 | 200, |
| 123 | 300, |
| 124 | 400, |
| 125 | 500, |
| 126 | 600, |
| 127 | 700, |
| 128 | 800, |
| 129 | 900, |
| 130 | 250, |
| 131 | 330, /* FIXME: Is 333 better/valid? */ |
| 132 | 660, /* FIXME: Is 667 better/valid? */ |
| 133 | 750, |
| 134 | 0, /* undefined */ |
| 135 | 0 /* undefined */ |
| 136 | }; |
| 137 | |
| 138 | unsigned int whole_ns = (spd_val & 0xF0) >> 4; |
| 139 | unsigned int tenth_ns = spd_val & 0x0F; |
| 140 | unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; |
| 141 | |
| 142 | return ps; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | long int |
| 147 | spd_sdram(void) |
| 148 | { |
| 149 | volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| 150 | volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1; |
| 151 | volatile ccsr_gur_t *gur = &immap->im_gur; |
| 152 | spd_eeprom_t spd; |
| 153 | unsigned int n_ranks; |
| 154 | unsigned int rank_density; |
| 155 | unsigned int odt_rd_cfg, odt_wr_cfg; |
| 156 | unsigned int odt_cfg, mode_odt_enable; |
| 157 | unsigned int dqs_cfg; |
| 158 | unsigned char twr_clk, twtr_clk, twr_auto_clk; |
| 159 | unsigned int tCKmin_ps, tCKmax_ps; |
| 160 | unsigned int max_data_rate, effective_data_rate; |
| 161 | unsigned int busfreq; |
| 162 | unsigned sdram_cfg_1; |
| 163 | unsigned int memsize; |
| 164 | unsigned char caslat, caslat_ctrl; |
| 165 | unsigned int trfc, trfc_clk, trfc_low, trfc_high; |
| 166 | unsigned int trcd_clk; |
| 167 | unsigned int trtp_clk; |
| 168 | unsigned char cke_min_clk; |
| 169 | unsigned char add_lat; |
| 170 | unsigned char wr_lat; |
| 171 | unsigned char wr_data_delay; |
| 172 | unsigned char four_act; |
| 173 | unsigned char cpo; |
| 174 | unsigned char burst_len; |
| 175 | unsigned int mode_caslat; |
| 176 | unsigned char sdram_type; |
| 177 | unsigned char d_init; |
| 178 | |
| 179 | |
| 180 | unsigned int law_size; |
| 181 | volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm; |
| 182 | |
| 183 | /* |
| 184 | * Read SPD information. |
| 185 | */ |
| 186 | |
| 187 | CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd)); |
| 188 | |
| 189 | /* |
| 190 | * Check for supported memory module types. |
| 191 | */ |
| 192 | if (spd.mem_type != SPD_MEMTYPE_DDR && |
| 193 | spd.mem_type != SPD_MEMTYPE_DDR2) { |
| 194 | printf("Unable to locate DDR I or DDR II module.\n" |
| 195 | " Fundamental memory type is 0x%0x\n", |
| 196 | spd.mem_type); |
| 197 | return 0; |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * These test gloss over DDR I and II differences in interpretation |
| 202 | * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks |
| 203 | * are not supported on DDR I; and not encoded on DDR II. |
| 204 | * |
| 205 | * Also note that the 8548 controller can support: |
| 206 | * 12 <= nrow <= 16 |
| 207 | * and |
| 208 | * 8 <= ncol <= 11 (still, for DDR) |
| 209 | * 6 <= ncol <= 9 (for FCRAM) |
| 210 | */ |
| 211 | if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { |
| 212 | printf("DDR: Unsupported number of Row Addr lines: %d.\n", |
| 213 | spd.nrow_addr); |
| 214 | return 0; |
| 215 | } |
| 216 | if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { |
| 217 | printf("DDR: Unsupported number of Column Addr lines: %d.\n", |
| 218 | spd.ncol_addr); |
| 219 | return 0; |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * Determine the number of physical banks controlled by |
| 224 | * different Chip Select signals. This is not quite the |
| 225 | * same as the number of DIMM modules on the board. Feh. |
| 226 | */ |
| 227 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 228 | n_ranks = spd.nrows; |
| 229 | } else { |
| 230 | n_ranks = (spd.nrows & 0x7) + 1; |
| 231 | } |
| 232 | |
