blob: bf5d22429d6d0a9029da01e12b0ac7a5468a689d [file] [log] [blame]
wdenkfe8c2802002-11-03 00:38:21 +00001/*
2 * (C) Copyright 2001
3 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
4 *
5 * Based on code by:
6 *
wdenkdb2f721f2003-03-06 00:58:30 +00007 * Kenneth Johansson ,Ericsson AB.
8 * kenneth.johansson@etx.ericsson.se
wdenkfe8c2802002-11-03 00:38:21 +00009 *
10 * hacked up by bill hunter. fixed so we could run before
11 * serial_init and console_init. previous version avoided this by
12 * running out of cache memory during serial/console init, then running
13 * this code later.
14 *
15 * (C) Copyright 2002
16 * Jun Gu, Artesyn Technology, jung@artesyncp.com
17 * Support for IBM 440 based on OpenBIOS draminit.c from IBM.
18 *
19 * See file CREDITS for list of people who contributed to this
20 * project.
21 *
22 * This program is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU General Public License as
24 * published by the Free Software Foundation; either version 2 of
25 * the License, or (at your option) any later version.
26 *
27 * This program is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
31 *
32 * You should have received a copy of the GNU General Public License
33 * along with this program; if not, write to the Free Software
34 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
35 * MA 02111-1307 USA
36 */
37
38#include <common.h>
39#include <asm/processor.h>
40#include <i2c.h>
41#include <ppc4xx.h>
42
43#ifdef CONFIG_SPD_EEPROM
44
45/*
46 * Set default values
47 */
48#ifndef CFG_I2C_SPEED
49#define CFG_I2C_SPEED 50000
50#endif
51
52#ifndef CFG_I2C_SLAVE
53#define CFG_I2C_SLAVE 0xFE
54#endif
55
56#ifndef CONFIG_440 /* for 405 WALNUT board */
57
58#define SDRAM0_CFG_DCE 0x80000000
59#define SDRAM0_CFG_SRE 0x40000000
60#define SDRAM0_CFG_PME 0x20000000
61#define SDRAM0_CFG_MEMCHK 0x10000000
62#define SDRAM0_CFG_REGEN 0x08000000
63#define SDRAM0_CFG_ECCDD 0x00400000
64#define SDRAM0_CFG_EMDULR 0x00200000
65#define SDRAM0_CFG_DRW_SHIFT (31-6)
66#define SDRAM0_CFG_BRPF_SHIFT (31-8)
67
68#define SDRAM0_TR_CASL_SHIFT (31-8)
69#define SDRAM0_TR_PTA_SHIFT (31-13)
70#define SDRAM0_TR_CTP_SHIFT (31-15)
71#define SDRAM0_TR_LDF_SHIFT (31-17)
72#define SDRAM0_TR_RFTA_SHIFT (31-29)
73#define SDRAM0_TR_RCD_SHIFT (31-31)
74
75#define SDRAM0_RTR_SHIFT (31-15)
76#define SDRAM0_ECCCFG_SHIFT (31-11)
77
78/* SDRAM0_CFG enable macro */
79#define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )
80
81#define SDRAM0_BXCR_SZ_MASK 0x000e0000
82#define SDRAM0_BXCR_AM_MASK 0x0000e000
83
84#define SDRAM0_BXCR_SZ_SHIFT (31-14)
85#define SDRAM0_BXCR_AM_SHIFT (31-18)
86
87#define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
88#define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )
89
wdenkdb2f721f2003-03-06 00:58:30 +000090#ifdef CONFIG_SPDDRAM_SILENT
wdenkfe8c2802002-11-03 00:38:21 +000091# define SPD_ERR(x) do { return 0; } while (0)
92#else
wdenkdb2f721f2003-03-06 00:58:30 +000093# define SPD_ERR(x) do { printf(x); return(0); } while (0)
wdenkfe8c2802002-11-03 00:38:21 +000094#endif
95
wdenkfe8c2802002-11-03 00:38:21 +000096#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
97
98/* function prototypes */
wdenkdb2f721f2003-03-06 00:58:30 +000099int spd_read(uint addr);
wdenkfe8c2802002-11-03 00:38:21 +0000100
101
102/*
103 * This function is reading data from the DIMM module EEPROM over the SPD bus
104 * and uses that to program the sdram controller.
105 *
106 * This works on boards that has the same schematics that the IBM walnut has.
107 *
wdenkdb2f721f2003-03-06 00:58:30 +0000108 * Input: null for default I2C spd functions or a pointer to a custom function
109 * returning spd_data.
wdenkfe8c2802002-11-03 00:38:21 +0000110 */
111
wdenkdb2f721f2003-03-06 00:58:30 +0000112long int spd_sdram(int(read_spd)(uint addr))
wdenkfe8c2802002-11-03 00:38:21 +0000113{
114 int bus_period,tmp,row,col;
115 int total_size,bank_size,bank_code;
116 int ecc_on;
wdenkdb2f721f2003-03-06 00:58:30 +0000117 int mode;
118 int bank_cnt;
wdenkfe8c2802002-11-03 00:38:21 +0000119
120 int sdram0_pmit=0x07c00000;
121 int sdram0_besr0=-1;
122 int sdram0_besr1=-1;
123 int sdram0_eccesr=-1;
124 int sdram0_ecccfg;
125
126 int sdram0_rtr=0;
127 int sdram0_tr=0;
128
129 int sdram0_b0cr;
130 int sdram0_b1cr;
131 int sdram0_b2cr;
132 int sdram0_b3cr;
133
134 int sdram0_cfg=0;
135
136 int t_rp;
137 int t_rcd;
wdenkdb2f721f2003-03-06 00:58:30 +0000138 int t_ras;
139 int t_rc;
140 int min_cas;
wdenkfe8c2802002-11-03 00:38:21 +0000141
wdenkdb2f721f2003-03-06 00:58:30 +0000142 if(read_spd == 0){
143 read_spd=spd_read;
wdenkfe8c2802002-11-03 00:38:21 +0000144 /*
145 * Make sure I2C controller is initialized
146 * before continuing.
147 */
wdenkdb2f721f2003-03-06 00:58:30 +0000148 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
149 }
150
wdenkfe8c2802002-11-03 00:38:21 +0000151
152 /*
153 * Calculate the bus period, we do it this
154 * way to minimize stack utilization.
155 */
156 tmp = (mfdcr(pllmd) >> (31-6)) & 0xf; /* get FBDV bits */
157 tmp = CONFIG_SYS_CLK_FREQ * tmp; /* get plb freq */
158 bus_period = sdram_HZ_to_ns(tmp); /* get sdram speed */
159
160 /* Make shure we are using SDRAM */
wdenkdb2f721f2003-03-06 00:58:30 +0000161 if (read_spd(2) != 0x04){
wdenkfe8c2802002-11-03 00:38:21 +0000162 SPD_ERR("SDRAM - non SDRAM memory module found\n");
163 }
164
165/*------------------------------------------------------------------
166 configure memory timing register
167
168 data from DIMM:
169 27 IN Row Precharge Time ( t RP)
170 29 MIN RAS to CAS Delay ( t RCD)
171 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS
172 -------------------------------------------------------------------*/
173
174 /*
175 * first figure out which cas latency mode to use
176 * use the min supported mode
177 */
178
wdenkdb2f721f2003-03-06 00:58:30 +0000179 tmp = read_spd(127) & 0x6;
wdenkfe8c2802002-11-03 00:38:21 +0000180 if(tmp == 0x02){ /* only cas = 2 supported */
181 min_cas = 2;
wdenkdb2f721f2003-03-06 00:58:30 +0000182/* t_ck = read_spd(9); */
183/* t_ac = read_spd(10); */
wdenkfe8c2802002-11-03 00:38:21 +0000184 }
185 else if (tmp == 0x04){ /* only cas = 3 supported */
186 min_cas = 3;
wdenkdb2f721f2003-03-06 00:58:30 +0000187/* t_ck = read_spd(9); */
188/* t_ac = read_spd(10); */
wdenkfe8c2802002-11-03 00:38:21 +0000189 }
190 else if (tmp == 0x06){ /* 2,3 supported, so use 2 */
191 min_cas = 2;
wdenkdb2f721f2003-03-06 00:58:30 +0000192/* t_ck = read_spd(23); */
193/* t_ac = read_spd(24); */
wdenkfe8c2802002-11-03 00:38:21 +0000194 }
195 else {
196 SPD_ERR("SDRAM - unsupported CAS latency \n");
197 }
198
wdenkdb2f721f2003-03-06 00:58:30 +0000199 /* get some timing values, t_rp,t_rcd,t_ras,t_rc
wdenkfe8c2802002-11-03 00:38:21 +0000200 */
wdenkdb2f721f2003-03-06 00:58:30 +0000201 t_rp = read_spd(27);
202 t_rcd = read_spd(29);
203 t_ras = read_spd(30);
204 t_rc = t_ras + t_rp;
wdenkfe8c2802002-11-03 00:38:21 +0000205
206 /* The following timing calcs subtract 1 before deviding.
wdenkdb2f721f2003-03-06 00:58:30 +0000207 * this has effect of using ceiling instead of floor rounding,
wdenkfe8c2802002-11-03 00:38:21 +0000208 * and also subtracting 1 to convert number to reg value
209 */
210 /* set up CASL */
211 sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
212 /* set up PTA */
213 sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT;
214 /* set up CTP */
215 tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3;
wdenkdb2f721f2003-03-06 00:58:30 +0000216 if(tmp<1) tmp=1;
wdenkfe8c2802002-11-03 00:38:21 +0000217 sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
218 /* set LDF = 2 cycles, reg value = 1 */
219 sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
220 /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
wdenkdb2f721f2003-03-06 00:58:30 +0000221 tmp = ( (t_rc - 1) / bus_period)-3;
wdenkfe8c2802002-11-03 00:38:21 +0000222 if(tmp<0)tmp=0;
223 if(tmp>6)tmp=6;
224 sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
225 /* set RCD = t_rcd/bus_period*/
226 sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ;
227
228
229/*------------------------------------------------------------------
230 configure RTR register
231 -------------------------------------------------------------------*/
wdenkdb2f721f2003-03-06 00:58:30 +0000232 row = read_spd(3);
233 col = read_spd(4);
234 tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
wdenkfe8c2802002-11-03 00:38:21 +0000235 switch(tmp){
236 case 0x00:
237 tmp=15625;
238 break;
239 case 0x01:
240 tmp=15625/4;
241 break;
242 case 0x02:
243 tmp=15625/2;
244 break;
245 case 0x03:
246 tmp=15625*2;
247 break;
248 case 0x04:
249 tmp=15625*4;
250 break;
251 case 0x05:
252 tmp=15625*8;
253 break;
254 default:
255 SPD_ERR("SDRAM - Bad refresh period \n");
256 }
257 /* convert from nsec to bus cycles */
258 tmp = tmp/bus_period;
259 sdram0_rtr = (tmp & 0x3ff8)<< SDRAM0_RTR_SHIFT;
260
261/*------------------------------------------------------------------
262 determine the number of banks used
263 -------------------------------------------------------------------*/
264 /* byte 7:6 is module data width */
wdenkdb2f721f2003-03-06 00:58:30 +0000265 if(read_spd(7) != 0)
wdenkfe8c2802002-11-03 00:38:21 +0000266 SPD_ERR("SDRAM - unsupported module width\n");
wdenkdb2f721f2003-03-06 00:58:30 +0000267 tmp = read_spd(6);
wdenkfe8c2802002-11-03 00:38:21 +0000268 if (tmp < 32)
269 SPD_ERR("SDRAM - unsupported module width\n");
270 else if (tmp < 64)
271 bank_cnt=1; /* one bank per sdram side */
272 else if (tmp < 73)
273 bank_cnt=2; /* need two banks per side */
274 else if (tmp < 161)
275 bank_cnt=4; /* need four banks per side */
276 else
277 SPD_ERR("SDRAM - unsupported module width\n");
278
279 /* byte 5 is the module row count (refered to as dimm "sides") */
wdenkdb2f721f2003-03-06 00:58:30 +0000280 tmp = read_spd(5);
wdenkfe8c2802002-11-03 00:38:21 +0000281 if(tmp==1);
282 else if(tmp==2) bank_cnt *=2;
283 else if(tmp==4) bank_cnt *=4;
284 else bank_cnt = 8; /* 8 is an error code */
285
286 if(bank_cnt > 4) /* we only have 4 banks to work with */
287 SPD_ERR("SDRAM - unsupported module rows for this width\n");
288
289 /* now check for ECC ability of module. We only support ECC
290 * on 32 bit wide devices with 8 bit ECC.
291 */
wdenkdb2f721f2003-03-06 00:58:30 +0000292 if ( (read_spd(11)==2) && ((read_spd(6)==40) || (read_spd(14)==8)) ){
wdenkfe8c2802002-11-03 00:38:21 +0000293 sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT;
294 ecc_on = 1;
295 }
296 else{
297 sdram0_ecccfg=0;
298 ecc_on = 0;
299 }
300
301/*------------------------------------------------------------------
302 calculate total size
303 -------------------------------------------------------------------*/
304 /* calculate total size and do sanity check */
wdenkdb2f721f2003-03-06 00:58:30 +0000305 tmp = read_spd(31);
wdenkfe8c2802002-11-03 00:38:21 +0000306 total_size=1<<22; /* total_size = 4MB */
wdenkdb2f721f2003-03-06 00:58:30 +0000307 /* now multiply 4M by the smallest device row density */
wdenkfe8c2802002-11-03 00:38:21 +0000308 /* note that we don't support asymetric rows */
309 while (((tmp & 0x0001) == 0) && (tmp != 0)){
310 total_size= total_size<<1;
311 tmp = tmp>>1;
312 }
wdenkdb2f721f2003-03-06 00:58:30 +0000313 total_size *= read_spd(5); /* mult by module rows (dimm sides) */
wdenkfe8c2802002-11-03 00:38:21 +0000314
315/*------------------------------------------------------------------
316 map rows * cols * banks to a mode
317 -------------------------------------------------------------------*/
318
319 switch( row )
320 {
321 case 11:
322 switch ( col )
323 {
324 case 8:
325 mode=4; /* mode 5 */
326 break;
327 case 9:
328 case 10:
329 mode=0; /* mode 1 */
330 break;
331 default:
332 SPD_ERR("SDRAM - unsupported mode\n");
333 }
334 break;
335 case 12:
336 switch ( col )
337 {
338 case 8:
339 mode=3; /* mode 4 */
340 break;
341 case 9:
342 case 10:
343 mode=1; /* mode 2 */
344 break;
345 default:
346 SPD_ERR("SDRAM - unsupported mode\n");
347 }
348 break;
349 case 13:
350 switch ( col )
351 {
352 case 8:
353 mode=5; /* mode 6 */
354 break;
355 case 9:
356 case 10:
wdenkdb2f721f2003-03-06 00:58:30 +0000357 if (read_spd(17) ==2 )
wdenkfe8c2802002-11-03 00:38:21 +0000358 mode=6; /* mode 7 */
359 else
360 mode=2; /* mode 3 */
361 break;
362 case 11:
363 mode=2; /* mode 3 */
364 break;
365 default:
366 SPD_ERR("SDRAM - unsupported mode\n");
367 }
368 break;
369 default:
370 SPD_ERR("SDRAM - unsupported mode\n");
371 }
372
373/*------------------------------------------------------------------
374 using the calculated values, compute the bank
375 config register values.