| 233 | debug("DDR: number of ranks = %d\n", n_ranks); |
| 234 | |
| 235 | if (n_ranks > 2) { |
| 236 | printf("DDR: Only 2 chip selects are supported: %d\n", |
| 237 | n_ranks); |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Adjust DDR II IO voltage biasing. It just makes it work. |
| 243 | */ |
| 244 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| 245 | gur->ddrioovcr = (0 |
| 246 | | 0x80000000 /* Enable */ |
| 247 | | 0x10000000 /* VSEL to 1.8V */ |
| 248 | ); |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * Determine the size of each Rank in bytes. |
| 253 | */ |
| 254 | rank_density = compute_banksize(spd.mem_type, spd.row_dens); |
| 255 | |
| 256 | |
| 257 | /* |
| 258 | * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg |
| 259 | */ |
| 260 | ddr1->cs0_bnds = (rank_density >> 24) - 1; |
| 261 | |
| 262 | /* |
| 263 | * ODT configuration recommendation from DDR Controller Chapter. |
| 264 | */ |
| 265 | odt_rd_cfg = 0; /* Never assert ODT */ |
| 266 | odt_wr_cfg = 0; /* Never assert ODT */ |
| 267 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| 268 | odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */ |
| 269 | } |
| 270 | |
| 271 | ddr1->cs0_config = ( 1 << 31 |
| 272 | | (odt_rd_cfg << 20) |
| 273 | | (odt_wr_cfg << 16) |
| 274 | | (spd.nrow_addr - 12) << 8 |
| 275 | | (spd.ncol_addr - 8) ); |
| 276 | debug("\n"); |
| 277 | debug("DDR: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds); |
| 278 | debug("DDR: cs0_config = 0x%08x\n", ddr1->cs0_config); |
| 279 | |
| 280 | if (n_ranks == 2) { |
| 281 | /* |
| 282 | * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg |
| 283 | */ |
| 284 | ddr1->cs1_bnds = ( (rank_density >> 8) |
| 285 | | ((rank_density >> (24 - 1)) - 1) ); |
| 286 | ddr1->cs1_config = ( 1<<31 |
| 287 | | (odt_rd_cfg << 20) |
| 288 | | (odt_wr_cfg << 16) |
| 289 | | (spd.nrow_addr - 12) << 8 |
| 290 | | (spd.ncol_addr - 8) ); |
| 291 | debug("DDR: cs1_bnds = 0x%08x\n", ddr1->cs1_bnds); |
| 292 | debug("DDR: cs1_config = 0x%08x\n", ddr1->cs1_config); |
| 293 | } |
| 294 | |
| 295 | |
| 296 | /* |
| 297 | * Find the largest CAS by locating the highest 1 bit |
| 298 | * in the spd.cas_lat field. Translate it to a DDR |
| 299 | * controller field value: |
| 300 | * |
| 301 | * CAS Lat DDR I DDR II Ctrl |
| 302 | * Clocks SPD Bit SPD Bit Value |
| 303 | * ------- ------- ------- ----- |
| 304 | * 1.0 0 0001 |
| 305 | * 1.5 1 0010 |
| 306 | * 2.0 2 2 0011 |
| 307 | * 2.5 3 0100 |
| 308 | * 3.0 4 3 0101 |
| 309 | * 3.5 5 0110 |
| 310 | * 4.0 4 0111 |
| 311 | * 4.5 1000 |
| 312 | * 5.0 5 1001 |
| 313 | */ |
| 314 | caslat = __ilog2(spd.cas_lat); |
| 315 | if ((spd.mem_type == SPD_MEMTYPE_DDR) |
| 316 | && (caslat > 5)) { |
| 317 | printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); |
| 318 | return 0; |
| 319 | |
| 320 | } else if (spd.mem_type == SPD_MEMTYPE_DDR2 |
| 321 | && (caslat < 2 || caslat > 5)) { |
| 322 | printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", |
| 323 | spd.cas_lat); |
| 324 | return 0; |
| 325 | } |
| 326 | debug("DDR: caslat SPD bit is %d\n", caslat); |
| 327 | |
| 328 | /* |
| 329 | * Calculate the Maximum Data Rate based on the Minimum Cycle time. |
| 330 | * The SPD clk_cycle field (tCKmin) is measured in tenths of |
| 331 | * nanoseconds and represented as BCD. |
| 332 | */ |
| 333 | tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); |
| 334 | debug("DDR: tCKmin = %d ps\n", tCKmin_ps); |
| 335 | |
| 336 | /* |
| 337 | * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. |
| 338 | */ |
| 339 | max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; |
| 340 | debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); |
| 341 | |