376 -------------------------------------------------------------------*/
377 sdram0_b1cr = 0;
378 sdram0_b2cr = 0;
379 sdram0_b3cr = 0;
380
381 /* compute the size of each bank */
382 bank_size = total_size / bank_cnt;
383 /* convert bank size to bank size code for ppc4xx
384 by takeing log2(bank_size) - 22 */
385 tmp=bank_size; /* start with tmp = bank_size */
386 bank_code=0; /* and bank_code = 0 */
387 while (tmp>1){ /* this takes log2 of tmp */
388 bank_code++; /* and stores result in bank_code */
389 tmp=tmp>>1;
390 } /* bank_code is now log2(bank_size) */
391 bank_code-=22; /* subtract 22 to get the code */
392
393 tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
394 sdram0_b0cr = (bank_size) * 0 | tmp;
395 if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp;
396 if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp;
397 if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp;
398
399
400 /*
401 * enable sdram controller DCE=1
402 * enable burst read prefetch to 32 bytes BRPF=2
403 * leave other functions off
404 */
405
406/*------------------------------------------------------------------
407 now that we've done our calculations, we are ready to
408 program all the registers.
409 -------------------------------------------------------------------*/
410
411
412#define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data)
413 /* disable memcontroller so updates work */
414 sdram0_cfg = 0;
415 mtsdram0( mem_mcopt1, sdram0_cfg );
416
417 mtsdram0( mem_besra , sdram0_besr0 );
418 mtsdram0( mem_besrb , sdram0_besr1 );
419 mtsdram0( mem_rtr , sdram0_rtr );
420 mtsdram0( mem_pmit , sdram0_pmit );
421 mtsdram0( mem_mb0cf , sdram0_b0cr );
422 mtsdram0( mem_mb1cf , sdram0_b1cr );
423 mtsdram0( mem_mb2cf , sdram0_b2cr );
424 mtsdram0( mem_mb3cf , sdram0_b3cr );
425 mtsdram0( mem_sdtr1 , sdram0_tr );
426 mtsdram0( mem_ecccf , sdram0_ecccfg );
427 mtsdram0( mem_eccerr, sdram0_eccesr );
428
429 /* SDRAM have a power on delay, 500 micro should do */
430 udelay(500);
431 sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
432 if(ecc_on) sdram0_cfg |= SDRAM0_CFG_MEMCHK;
433 mtsdram0( mem_mcopt1, sdram0_cfg );
434
435
436 /* kernel 2.4.2 from mvista has a bug with memory over 128MB */
437#ifdef MVISTA_MEM_BUG
438 if (total_size > 128*1024*1024 )
439 total_size=128*1024*1024;
440#endif
441 return (total_size);
442}
443
444int spd_read(uint addr)
445{
446 char data[2];
447
448 if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
449 return (int)data[0];
450 else
451 return 0;
452}
453
454#else /* CONFIG_440 */
455
456/*-----------------------------------------------------------------------------
457| Memory Controller Options 0
458+-----------------------------------------------------------------------------*/
459#define SDRAM_CFG0_DCEN 0x80000000 /* SDRAM Controller Enable */
460#define SDRAM_CFG0_MCHK_MASK 0x30000000 /* Memory data errchecking mask */
461#define SDRAM_CFG0_MCHK_NON 0x00000000 /* No ECC generation */
462#define SDRAM_CFG0_MCHK_GEN 0x20000000 /* ECC generation */
463#define SDRAM_CFG0_MCHK_CHK 0x30000000 /* ECC generation and checking */
464#define SDRAM_CFG0_RDEN 0x08000000 /* Registered DIMM enable */
465#define SDRAM_CFG0_PMUD 0x04000000 /* Page management unit */
466#define SDRAM_CFG0_DMWD_MASK 0x02000000 /* DRAM width mask */
467#define SDRAM_CFG0_DMWD_32 0x00000000 /* 32 bits */
468#define SDRAM_CFG0_DMWD_64 0x02000000 /* 64 bits */
469#define SDRAM_CFG0_UIOS_MASK 0x00C00000 /* Unused IO State */
470#define SDRAM_CFG0_PDP 0x00200000 /* Page deallocation policy */
471
472/*-----------------------------------------------------------------------------
473| Memory Controller Options 1
474+-----------------------------------------------------------------------------*/
475#define SDRAM_CFG1_SRE 0x80000000 /* Self-Refresh Entry */
476#define SDRAM_CFG1_PMEN 0x40000000 /* Power Management Enable */
477
478/*-----------------------------------------------------------------------------+
479| SDRAM DEVPOT Options
480+-----------------------------------------------------------------------------*/
481#define SDRAM_DEVOPT_DLL 0x80000000
482#define SDRAM_DEVOPT_DS 0x40000000
483
484/*-----------------------------------------------------------------------------+
485| SDRAM MCSTS Options
486+-----------------------------------------------------------------------------*/
487#define SDRAM_MCSTS_MRSC 0x80000000
488#define SDRAM_MCSTS_SRMS 0x40000000
489#define SDRAM_MCSTS_CIS 0x20000000
490
491/*-----------------------------------------------------------------------------
492| SDRAM Refresh Timer Register
493+-----------------------------------------------------------------------------*/
494#define SDRAM_RTR_RINT_MASK 0xFFFF0000
495#define SDRAM_RTR_RINT_ENCODE(n) (((n) << 16) & SDRAM_RTR_RINT_MASK)
496#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
497
498/*-----------------------------------------------------------------------------+
499| SDRAM UABus Base Address Reg
500+-----------------------------------------------------------------------------*/
501#define SDRAM_UABBA_UBBA_MASK 0x0000000F
502
503/*-----------------------------------------------------------------------------+
504| Memory Bank 0-7 configuration
505+-----------------------------------------------------------------------------*/
506#define SDRAM_BXCR_SDBA_MASK 0xff800000 /* Base address */
507#define SDRAM_BXCR_SDSZ_MASK 0x000e0000 /* Size */
508#define SDRAM_BXCR_SDSZ_8 0x00020000 /* 8M */
509#define SDRAM_BXCR_SDSZ_16 0x00040000 /* 16M */
510#define SDRAM_BXCR_SDSZ_32 0x00060000 /* 32M */
511#define SDRAM_BXCR_SDSZ_64 0x00080000 /* 64M */
512#define SDRAM_BXCR_SDSZ_128 0x000a0000 /* 128M */
513#define SDRAM_BXCR_SDSZ_256 0x000c0000 /* 256M */
514#define SDRAM_BXCR_SDSZ_512 0x000e0000 /* 512M */
515#define SDRAM_BXCR_SDAM_MASK 0x0000e000 /* Addressing mode */
516#define SDRAM_BXCR_SDAM_1 0x00000000 /* Mode 1 */
517#define SDRAM_BXCR_SDAM_2 0x00002000 /* Mode 2 */
518#define SDRAM_BXCR_SDAM_3 0x00004000 /* Mode 3 */
519#define SDRAM_BXCR_SDAM_4 0x00006000 /* Mode 4 */
520#define SDRAM_BXCR_SDBE 0x00000001 /* Memory Bank Enable */
521
522/*-----------------------------------------------------------------------------+
523| SDRAM TR0 Options
524+-----------------------------------------------------------------------------*/