| 342 | |
| 343 | /* |
| 344 | * Adjust the CAS Latency to allow for bus speeds that |
| 345 | * are slower than the DDR module. |
| 346 | */ |
| 347 | busfreq = get_bus_freq(0) / 1000000; /* MHz */ |
| 348 | |
| 349 | effective_data_rate = max_data_rate; |
| 350 | if (busfreq < 90) { |
| 351 | /* DDR rate out-of-range */ |
| 352 | puts("DDR: platform frequency is not fit for DDR rate\n"); |
| 353 | return 0; |
| 354 | |
| 355 | } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) { |
| 356 | /* |
| 357 | * busfreq 90~230 range, treated as DDR 200. |
| 358 | */ |
| 359 | effective_data_rate = 200; |
| 360 | if (spd.clk_cycle3 == 0xa0) /* 10 ns */ |
| 361 | caslat -= 2; |
| 362 | else if (spd.clk_cycle2 == 0xa0) |
| 363 | caslat--; |
| 364 | |
| 365 | } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) { |
| 366 | /* |
| 367 | * busfreq 230~280 range, treated as DDR 266. |
| 368 | */ |
| 369 | effective_data_rate = 266; |
| 370 | if (spd.clk_cycle3 == 0x75) /* 7.5 ns */ |
| 371 | caslat -= 2; |
| 372 | else if (spd.clk_cycle2 == 0x75) |
| 373 | caslat--; |
| 374 | |
| 375 | } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) { |
| 376 | /* |
| 377 | * busfreq 280~350 range, treated as DDR 333. |
| 378 | */ |
| 379 | effective_data_rate = 333; |
| 380 | if (spd.clk_cycle3 == 0x60) /* 6.0 ns */ |
| 381 | caslat -= 2; |
| 382 | else if (spd.clk_cycle2 == 0x60) |
| 383 | caslat--; |
| 384 | |
| 385 | } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) { |
| 386 | /* |
| 387 | * busfreq 350~460 range, treated as DDR 400. |
| 388 | */ |
| 389 | effective_data_rate = 400; |
| 390 | if (spd.clk_cycle3 == 0x50) /* 5.0 ns */ |
| 391 | caslat -= 2; |
| 392 | else if (spd.clk_cycle2 == 0x50) |
| 393 | caslat--; |
| 394 | |
| 395 | } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) { |
| 396 | /* |
| 397 | * busfreq 460~560 range, treated as DDR 533. |
| 398 | */ |
| 399 | effective_data_rate = 533; |
| 400 | if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */ |
| 401 | caslat -= 2; |
| 402 | else if (spd.clk_cycle2 == 0x3D) |
| 403 | caslat--; |
| 404 | |
| 405 | } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) { |
| 406 | /* |
| 407 | * busfreq 560~700 range, treated as DDR 667. |
| 408 | */ |
| 409 | effective_data_rate = 667; |
| 410 | if (spd.clk_cycle3 == 0x30) /* 3.0 ns */ |
| 411 | caslat -= 2; |
| 412 | else if (spd.clk_cycle2 == 0x30) |
| 413 | caslat--; |
| 414 | |
| 415 | } else if (700 <= busfreq) { |
| 416 | /* |
| 417 | * DDR rate out-of-range |
| 418 | */ |
| 419 | printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", |
| 420 | busfreq, max_data_rate); |
| 421 | return 0; |
| 422 | } |
| 423 | |
| 424 | |
| 425 | /* |
| 426 | * Convert caslat clocks to DDR controller value. |
| 427 | * Force caslat_ctrl to be DDR Controller field-sized. |
| 428 | */ |
| 429 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 430 | caslat_ctrl = (caslat + 1) & 0x07; |
| 431 | } else { |
| 432 | caslat_ctrl = (2 * caslat - 1) & 0x0f; |
| 433 | } |
| 434 | |
| 435 | debug("DDR: effective data rate is %d MHz\n", effective_data_rate); |
| 436 | debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", |
| 437 | caslat, caslat_ctrl); |
| 438 | |
| 439 | /* |
| 440 | * Timing Config 0. |
| 441 | * Avoid writing for DDR I. The new PQ38 DDR controller |
| 442 | * dreams up non-zero default values to be backwards compatible. |
| 443 | */ |
| 444 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| 445 | unsigned char taxpd_clk = 8; /* By the book. */ |
| 446 | unsigned char tmrd_clk = 2; /* By the book. */ |
| 447 | unsigned char act_pd_exit = 2; /* Empirical? */ |
| 448 | unsigned char pre_pd_exit = 6; /* Empirical? */ |
| 449 | |
| 450 | ddr1->timing_cfg_0 = (0 |
| 451 | | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ |
| 452 | | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ |
| 453 | | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ |
| 454 | | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ |
| 455 | ); |
| 456 | debug("DDR: timing_cfg_0 = 0x%08x\n", ddr1->timing_cfg_0); |
| 457 | |
| 458 | } else { |
| 459 | } |
| 460 | |
| 461 | |
| 462 | /* |
| 463 | * Some Timing Config 1 values now. |
| 464 | * Sneak Extended Refresh Recovery in here too. |
| 465 | */ |
| 466 | |
| 467 | /* |
| 468 | * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, |
| 469 | * use conservative value. |
| 470 | * For DDR II, they are bytes 36 and 37, in quarter nanos. |
| 471 | */ |
| 472 | |
| 473 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 474 | twr_clk = 3; /* Clocks */ |
| 475 | twtr_clk = 1; /* Clocks */ |
| 476 | } else { |
| 477 | twr_clk = picos_to_clk(spd.twr * 250); |
| 478 | twtr_clk = picos_to_clk(spd.twtr * 250); |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * Calculate Trfc, in picos. |
| 483 | * DDR I: Byte 42 straight up in ns. |
| 484 | * DDR II: Byte 40 and 42 swizzled some, in ns. |
| 485 | */ |
| 486 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 487 | trfc = spd.trfc * 1000; /* up to ps */ |
| 488 | } else { |
| 489 | unsigned int byte40_table_ps[8] = { |
| 490 | 0, |
| 491 | 250, |
| 492 | 330, |
| 493 | 500, |
| 494 | 660, |
| 495 | 750, |
| 496 | 0, |
| 497 | 0 |
| 498 | }; |
| 499 | |
| 500 | trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 |
| 501 | + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; |
| 502 | } |
| 503 | trfc_clk = picos_to_clk(trfc); |
| 504 | |
| 505 | /* |
| 506 | * Trcd, Byte 29, from quarter nanos to ps and clocks. |
| 507 | */ |
| 508 | trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; |
| 509 | |
| 510 | /* |
| 511 | * Convert trfc_clk to DDR controller fields. DDR I should |
| 512 | * fit in the REFREC field (16-19) of TIMING_CFG_1, but the |
| 513 | * 8548 controller has an extended REFREC field of three bits. |
| 514 | * The controller automatically adds 8 clocks to this value, |
| 515 | * so preadjust it down 8 first before splitting it up. |
| 516 | */ |
| 517 | trfc_low = (trfc_clk - 8) & 0xf; |
| 518 | trfc_high = ((trfc_clk - 8) >> 4) & 0x3; |
| 519 | |
| 520 | /* |
| 521 | * Sneak in some Extended Refresh Recovery. |
| 522 | */ |
| 523 | ddr1->ext_refrec = (trfc_high << 16); |
| 524 | debug("DDR: ext_refrec = 0x%08x\n", ddr1->ext_refrec); |
| 525 | |
| 526 | ddr1->timing_cfg_1 = |
| 527 | (0 |
| 528 | | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ |
| 529 | | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ |
| 530 | | (trcd_clk << 20) /* ACTTORW */ |
| 531 | | (caslat_ctrl << 16) /* CASLAT */ |
| 532 | | (trfc_low << 12) /* REFEC */ |
| 533 | | ((twr_clk & 0x07) << 8) /* WRRREC */ |
| 534 | | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ |
| 535 | | ((twtr_clk & 0x07) << 0) /* WRTORD */ |
| 536 | ); |
| 537 | |
| 538 | debug("DDR: timing_cfg_1 = 0x%08x\n", ddr1->timing_cfg_1); |
| 539 | |
| 540 | |
| 541 | /* |
| 542 | * Timing_Config_2 |
| 543 | * Was: 0x00000800; |
| 544 | */ |
| 545 | |
| 546 | /* |
| 547 | * Additive Latency |
| 548 | * For DDR I, 0. |
| 549 | * For DDR II, with ODT enabled, use "a value" less than ACTTORW, |
| 550 | * which comes from Trcd, and also note that: |
| 551 | * add_lat + caslat must be >= 4 |
| 552 | */ |
| 553 | add_lat = 0; |
| 554 | if (spd.mem_type == SPD_MEMTYPE_DDR2 |
| 555 | && (odt_wr_cfg || odt_rd_cfg) |
| 556 | && (caslat < 4)) { |
| 557 | add_lat = 4 - caslat; |
| 558 | if (add_lat > trcd_clk) { |