525#define SDRAM_TR0_SDWR_MASK 0x80000000
526#define SDRAM_TR0_SDWR_2_CLK 0x00000000
527#define SDRAM_TR0_SDWR_3_CLK 0x80000000
528#define SDRAM_TR0_SDWD_MASK 0x40000000
529#define SDRAM_TR0_SDWD_0_CLK 0x00000000
530#define SDRAM_TR0_SDWD_1_CLK 0x40000000
531#define SDRAM_TR0_SDCL_MASK 0x01800000
532#define SDRAM_TR0_SDCL_2_0_CLK 0x00800000
533#define SDRAM_TR0_SDCL_2_5_CLK 0x01000000
534#define SDRAM_TR0_SDCL_3_0_CLK 0x01800000
535#define SDRAM_TR0_SDPA_MASK 0x000C0000
536#define SDRAM_TR0_SDPA_2_CLK 0x00040000
537#define SDRAM_TR0_SDPA_3_CLK 0x00080000
538#define SDRAM_TR0_SDPA_4_CLK 0x000C0000
539#define SDRAM_TR0_SDCP_MASK 0x00030000
540#define SDRAM_TR0_SDCP_2_CLK 0x00000000
541#define SDRAM_TR0_SDCP_3_CLK 0x00010000
542#define SDRAM_TR0_SDCP_4_CLK 0x00020000
543#define SDRAM_TR0_SDCP_5_CLK 0x00030000
544#define SDRAM_TR0_SDLD_MASK 0x0000C000
545#define SDRAM_TR0_SDLD_1_CLK 0x00000000
546#define SDRAM_TR0_SDLD_2_CLK 0x00004000
547#define SDRAM_TR0_SDRA_MASK 0x0000001C
548#define SDRAM_TR0_SDRA_6_CLK 0x00000000
549#define SDRAM_TR0_SDRA_7_CLK 0x00000004
550#define SDRAM_TR0_SDRA_8_CLK 0x00000008
551#define SDRAM_TR0_SDRA_9_CLK 0x0000000C
552#define SDRAM_TR0_SDRA_10_CLK 0x00000010
553#define SDRAM_TR0_SDRA_11_CLK 0x00000014
554#define SDRAM_TR0_SDRA_12_CLK 0x00000018
555#define SDRAM_TR0_SDRA_13_CLK 0x0000001C
556#define SDRAM_TR0_SDRD_MASK 0x00000003
557#define SDRAM_TR0_SDRD_2_CLK 0x00000001
558#define SDRAM_TR0_SDRD_3_CLK 0x00000002
559#define SDRAM_TR0_SDRD_4_CLK 0x00000003
560
561/*-----------------------------------------------------------------------------+
562| SDRAM TR1 Options
563+-----------------------------------------------------------------------------*/
564#define SDRAM_TR1_RDSS_MASK 0xC0000000
565#define SDRAM_TR1_RDSS_TR0 0x00000000
566#define SDRAM_TR1_RDSS_TR1 0x40000000
567#define SDRAM_TR1_RDSS_TR2 0x80000000
568#define SDRAM_TR1_RDSS_TR3 0xC0000000
569#define SDRAM_TR1_RDSL_MASK 0x00C00000
570#define SDRAM_TR1_RDSL_STAGE1 0x00000000
571#define SDRAM_TR1_RDSL_STAGE2 0x00400000
572#define SDRAM_TR1_RDSL_STAGE3 0x00800000
573#define SDRAM_TR1_RDCD_MASK 0x00000800
574#define SDRAM_TR1_RDCD_RCD_0_0 0x00000000
575#define SDRAM_TR1_RDCD_RCD_1_2 0x00000800
576#define SDRAM_TR1_RDCT_MASK 0x000001FF
577#define SDRAM_TR1_RDCT_ENCODE(x) (((x) << 0) & SDRAM_TR1_RDCT_MASK)
578#define SDRAM_TR1_RDCT_DECODE(x) (((x) & SDRAM_TR1_RDCT_MASK) >> 0)
579#define SDRAM_TR1_RDCT_MIN 0x00000000
580#define SDRAM_TR1_RDCT_MAX 0x000001FF
581
582/*-----------------------------------------------------------------------------+
583| SDRAM WDDCTR Options
584+-----------------------------------------------------------------------------*/
585#define SDRAM_WDDCTR_WRCP_MASK 0xC0000000
586#define SDRAM_WDDCTR_WRCP_0DEG 0x00000000
587#define SDRAM_WDDCTR_WRCP_90DEG 0x40000000
588#define SDRAM_WDDCTR_WRCP_180DEG 0x80000000
589#define SDRAM_WDDCTR_DCD_MASK 0x000001FF
590
591/*-----------------------------------------------------------------------------+
592| SDRAM CLKTR Options
593+-----------------------------------------------------------------------------*/
594#define SDRAM_CLKTR_CLKP_MASK 0xC0000000
595#define SDRAM_CLKTR_CLKP_0DEG 0x00000000
596#define SDRAM_CLKTR_CLKP_90DEG 0x40000000
597#define SDRAM_CLKTR_CLKP_180DEG 0x80000000
598#define SDRAM_CLKTR_DCDT_MASK 0x000001FF
599
600/*-----------------------------------------------------------------------------+
601| SDRAM DLYCAL Options
602+-----------------------------------------------------------------------------*/
603#define SDRAM_DLYCAL_DLCV_MASK 0x000003FC
604#define SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK)
605#define SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2)
606
607/*-----------------------------------------------------------------------------+
608| General Definition
609+-----------------------------------------------------------------------------*/
610#define DEFAULT_SPD_ADDR1 0x53
611#define DEFAULT_SPD_ADDR2 0x52
612#define ONE_BILLION 1000000000
613#define MAXBANKS 4 /* at most 4 dimm banks */
614#define MAX_SPD_BYTES 256
615#define NUMHALFCYCLES 4
616#define NUMMEMTESTS 8
617#define NUMMEMWORDS 8
618#define MAXBXCR 4
619#define TRUE 1
620#define FALSE 0
621
622const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
623 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
624 0xFFFFFFFF, 0xFFFFFFFF},
625 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
626 0x00000000, 0x00000000},
627 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
628 0x55555555, 0x55555555},
629 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
630 0xAAAAAAAA, 0xAAAAAAAA},
631 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
632 0x5A5A5A5A, 0x5A5A5A5A},
633 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
634 0xA5A5A5A5, 0xA5A5A5A5},
635 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
636 0x55AA55AA, 0x55AA55AA},
637 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
638 0xAA55AA55, 0xAA55AA55}
639};
640
641
642unsigned char spd_read(uchar chip, uint addr);
643
644void get_spd_info(unsigned long* dimm_populated,
645 unsigned char* iic0_dimm_addr,
646 unsigned long num_dimm_banks);
647
648void check_mem_type
649 (unsigned long* dimm_populated,
650 unsigned char* iic0_dimm_addr,
651 unsigned long num_dimm_banks);
652
653void check_volt_type
654 (unsigned long* dimm_populated,
655 unsigned char* iic0_dimm_addr,
656 unsigned long num_dimm_banks);
657
658void program_cfg0(unsigned long* dimm_populated,
659 unsigned char* iic0_dimm_addr,
660 unsigned long num_dimm_banks);
661
662void program_cfg1(unsigned long* dimm_populated,
663 unsigned char* iic0_dimm_addr,
664 unsigned long num_dimm_banks);
665
666void program_rtr (unsigned long* dimm_populated,
667 unsigned char* iic0_dimm_addr,
668 unsigned long num_dimm_banks);
669
670void program_tr0 (unsigned long* dimm_populated,
671 unsigned char* iic0_dimm_addr,
672 unsigned long num_dimm_banks);
673
674void program_tr1 (void);
675
676void program_ecc (unsigned long num_bytes);
677
678unsigned
679long program_bxcr(unsigned long* dimm_populated,
680 unsigned char* iic0_dimm_addr,
681 unsigned long num_dimm_banks);
682
683/*
684 * This function is reading data from the DIMM module EEPROM over the SPD bus
685 * and uses that to program the sdram controller.