| 559 | add_lat = trcd_clk - 1; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /* |
| 564 | * Write Data Delay |
| 565 | * Historically 0x2 == 4/8 clock delay. |
| 566 | * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. |
| 567 | */ |
| 568 | wr_data_delay = 3; |
| 569 | |
| 570 | /* |
| 571 | * Write Latency |
| 572 | * Read to Precharge |
| 573 | * Minimum CKE Pulse Width. |
| 574 | * Four Activate Window |
| 575 | */ |
| 576 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 577 | /* |
| 578 | * This is a lie. It should really be 1, but if it is |
| 579 | * set to 1, bits overlap into the old controller's |
| 580 | * otherwise unused ACSM field. If we leave it 0, then |
| 581 | * the HW will magically treat it as 1 for DDR 1. Oh Yea. |
| 582 | */ |
| 583 | wr_lat = 0; |
| 584 | |
| 585 | trtp_clk = 2; /* By the book. */ |
| 586 | cke_min_clk = 1; /* By the book. */ |
| 587 | four_act = 1; /* By the book. */ |
| 588 | |
| 589 | } else { |
| 590 | wr_lat = caslat - 1; |
| 591 | |
| 592 | /* Convert SPD value from quarter nanos to picos. */ |
| 593 | trtp_clk = picos_to_clk(spd.trtp * 250); |
| 594 | |
| 595 | cke_min_clk = 3; /* By the book. */ |
| 596 | four_act = picos_to_clk(37500); /* By the book. 1k pages? */ |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * Empirically set ~MCAS-to-preamble override for DDR 2. |
| 601 | * Your milage will vary. |
| 602 | */ |
| 603 | cpo = 0; |
| 604 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| 605 | if (effective_data_rate == 266 || effective_data_rate == 333) { |
| 606 | cpo = 0x7; /* READ_LAT + 5/4 */ |
| 607 | } else if (effective_data_rate == 400) { |
| 608 | cpo = 0x9; /* READ_LAT + 7/4 */ |
| 609 | } else { |
| 610 | /* Pure speculation */ |
| 611 | cpo = 0xb; |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | ddr1->timing_cfg_2 = (0 |
| 616 | | ((add_lat & 0x7) << 28) /* ADD_LAT */ |
| 617 | | ((cpo & 0x1f) << 23) /* CPO */ |
| 618 | | ((wr_lat & 0x7) << 19) /* WR_LAT */ |
| 619 | | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ |
| 620 | | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ |
| 621 | | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ |
| 622 | | ((four_act & 0x1f) << 0) /* FOUR_ACT */ |
| 623 | ); |
| 624 | |
| 625 | debug("DDR: timing_cfg_2 = 0x%08x\n", ddr1->timing_cfg_2); |
| 626 | |
| 627 | |
| 628 | /* |
| 629 | * Determine the Mode Register Set. |
| 630 | * |
| 631 | * This is nominally part specific, but it appears to be |
| 632 | * consistent for all DDR I devices, and for all DDR II devices. |
| 633 | * |
| 634 | * caslat must be programmed |
| 635 | * burst length is always 4 |
| 636 | * burst type is sequential |
| 637 | * |
| 638 | * For DDR I: |
| 639 | * operating mode is "normal" |
| 640 | * |
| 641 | * For DDR II: |
| 642 | * other stuff |
| 643 | */ |
| 644 | |
| 645 | mode_caslat = 0; |
| 646 | |
| 647 | /* |
| 648 | * Table lookup from DDR I or II Device Operation Specs. |
| 649 | */ |
| 650 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 651 | if (1 <= caslat && caslat <= 4) { |
| 652 | unsigned char mode_caslat_table[4] = { |
| 653 | 0x5, /* 1.5 clocks */ |
| 654 | 0x2, /* 2.0 clocks */ |
| 655 | 0x6, /* 2.5 clocks */ |
| 656 | 0x3 /* 3.0 clocks */ |
| 657 | }; |
| 658 | mode_caslat = mode_caslat_table[caslat - 1]; |
| 659 | } else { |
| 660 | puts("DDR I: Only CAS Latencies of 1.5, 2.0, " |
| 661 | "2.5 and 3.0 clocks are supported.\n"); |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | } else { |
| 666 | if (2 <= caslat && caslat <= 5) { |
| 667 | mode_caslat = caslat; |
| 668 | } else { |
| 669 | puts("DDR II: Only CAS Latencies of 2.0, 3.0, " |
| 670 | "4.0 and 5.0 clocks are supported.\n"); |
| 671 | return 0; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | /* |
| 676 | * Encoded Burst Lenght of 4. |
| 677 | */ |
| 678 | burst_len = 2; /* Fiat. */ |
| 679 | |
| 680 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 681 | twr_auto_clk = 0; /* Historical */ |
| 682 | } else { |
| 683 | /* |
| 684 | * Determine tCK max in picos. Grab tWR and convert to picos. |
| 685 | * Auto-precharge write recovery is: |
| 686 | * WR = roundup(tWR_ns/tCKmax_ns). |
| 687 | * |
| 688 | * Ponder: Is twr_auto_clk different than twr_clk? |
| 689 | */ |
| 690 | tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); |
| 691 | twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; |
| 692 | } |
| 693 | |
| 694 | |
| 695 | /* |
| 696 | * Mode Reg in bits 16 ~ 31, |
| 697 | * Extended Mode Reg 1 in bits 0 ~ 15. |
| 698 | */ |
| 699 | mode_odt_enable = 0x0; /* Default disabled */ |
| 700 | if (odt_wr_cfg || odt_rd_cfg) { |
| 701 | /* |
| 702 | * Bits 6 and 2 in Extended MRS(1) |
| 703 | * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. |
| 704 | * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. |
| 705 | */ |
| 706 | mode_odt_enable = 0x40; /* 150 Ohm */ |
| 707 | } |
| 708 | |
| 709 | ddr1->sdram_mode_1 = |
| 710 | (0 |
| 711 | | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ |
| 712 | | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ |
| 713 | | (twr_auto_clk << 9) /* Write Recovery Autopre */ |
| 714 | | (mode_caslat << 4) /* caslat */ |
| 715 | | (burst_len << 0) /* Burst length */ |
| 716 | ); |
| 717 | |
| 718 | debug("DDR: sdram_mode = 0x%08x\n", ddr1->sdram_mode_1); |
| 719 | |
| 720 | |
| 721 | /* |
| 722 | * Clear EMRS2 and EMRS3. |
| 723 | */ |
| 724 | ddr1->sdram_mode_2 = 0; |
| 725 | debug("DDR: sdram_mode_2 = 0x%08x\n", ddr1->sdram_mode_2); |
| 726 | |
| 727 | |
| 728 | /* |
| 729 | * Determine Refresh Rate. Ignore self refresh bit on DDR I. |
| 730 | * Table from SPD Spec, Byte 12, converted to picoseconds and |
| 731 | * filled in with "default" normal values. |
| 732 | */ |
| 733 | { |
| 734 | unsigned int refresh_clk; |
| 735 | unsigned int refresh_time_ns[8] = { |
| 736 | 15625000, /* 0 Normal 1.00x */ |
| 737 | 3900000, /* 1 Reduced .25x */ |
| 738 | 7800000, /* 2 Extended .50x */ |
| 739 | 31300000, /* 3 Extended 2.00x */ |
| 740 | 62500000, /* 4 Extended 4.00x */ |
| 741 | 125000000, /* 5 Extended 8.00x */ |
| 742 | 15625000, /* 6 Normal 1.00x filler */ |
| 743 | 15625000, /* 7 Normal 1.00x filler */ |
| 744 | }; |
| 745 | |
| 746 | refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]); |
| 747 | |
| 748 | /* |
| 749 | * Set BSTOPRE to 0x100 for page mode |
| 750 | * If auto-charge is used, set BSTOPRE = 0 |
| 751 | */ |
| 752 | ddr1->sdram_interval = |
| 753 | (0 |
| 754 | | (refresh_clk & 0x3fff) << 16 |
| 755 | | 0x100 |
| 756 | ); |
| 757 | debug("DDR: sdram_interval = 0x%08x\n", ddr1->sdram_interval); |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * Is this an ECC DDR chip? |
| 762 | * But don't mess with it if the DDR controller will init mem. |
| 763 | */ |
| 764 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| 765 | if (spd.config == 0x02) { |
| 766 | ddr1->err_disable = 0x0000000d; |
| 767 | ddr1->err_sbe = 0x00ff0000; |
| 768 | } |
| 769 | debug("DDR: err_disable = 0x%08x\n", ddr1->err_disable); |
| 770 | debug("DDR: err_sbe = 0x%08x\n", ddr1->err_sbe); |
| 771 | #endif |
| 772 | |
| 773 | asm("sync;isync"); |
| 774 | udelay(500); |
| 775 | |
| 776 | /* |
| 777 | * SDRAM Cfg 2 |
| 778 | */ |
| 779 | |
| 780 | /* |
| 781 | * When ODT is enabled, Chap 9 suggests asserting ODT to |
| 782 | * internal IOs only during reads. |
| 783 | */ |
| 784 | odt_cfg = 0; |