686 *
687 * This works on boards that has the same schematics that the IBM walnut has.
688 *
689 * BUG: Don't handle ECC memory
690 * BUG: A few values in the TR register is currently hardcoded
691 */
692
693long int spd_sdram(void) {
694 unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
695 unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
696 unsigned long total_size;
697 unsigned long cfg0;
698 unsigned long mcsts;
699 unsigned long num_dimm_banks; /* on board dimm banks */
700
701 num_dimm_banks = sizeof(iic0_dimm_addr);
702
703 /*
704 * Make sure I2C controller is initialized
705 * before continuing.
706 */
707 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
708
709 /*
710 * Read the SPD information using I2C interface. Check to see if the
711 * DIMM slots are populated.
712 */
713 get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
714
715 /*
716 * Check the memory type for the dimms plugged.
717 */
718 check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
719
720 /*
721 * Check the voltage type for the dimms plugged.
722 */
723 check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
724
725 /*
726 * program 440GP SDRAM controller options (SDRAM0_CFG0)
727 */
728 program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
729
730 /*
731 * program 440GP SDRAM controller options (SDRAM0_CFG1)
732 */
733 program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
734
735 /*
736 * program SDRAM refresh register (SDRAM0_RTR)
737 */
738 program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
739
740 /*
741 * program SDRAM Timing Register 0 (SDRAM0_TR0)
742 */
743 program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
744
745 /*
746 * program the BxCR registers to find out total sdram installed
747 */
748 total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
749 num_dimm_banks);
750
751 /*
752 * program SDRAM Clock Timing Register (SDRAM0_CLKTR)
753 */
754 mtsdram(mem_clktr, 0x40000000);
755
756 /*
757 * delay to ensure 200 usec has elapsed
758 */
759 udelay(400);
760
761 /*
762 * enable the memory controller
763 */
764 mfsdram(mem_cfg0, cfg0);
765 mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN);
766
767 /*
768 * wait for SDRAM_CFG0_DC_EN to complete
769 */
770 while(1) {
771 mfsdram(mem_mcsts, mcsts);
772 if ((mcsts & SDRAM_MCSTS_MRSC) != 0) {
773 break;
774 }
775 }
776
777 /*
778 * program SDRAM Timing Register 1, adding some delays
779 */
780 program_tr1();
781
782 /*
783 * if ECC is enabled, initialize parity bits
784 */
785
786 return total_size;
787}
788
789unsigned char spd_read(uchar chip, uint addr) {
790 unsigned char data[2];
791
792 if (i2c_read(chip, addr, 1, data, 1) == 0)
793 return data[0];
794 else
795 return 0;
796}
797
798void get_spd_info(unsigned long* dimm_populated,
799 unsigned char* iic0_dimm_addr,
800 unsigned long num_dimm_banks)
801{
802 unsigned long dimm_num;
803 unsigned long dimm_found;
804 unsigned char num_of_bytes;
805 unsigned char total_size;
806
807 dimm_found = FALSE;
808 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
809 num_of_bytes = 0;
810 total_size = 0;
811
812 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
813 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
814
815 if ((num_of_bytes != 0) && (total_size != 0)) {
816 dimm_populated[dimm_num] = TRUE;
817 dimm_found = TRUE;
818#if 0
819 printf("DIMM slot %lu: populated\n", dimm_num);
820#endif
821 }
822 else {
823 dimm_populated[dimm_num] = FALSE;
824#if 0
825 printf("DIMM slot %lu: Not populated\n", dimm_num);
826#endif
827 }
828 }
829
830 if (dimm_found == FALSE) {
831 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
832 hang();
833 }
834}
835
836void check_mem_type(unsigned long* dimm_populated,
837 unsigned char* iic0_dimm_addr,
838 unsigned long num_dimm_banks)
839{
840 unsigned long dimm_num;
841 unsigned char dimm_type;
842
843 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
844 if (dimm_populated[dimm_num] == TRUE) {
845 dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
846 switch (dimm_type) {
847 case 7:
848#if 0
849 printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
850#endif
851 break;
852 default:
853 printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
854 dimm_num);
855 printf("Only DDR SDRAM DIMMs are supported.\n");
856 printf("Replace the DIMM module with a supported DIMM.\n\n");
857 hang();
858 break;
859 }
860 }
861 }
862}
863
864
865void check_volt_type(unsigned long* dimm_populated,
866 unsigned char* iic0_dimm_addr,
867 unsigned long num_dimm_banks)
868{
869 unsigned long dimm_num;
870 unsigned long voltage_type;
871
872 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
873 if (dimm_populated[dimm_num] == TRUE) {
874 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
875 if (voltage_type != 0x04) {
876 printf("ERROR: DIMM %lu with unsupported voltage level.\n",
877 dimm_num);
878 hang();
879 }
880 else {
881#if 0
882 printf("DIMM %lu voltage level supported.\n", dimm_num);
883#endif
884 }
885 break;
886 }
887 }
888}
889
890void program_cfg0(unsigned long* dimm_populated,
891 unsigned char* iic0_dimm_addr,
892 unsigned long num_dimm_banks)
893{
894 unsigned long dimm_num;
895 unsigned long cfg0;
896 unsigned long ecc_enabled;
897 unsigned char ecc;
898 unsigned char attributes;
899 unsigned long data_width;
900 unsigned long dimm_32bit;
901 unsigned long dimm_64bit;
902
903 /*
904 * get Memory Controller Options 0 data
905 */
906 mfsdram(mem_cfg0, cfg0);
907
908 /*
909 * clear bits
910 */
911 cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
912 SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
913 SDRAM_CFG0_DMWD_MASK |
914 SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
915
916
917 /*
918 * FIXME: assume the DDR SDRAMs in both banks are the same
919 */
920 ecc_enabled = TRUE;
921 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
922 if (dimm_populated[dimm_num] == TRUE) {
923 ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
924 if (ecc != 0x02) {
925 ecc_enabled = FALSE;
926 }
927
928 /*
929 * program Registered DIMM Enable
930 */
931 attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
932 if ((attributes & 0x02) != 0x00) {
933 cfg0 |= SDRAM_CFG0_RDEN;
934 }
935
936 /*
937 * program DDR SDRAM Data Width
938 */
939 data_width =
940 (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
941 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
942 if (data_width == 64 || data_width == 72) {
943 dimm_64bit = TRUE;
944 cfg0 |= SDRAM_CFG0_DMWD_64;
945 }
946 else if (data_width == 32 || data_width == 40) {
947 dimm_32bit = TRUE;
948 cfg0 |= SDRAM_CFG0_DMWD_32;
949 }
950 else {
951 printf("WARNING: DIMM with datawidth of %lu bits.\n",
952 data_width);
953 printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
954 hang();
955 }
956 break;
957 }
958 }
959
960 /*
961 * program Memory Data Error Checking
962 */
963 if (ecc_enabled == TRUE) {
964 cfg0 |= SDRAM_CFG0_MCHK_GEN;
965 }
966 else {
967 cfg0 |= SDRAM_CFG0_MCHK_NON;
968 }
969
970 /*
971 * program Page Management Unit
972 */
973 cfg0 |= SDRAM_CFG0_PMUD;
974
975 /*
976 * program Memory Controller Options 0
977 * Note: DCEN must be enabled after all DDR SDRAM controller
978 * configuration registers get initialized.