| 785 | if (odt_rd_cfg | odt_wr_cfg) { |
| 786 | odt_cfg = 0x2; /* ODT to IOs during reads */ |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * Try to use differential DQS with DDR II. |
| 791 | */ |
| 792 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 793 | dqs_cfg = 0; /* No Differential DQS for DDR I */ |
| 794 | } else { |
| 795 | dqs_cfg = 0x1; /* Differential DQS for DDR II */ |
| 796 | } |
| 797 | |
| 798 | #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| 799 | /* |
| 800 | * Use the DDR controller to auto initialize memory. |
| 801 | */ |
| 802 | d_init = 1; |
| 803 | ddr1->sdram_data_init = CONFIG_MEM_INIT_VALUE; |
| 804 | debug("DDR: ddr_data_init = 0x%08x\n", ddr1->sdram_data_init); |
| 805 | #else |
| 806 | /* |
| 807 | * Memory will be initialized via DMA, or not at all. |
| 808 | */ |
| 809 | d_init = 0; |
| 810 | #endif |
| 811 | |
| 812 | ddr1->sdram_cfg_2 = (0 |
| 813 | | (dqs_cfg << 26) /* Differential DQS */ |
| 814 | | (odt_cfg << 21) /* ODT */ |
| 815 | | (d_init << 4) /* D_INIT auto init DDR */ |
| 816 | ); |
| 817 | |
| 818 | debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr1->sdram_cfg_2); |
| 819 | |
| 820 | |
| 821 | #ifdef MPC86xx_DDR_SDRAM_CLK_CNTL |
| 822 | { |
| 823 | unsigned char clk_adjust; |
| 824 | |
| 825 | /* |
| 826 | * Setup the clock control. |
| 827 | * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 |
| 828 | * SDRAM_CLK_CNTL[5-7] = Clock Adjust |
| 829 | * 0110 3/4 cycle late |
| 830 | * 0111 7/8 cycle late |
| 831 | */ |
| 832 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| 833 | clk_adjust = 0x6; |
| 834 | } else { |
| 835 | clk_adjust = 0x7; |
| 836 | } |
| 837 | |
| 838 | ddr1->sdram_clk_cntl = (0 |
| 839 | | 0x80000000 |
| 840 | | (clk_adjust << 23) |
| 841 | ); |
| 842 | debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr1->sdram_clk_cntl); |
| 843 | } |
| 844 | #endif |
| 845 | |
| 846 | /* |
| 847 | * Figure out the settings for the sdram_cfg register. |
| 848 | * Build up the entire register in 'sdram_cfg' before writing |
| 849 | * since the write into the register will actually enable the |
| 850 | * memory controller; all settings must be done before enabling. |
| 851 | * |
| 852 | * sdram_cfg[0] = 1 (ddr sdram logic enable) |
| 853 | * sdram_cfg[1] = 1 (self-refresh-enable) |
| 854 | * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) |
| 855 | * 010 DDR 1 SDRAM |
| 856 | * 011 DDR 2 SDRAM |
| 857 | */ |
| 858 | sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; |
| 859 | sdram_cfg_1 = (0 |
| 860 | | (1 << 31) /* Enable */ |
| 861 | | (1 << 30) /* Self refresh */ |
| 862 | | (sdram_type << 24) /* SDRAM type */ |
| 863 | ); |
| 864 | |
| 865 | /* |
| 866 | * sdram_cfg[3] = RD_EN - registered DIMM enable |
| 867 | * A value of 0x26 indicates micron registered DIMMS (micron.com) |
| 868 | */ |
| 869 | if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) { |
| 870 | sdram_cfg_1 |= 0x10000000; /* RD_EN */ |
| 871 | } |
| 872 | |
| 873 | #if defined(CONFIG_DDR_ECC) |
| 874 | /* |
| 875 | * If the user wanted ECC (enabled via sdram_cfg[2]) |
| 876 | */ |
| 877 | if (spd.config == 0x02) { |
| 878 | sdram_cfg_1 |= 0x20000000; /* ECC_EN */ |
| 879 | } |
| 880 | #endif |
| 881 | |
| 882 | /* |
| 883 | * REV1 uses 1T timing. |
| 884 | * REV2 may use 1T or 2T as configured by the user. |
| 885 | */ |
| 886 | { |
| 887 | uint pvr = get_pvr(); |
| 888 | |
| 889 | if (pvr != PVR_85xx_REV1) { |
| 890 | #if defined(CONFIG_DDR_2T_TIMING) |
| 891 | /* |
| 892 | * Enable 2T timing by setting sdram_cfg[16]. |
| 893 | */ |
| 894 | sdram_cfg_1 |= 0x8000; /* 2T_EN */ |
| 895 | #endif |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * 200 painful micro-seconds must elapse between |