979 */
980 mtsdram(mem_cfg0, cfg0);
981}
982
983void program_cfg1(unsigned long* dimm_populated,
984 unsigned char* iic0_dimm_addr,
985 unsigned long num_dimm_banks)
986{
987 unsigned long cfg1;
988 mfsdram(mem_cfg1, cfg1);
989
990 /*
991 * Self-refresh exit, disable PM
992 */
993 cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
994
995 /*
996 * program Memory Controller Options 1
997 */
998 mtsdram(mem_cfg1, cfg1);
999}
1000
1001void program_rtr (unsigned long* dimm_populated,
1002 unsigned char* iic0_dimm_addr,
1003 unsigned long num_dimm_banks)
1004{
1005 unsigned long dimm_num;
1006 unsigned long bus_period_x_10;
1007 unsigned long refresh_rate = 0;
1008 unsigned char refresh_rate_type;
1009 unsigned long refresh_interval;
1010 unsigned long sdram_rtr;
1011 PPC440_SYS_INFO sys_info;
1012
1013 /*
1014 * get the board info
1015 */
1016 get_sys_info(&sys_info);
1017 bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
1018
1019
1020 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1021 if (dimm_populated[dimm_num] == TRUE) {
1022 refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
1023 switch (refresh_rate_type) {
1024 case 0x00:
1025 refresh_rate = 15625;
1026 break;
1027 case 0x011:
1028 refresh_rate = 15625/4;
1029 break;
1030 case 0x02:
1031 refresh_rate = 15625/2;
1032 break;
1033 case 0x03:
1034 refresh_rate = 15626*2;
1035 break;
1036 case 0x04:
1037 refresh_rate = 15625*4;
1038 break;
1039 case 0x05:
1040 refresh_rate = 15625*8;
1041 break;
1042 default:
1043 printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
1044 dimm_num);
1045 printf("Replace the DIMM module with a supported DIMM.\n");
1046 break;
1047 }
1048
1049 break;
1050 }
1051 }
1052
1053 refresh_interval = refresh_rate * 10 / bus_period_x_10;
1054 sdram_rtr = (refresh_interval & 0x3ff8) << 16;
1055
1056 /*
1057 * program Refresh Timer Register (SDRAM0_RTR)
1058 */
1059 mtsdram(mem_rtr, sdram_rtr);
1060}
1061
1062void program_tr0 (unsigned long* dimm_populated,
1063 unsigned char* iic0_dimm_addr,
1064 unsigned long num_dimm_banks)
1065{
1066 unsigned long dimm_num;
1067 unsigned long tr0;
1068 unsigned char wcsbc;
1069 unsigned char t_rp_ns;
1070 unsigned char t_rcd_ns;
1071 unsigned char t_ras_ns;
1072 unsigned long t_rp_clk;
1073 unsigned long t_ras_rcd_clk;
1074 unsigned long t_rcd_clk;
1075 unsigned long t_rfc_clk;
1076 unsigned long plb_check;
1077 unsigned char cas_bit;
1078 unsigned long cas_index;
1079 unsigned char cas_2_0_available;
1080 unsigned char cas_2_5_available;
1081 unsigned char cas_3_0_available;
1082 unsigned long cycle_time_ns_x_10[3];
1083 unsigned long tcyc_3_0_ns_x_10;
1084 unsigned long tcyc_2_5_ns_x_10;
1085 unsigned long tcyc_2_0_ns_x_10;
1086 unsigned long tcyc_reg;
1087 unsigned long bus_period_x_10;
1088 PPC440_SYS_INFO sys_info;
1089 unsigned long residue;
1090
1091 /*
1092 * get the board info
1093 */
1094 get_sys_info(&sys_info);
1095 bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
1096
1097 /*
1098 * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
1099 */
1100 mfsdram(mem_tr0, tr0);
1101 tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
1102 SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
1103 SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
1104 SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
1105
1106 /*
1107 * initialization
1108 */
1109 wcsbc = 0;
1110 t_rp_ns = 0;
1111 t_rcd_ns = 0;
1112 t_ras_ns = 0;
1113 cas_2_0_available = TRUE;
1114 cas_2_5_available = TRUE;
1115 cas_3_0_available = TRUE;
1116 tcyc_2_0_ns_x_10 = 0;
1117 tcyc_2_5_ns_x_10 = 0;
1118 tcyc_3_0_ns_x_10 = 0;
1119
1120 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1121 if (dimm_populated[dimm_num] == TRUE) {
1122 wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
1123 t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
1124 t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
1125 t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
1126 cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1127
1128 for (cas_index = 0; cas_index < 3; cas_index++) {
1129 switch (cas_index) {
1130 case 0:
1131 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1132 break;
1133 case 1:
1134 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1135 break;
1136 default:
1137 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1138 break;
1139 }
1140
1141 if ((tcyc_reg & 0x0F) >= 10) {
1142 printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
1143 dimm_num);
1144 hang();
1145 }
1146
1147 cycle_time_ns_x_10[cas_index] =
1148 (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
1149 }
1150
1151 cas_index = 0;
1152
1153 if ((cas_bit & 0x80) != 0) {
1154 cas_index += 3;
1155 }
1156 else if ((cas_bit & 0x40) != 0) {
1157 cas_index += 2;
1158 }
1159 else if ((cas_bit & 0x20) != 0) {
1160 cas_index += 1;
1161 }
1162
1163 if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
1164 tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
1165 cas_index++;
1166 }
1167 else {
1168 if (cas_index != 0) {
1169 cas_index++;
1170 }
1171 cas_3_0_available = FALSE;
1172 }
1173
1174 if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
1175 tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
1176 cas_index++;
1177 }
1178 else {
1179 if (cas_index != 0) {
1180 cas_index++;
1181 }
1182 cas_2_5_available = FALSE;
1183 }
1184
1185 if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
1186 tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
1187 cas_index++;
1188 }
1189 else {
1190 if (cas_index != 0) {
1191 cas_index++;
1192 }
1193 cas_2_0_available = FALSE;
1194 }
1195
1196 break;
1197 }
1198 }
1199
1200 /*
1201 * Program SD_WR and SD_WCSBC fields
1202 */
1203 tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
1204 switch (wcsbc) {
1205 case 0:
1206 tr0 |= SDRAM_TR0_SDWD_0_CLK;
1207 break;
1208 default:
1209 tr0 |= SDRAM_TR0_SDWD_1_CLK;
1210 break;
1211 }
1212
1213 /*
1214 * Program SD_CASL field
1215 */
1216 if ((cas_2_0_available == TRUE) &&
1217 (bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
1218 tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
1219 }
1220 else if((cas_2_5_available == TRUE) &&
1221 (bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
1222 tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
1223 }
1224 else if((cas_3_0_available == TRUE) &&
1225 (bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
1226 tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
1227 }
1228 else {
1229 printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
1230 printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1231 printf("Make sure the PLB speed is within the supported range.\n");
1232 hang();
1233 }
1234
1235 /*
1236 * Calculate Trp in clock cycles and round up if necessary
1237 * Program SD_PTA field
1238 */
1239 t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
1240 plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
1241 if (sys_info.freqPLB != plb_check) {
1242 t_rp_clk++;
1243 }
1244 switch ((unsigned long)t_rp_clk) {
1245 case 0:
1246 case 1:
1247 case 2:
1248 tr0 |= SDRAM_TR0_SDPA_2_CLK;
1249 break;
1250 case 3:
1251 tr0 |= SDRAM_TR0_SDPA_3_CLK;
1252 break;
1253 default:
1254 tr0 |= SDRAM_TR0_SDPA_4_CLK;
1255 break;
1256 }
1257
1258 /*
1259 * Program SD_CTP field
1260 */
1261 t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
1262 plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
1263 if (sys_info.freqPLB != plb_check) {
1264 t_ras_rcd_clk++;
1265 }
1266 switch (t_ras_rcd_clk) {
1267 case 0:
1268 case 1:
1269 case 2:
1270 tr0 |= SDRAM_TR0_SDCP_2_CLK;
1271 break;
1272 case 3:
1273 tr0 |= SDRAM_TR0_SDCP_3_CLK;
1274 break;
1275 case 4:
1276 tr0 |= SDRAM_TR0_SDCP_4_CLK;
1277 break;
1278 default:
1279 tr0 |= SDRAM_TR0_SDCP_5_CLK;
1280 break;
1281 }
1282
1283 /*
1284 * Program SD_LDF field
1285 */
1286 tr0 |= SDRAM_TR0_SDLD_2_CLK;
1287
1288 /*
1289 * Program SD_RFTA field
1290 * FIXME tRFC hardcoded as 75 nanoseconds
1291 */
1292 t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
1293 residue = sys_info.freqPLB % (ONE_BILLION / 75);
1294 if (residue >= (ONE_BILLION / 150)) {
1295 t_rfc_clk++;
1296 }
1297 switch (t_rfc_clk) {
1298 case 0:
1299 case 1:
1300 case 2:
1301 case 3:
1302 case 4:
1303 case 5:
1304 case 6:
1305 tr0 |= SDRAM_TR0_SDRA_6_CLK;
1306 break;
1307 case 7:
1308 tr0 |= SDRAM_TR0_SDRA_7_CLK;
1309 break;
1310 case 8:
1311 tr0 |= SDRAM_TR0_SDRA_8_CLK;
1312 break;
1313 case 9:
1314 tr0 |= SDRAM_TR0_SDRA_9_CLK;
1315 break;
1316 case 10:
1317 tr0 |= SDRAM_TR0_SDRA_10_CLK;
1318 break;
1319 case 11:
1320 tr0 |= SDRAM_TR0_SDRA_11_CLK;
1321 break;
1322 case 12:
1323 tr0 |= SDRAM_TR0_SDRA_12_CLK;
1324 break;
1325 default:
1326 tr0 |= SDRAM_TR0_SDRA_13_CLK;
1327 break;
1328 }
1329
1330 /*
1331 * Program SD_RCD field
1332 */
1333 t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
1334 plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
1335 if (sys_info.freqPLB != plb_check) {
1336 t_rcd_clk++;
1337 }
1338 switch (t_rcd_clk) {
1339 case 0:
1340 case 1:
1341 case 2:
1342 tr0 |= SDRAM_TR0_SDRD_2_CLK;
1343 break;
1344 case 3:
1345 tr0 |= SDRAM_TR0_SDRD_3_CLK;
1346 break;
1347 default:
1348 tr0 |= SDRAM_TR0_SDRD_4_CLK;
1349 break;
1350 }
1351
1352#if 0
1353 printf("tr0: %x\n", tr0);
1354#endif
1355 mtsdram(mem_tr0, tr0);
1356}
1357
1358void program_tr1 (void)
1359{
1360 unsigned long tr0;
1361 unsigned long tr1;
1362 unsigned long cfg0;
1363 unsigned long ecc_temp;
1364 unsigned long dlycal;
1365 unsigned long dly_val;
1366 unsigned long i, j, k;
1367 unsigned long bxcr_num;
1368 unsigned long max_pass_length;
1369 unsigned long current_pass_length;
1370 unsigned long current_fail_length;
1371 unsigned long current_start;
1372 unsigned long rdclt;
1373 unsigned long rdclt_offset;
1374 long max_start;
1375 long max_end;
1376 long rdclt_average;
1377 unsigned char window_found;
1378 unsigned char fail_found;
1379 unsigned char pass_found;
1380 unsigned long * membase;
1381 PPC440_SYS_INFO sys_info;
1382
1383 /*
1384 * get the board info
1385 */
1386 get_sys_info(&sys_info);
1387
1388 /*
1389 * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
1390 */
1391 mfsdram(mem_tr1, tr1);
1392 tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
1393 SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
1394
1395 mfsdram(mem_tr0, tr0);
1396 if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
1397 (sys_info.freqPLB > 100000000)) {
1398 tr1 |= SDRAM_TR1_RDSS_TR2;
1399 tr1 |= SDRAM_TR1_RDSL_STAGE3;
1400 tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
1401 }
1402 else {
1403 tr1 |= SDRAM_TR1_RDSS_TR1;
1404 tr1 |= SDRAM_TR1_RDSL_STAGE2;
1405 tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
1406 }
1407
1408 /*
1409 * save CFG0 ECC setting to a temporary variable and turn ECC off
1410 */
1411 mfsdram(mem_cfg0, cfg0);
1412 ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
1413 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
1414
1415 /*
1416 * get the delay line calibration register value
1417 */
1418 mfsdram(mem_dlycal, dlycal);
1419 dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
1420
1421 max_pass_length = 0;
1422 max_start = 0;
1423 max_end = 0;
1424 current_pass_length = 0;
1425 current_fail_length = 0;
1426 current_start = 0;
1427 rdclt_offset = 0;
1428 window_found = FALSE;
1429 fail_found = FALSE;
1430 pass_found = FALSE;
1431#ifdef DEBUG
1432 printf("Starting memory test ");
1433#endif
1434 for (k = 0; k < NUMHALFCYCLES; k++) {
1435 for (rdclt = 0; rdclt < dly_val; rdclt++) {
1436 /*
1437 * Set the timing reg for the test.
1438 */
1439 mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
1440
1441 for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
1442 mtdcr(memcfga, mem_b0cr + (bxcr_num<<2));
1443 if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
1444 /* Bank is enabled */
1445 membase = (unsigned long*)
1446 (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK);
1447
1448 /*
1449 * Run the short memory test
1450 */
1451 for (i = 0; i < NUMMEMTESTS; i++) {
1452 for (j = 0; j < NUMMEMWORDS; j++) {
1453 membase[j] = test[i][j];
1454 ppcDcbf((unsigned long)&(membase[j]));
1455 }
1456
1457 for (j = 0; j < NUMMEMWORDS; j++) {
1458 if (membase[j] != test[i][j]) {
1459 ppcDcbf((unsigned long)&(membase[j]));
1460 break;
1461 }
1462 ppcDcbf((unsigned long)&(membase[j]));
1463 }
1464
1465 if (j < NUMMEMWORDS) {
1466 break;
1467 }
1468 }
1469
1470 /*
1471 * see if the rdclt value passed
1472 */
1473 if (i < NUMMEMTESTS) {
1474 break;
1475 }
1476 }
1477 }
1478
1479 if (bxcr_num == MAXBXCR) {
1480 if (fail_found == TRUE) {
1481 pass_found = TRUE;
1482 if (current_pass_length == 0) {
1483 current_start = rdclt_offset + rdclt;
1484 }
1485
1486 current_fail_length = 0;
1487 current_pass_length++;
1488
1489 if (current_pass_length > max_pass_length) {
1490 max_pass_length = current_pass_length;
1491 max_start = current_start;
1492 max_end = rdclt_offset + rdclt;
1493 }
1494 }
1495 }
1496 else {
1497 current_pass_length = 0;
1498 current_fail_length++;
1499
1500 if (current_fail_length >= (dly_val>>2)) {
1501 if (fail_found == FALSE) {
1502 fail_found = TRUE;
1503 }
1504 else if (pass_found == TRUE) {
1505 window_found = TRUE;
1506 break;
1507 }
1508 }
1509 }
1510 }
1511#ifdef DEBUG
1512 printf(".");
1513#endif
1514 if (window_found == TRUE) {
1515 break;
1516 }
1517
1518 tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
1519 rdclt_offset += dly_val;
1520 }
1521#ifdef DEBUG
1522 printf("\n");
1523#endif
1524
1525 /*
1526 * make sure we find the window
1527 */
1528 if (window_found == FALSE) {
1529 printf("ERROR: Cannot determine a common read delay.\n");
1530 hang();
1531 }
1532
1533 /*
1534 * restore the orignal ECC setting
1535 */
1536 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
1537
1538 /*
1539 * set the SDRAM TR1 RDCD value
1540 */
1541 tr1 &= ~SDRAM_TR1_RDCD_MASK;
1542 if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
1543 tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
1544 }
1545 else {
1546 tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
1547 }
1548
1549 /*
1550 * set the SDRAM TR1 RDCLT value
1551 */
1552 tr1 &= ~SDRAM_TR1_RDCT_MASK;
1553 while (max_end >= (dly_val<<1)) {
1554 max_end -= (dly_val<<1);
1555 max_start -= (dly_val<<1);
1556 }
1557
1558 rdclt_average = ((max_start + max_end) >> 1);
1559 if (rdclt_average >= 0x60)
1560 while(1);
1561
1562 if (rdclt_average < 0) {
1563 rdclt_average = 0;
1564 }
1565
1566 if (rdclt_average >= dly_val) {
1567 rdclt_average -= dly_val;
1568 tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
1569 }
1570 tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
1571
1572#if 0
1573 printf("tr1: %x\n", tr1);
1574#endif
1575 /*
1576 * program SDRAM Timing Register 1 TR1
1577 */
1578 mtsdram(mem_tr1, tr1);
1579}
1580
1581unsigned long program_bxcr(unsigned long* dimm_populated,
1582 unsigned char* iic0_dimm_addr,
1583 unsigned long num_dimm_banks)
1584{
1585 unsigned long dimm_num;
1586 unsigned long bxcr_num;
1587 unsigned long bank_base_addr;
1588 unsigned long bank_size_bytes;
1589 unsigned long cr;
1590 unsigned long i;
1591 unsigned long temp;
1592 unsigned char num_row_addr;
1593 unsigned char num_col_addr;
1594 unsigned char num_banks;
1595 unsigned char bank_size_id;
1596
1597
1598 /*
1599 * Set the BxCR regs. First, wipe out the bank config registers.
1600 */
1601 for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
1602 mtdcr(memcfga, mem_b0cr + (bxcr_num << 2));
1603 mtdcr(memcfgd, 0x00000000);
1604 }
1605
1606 /*
1607 * reset the bank_base address
1608 */
1609 bank_base_addr = CFG_SDRAM_BASE;
1610
1611 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1612 if (dimm_populated[dimm_num] == TRUE) {
1613 num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
1614 num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
1615 num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
1616 bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
1617
1618 /*
1619 * Set the SDRAM0_BxCR regs
1620 */
1621 cr = 0;
1622 bank_size_bytes = 4 * 1024 * 1024 * bank_size_id;
1623 switch (bank_size_id) {
1624 case 0x02:
1625 cr |= SDRAM_BXCR_SDSZ_8;
1626 break;
1627 case 0x04:
1628 cr |= SDRAM_BXCR_SDSZ_16;
1629 break;
1630 case 0x08:
1631 cr |= SDRAM_BXCR_SDSZ_32;
1632 break;
1633 case 0x10:
1634 cr |= SDRAM_BXCR_SDSZ_64;
1635 break;
1636 case 0x20:
1637 cr |= SDRAM_BXCR_SDSZ_128;
1638 break;
1639 case 0x40:
1640 cr |= SDRAM_BXCR_SDSZ_256;
1641 break;
1642 case 0x80:
1643 cr |= SDRAM_BXCR_SDSZ_512;
1644 break;
1645 default:
1646 printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
1647 dimm_num);
1648 printf("ERROR: Unsupported value for the banksize: %d.\n",
1649 bank_size_id);
1650 printf("Replace the DIMM module with a supported DIMM.\n\n");
1651 hang();
1652 }
1653
1654 switch (num_col_addr) {
1655 case 0x08:
1656 cr |= SDRAM_BXCR_SDAM_1;
1657 break;
1658 case 0x09:
1659 cr |= SDRAM_BXCR_SDAM_2;
1660 break;
1661 case 0x0A:
1662 cr |= SDRAM_BXCR_SDAM_3;
1663 break;
1664 case 0x0B:
1665 cr |= SDRAM_BXCR_SDAM_4;
1666 break;
1667 default:
1668 printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
1669 dimm_num);
1670 printf("ERROR: Unsupported value for number of "
1671 "column addresses: %d.\n", num_col_addr);
1672 printf("Replace the DIMM module with a supported DIMM.\n\n");
1673 hang();
1674 }
1675
1676 /*
1677 * enable the bank
1678 */
1679 cr |= SDRAM_BXCR_SDBE;
1680
1681 /*------------------------------------------------------------------
1682 | This next section is hardware dependent and must be programmed
1683 | to match the hardware.
1684 +-----------------------------------------------------------------*/
1685 if (dimm_num == 0) {
1686 for (i = 0; i < num_banks; i++) {
1687 mtdcr(memcfga, mem_b0cr + (i << 2));
1688 temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
1689 SDRAM_BXCR_SDSZ_MASK |
1690 SDRAM_BXCR_SDAM_MASK |
1691 SDRAM_BXCR_SDBE);
1692 cr |= temp;
1693 cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
1694 mtdcr(memcfgd, cr);
1695 bank_base_addr += bank_size_bytes;
1696 }
1697 }
1698 else {
1699 for (i = 0; i < num_banks; i++) {
1700 mtdcr(memcfga, mem_b2cr + (i << 2));
1701 temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
1702 SDRAM_BXCR_SDSZ_MASK |
1703 SDRAM_BXCR_SDAM_MASK |
1704 SDRAM_BXCR_SDBE);
1705 cr |= temp;
1706 cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
1707 mtdcr(memcfgd, cr);
1708 bank_base_addr += bank_size_bytes;
1709 }
1710 }
1711 }
1712 }
1713
1714 return(bank_base_addr);
1715}
1716
1717void program_ecc (unsigned long num_bytes)
1718{
1719 unsigned long bank_base_addr;
1720 unsigned long current_address;
1721 unsigned long end_address;
1722 unsigned long address_increment;
1723 unsigned long cfg0;
1724
1725 /*
1726 * get Memory Controller Options 0 data
1727 */
1728 mfsdram(mem_cfg0, cfg0);
1729
1730 /*
1731 * reset the bank_base address
1732 */
1733 bank_base_addr = CFG_SDRAM_BASE;
1734
1735 if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) {
1736 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
1737 SDRAM_CFG0_MCHK_GEN);
1738
1739 if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) {
1740 address_increment = 4;
1741 }
1742 else {
1743 address_increment = 8;
1744 }
1745
1746 current_address = (unsigned long)(bank_base_addr);
1747 end_address = (unsigned long)(bank_base_addr) + num_bytes;
1748
1749 while (current_address < end_address) {
1750 *((unsigned long*)current_address) = 0x00000000;
1751 current_address += address_increment;
1752 }
1753
1754 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
1755 SDRAM_CFG0_MCHK_CHK);
1756 }
1757}
1758
1759#endif /* CONFIG_440 */
1760
1761#endif /* CONFIG_SPD_EEPROM */