| 901 | * the DDR clock setup and the DDR config enable. |
| 902 | */ |
| 903 | udelay(200); |
| 904 | |
| 905 | /* |
| 906 | * Go! |
| 907 | */ |
| 908 | ddr1->sdram_cfg_1 = sdram_cfg_1; |
| 909 | |
| 910 | asm("sync;isync"); |
| 911 | udelay(500); |
| 912 | |
| 913 | debug("DDR: sdram_cfg = 0x%08x\n", ddr1->sdram_cfg_1); |
| 914 | |
| 915 | |
| 916 | #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| 917 | debug("DDR: memory initializing\n"); |
| 918 | /* |
| 919 | * Poll until memory is initialized. |
| 920 | * 512 Meg at 400 might hit this 200 times or so. |
| 921 | */ |
| 922 | while ((ddr1->sdram_cfg_2 & (d_init << 4)) != 0) { |
| 923 | udelay(1000); |
| 924 | } |
| 925 | debug("DDR: memory initialized\n"); |
| 926 | #endif |
| 927 | |
| 928 | |
| 929 | /* |
| 930 | * Figure out memory size in Megabytes. |
| 931 | */ |
| 932 | memsize = n_ranks * rank_density / 0x100000; |
| 933 | |
| 934 | |
| 935 | /* |
| 936 | * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. |
| 937 | */ |
| 938 | law_size = 19 + __ilog2(memsize); |
| 939 | |
| 940 | /* |
| 941 | * Set up LAWBAR for all of DDR. |
| 942 | */ |
| 943 | mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); |
| 944 | mcm->lawar1 = (LAWAR_EN |
| 945 | | LAWAR_TRGT_IF_DDR |
| 946 | | (LAWAR_SIZE & law_size)); |
| 947 | debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1); |
| 948 | debug("DDR: LARAR1=0x%08x\n", mcm->lawar1); |
| 949 | |
| 950 | |
| 951 | return memsize * 1024 * 1024; |
| 952 | } |
| 953 | |
| 954 | #endif /* CONFIG_SPD_EEPROM */ |
| 955 | |
| 956 | |
| 957 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| 958 | |
| 959 | /* |
| 960 | * Initialize all of memory for ECC, then enable errors. |
| 961 | */ |
| 962 | |
| 963 | void |
| 964 | ddr_enable_ecc(unsigned int dram_size) |
| 965 | { |
| 966 | uint *p = 0; |
| 967 | uint i = 0; |
| 968 | volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| 969 | volatile ccsr_ddr_t *ddr1= &immap->im_ddr1; |
| 970 | |
| 971 | dma_init(); |
| 972 | |
| 973 | for (*p = 0; p < (uint *)(8 * 1024); p++) { |
| 974 | if (((unsigned int)p & 0x1f) == 0) { |
| 975 | ppcDcbz((unsigned long) p); |
| 976 | } |
| 977 | *p = (unsigned int)CONFIG_MEM_INIT_VALUE; |
| 978 | if (((unsigned int)p & 0x1c) == 0x1c) { |
| 979 | ppcDcbf((unsigned long) p); |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | /* 8K */ |
| 984 | dma_xfer((uint *)0x2000, 0x2000, (uint *)0); |
| 985 | /* 16K */ |
| 986 | dma_xfer((uint *)0x4000, 0x4000, (uint *)0); |
| 987 | /* 32K */ |
| 988 | dma_xfer((uint *)0x8000, 0x8000, (uint *)0); |
| 989 | /* 64K */ |
| 990 | dma_xfer((uint *)0x10000, 0x10000, (uint *)0); |
| 991 | /* 128k */ |
| 992 | dma_xfer((uint *)0x20000, 0x20000, (uint *)0); |
| 993 | /* 256k */ |
| 994 | dma_xfer((uint *)0x40000, 0x40000, (uint *)0); |
| 995 | /* 512k */ |
| 996 | dma_xfer((uint *)0x80000, 0x80000, (uint *)0); |
| 997 | /* 1M */ |
| 998 | dma_xfer((uint *)0x100000, 0x100000, (uint *)0); |
| 999 | /* 2M */ |
| 1000 | dma_xfer((uint *)0x200000, 0x200000, (uint *)0); |
| 1001 | /* 4M */ |
| 1002 | dma_xfer((uint *)0x400000, 0x400000, (uint *)0); |
| 1003 | |
| 1004 | for (i = 1; i < dram_size / 0x800000; i++) { |
| 1005 | dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); |
| 1006 | } |
| 1007 | |
| 1008 | /* |
| 1009 | * Enable errors for ECC. |
| 1010 | */ |
| 1011 | debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); |
| 1012 | ddr1->err_disable = 0x00000000; |
| 1013 | asm("sync;isync;msync"); |
| 1014 | debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); |
| 1015 | } |
| 1016 | |
| 1017 | #endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */ |