blob: 5726981b19c063d5248e747856343f245dfc37fd [file] [log] [blame]
Qu Wenruob1f00672020-06-24 18:02:54 +02001// SPDX-License-Identifier: GPL-2.0+
2#include <stdlib.h>
Tom Rini03de3052024-05-20 13:35:03 -06003#include <errno.h>
Qu Wenruob1f00672020-06-24 18:02:54 +02004#include <fs_internal.h>
5#include "ctree.h"
6#include "disk-io.h"
7#include "volumes.h"
Qu Wenruo57f24f12020-06-24 18:03:00 +02008#include "extent-io.h"
Qu Wenruob1f00672020-06-24 18:02:54 +02009
10const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
11 [BTRFS_RAID_RAID10] = {
12 .sub_stripes = 2,
13 .dev_stripes = 1,
14 .devs_max = 0, /* 0 == as many as possible */
15 .devs_min = 4,
16 .tolerated_failures = 1,
17 .devs_increment = 2,
18 .ncopies = 2,
19 .nparity = 0,
20 .raid_name = "raid10",
21 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
22 },
23 [BTRFS_RAID_RAID1] = {
24 .sub_stripes = 1,
25 .dev_stripes = 1,
26 .devs_max = 2,
27 .devs_min = 2,
28 .tolerated_failures = 1,
29 .devs_increment = 2,
30 .ncopies = 2,
31 .nparity = 0,
32 .raid_name = "raid1",
33 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
34 },
35 [BTRFS_RAID_RAID1C3] = {
36 .sub_stripes = 1,
37 .dev_stripes = 1,
38 .devs_max = 3,
39 .devs_min = 3,
40 .tolerated_failures = 2,
41 .devs_increment = 3,
42 .ncopies = 3,
43 .raid_name = "raid1c3",
44 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
45 },
46 [BTRFS_RAID_RAID1C4] = {
47 .sub_stripes = 1,
48 .dev_stripes = 1,
49 .devs_max = 4,
50 .devs_min = 4,
51 .tolerated_failures = 3,
52 .devs_increment = 4,
53 .ncopies = 4,
54 .raid_name = "raid1c4",
55 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
56 },
57 [BTRFS_RAID_DUP] = {
58 .sub_stripes = 1,
59 .dev_stripes = 2,
60 .devs_max = 1,
61 .devs_min = 1,
62 .tolerated_failures = 0,
63 .devs_increment = 1,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "dup",
67 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
68 },
69 [BTRFS_RAID_RAID0] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 0,
73 .devs_min = 2,
74 .tolerated_failures = 0,
75 .devs_increment = 1,
76 .ncopies = 1,
77 .nparity = 0,
78 .raid_name = "raid0",
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
80 },
81 [BTRFS_RAID_SINGLE] = {
82 .sub_stripes = 1,
83 .dev_stripes = 1,
84 .devs_max = 1,
85 .devs_min = 1,
86 .tolerated_failures = 0,
87 .devs_increment = 1,
88 .ncopies = 1,
89 .nparity = 0,
90 .raid_name = "single",
91 .bg_flag = 0,
92 },
93 [BTRFS_RAID_RAID5] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 0,
97 .devs_min = 2,
98 .tolerated_failures = 1,
99 .devs_increment = 1,
100 .ncopies = 1,
101 .nparity = 1,
102 .raid_name = "raid5",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
104 },
105 [BTRFS_RAID_RAID6] = {
106 .sub_stripes = 1,
107 .dev_stripes = 1,
108 .devs_max = 0,
109 .devs_min = 3,
110 .tolerated_failures = 2,
111 .devs_increment = 1,
112 .ncopies = 1,
113 .nparity = 2,
114 .raid_name = "raid6",
115 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
116 },
117};
118
119struct stripe {
120 struct btrfs_device *dev;
121 u64 physical;
122};
123
124static inline int nr_parity_stripes(struct map_lookup *map)
125{
126 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
127 return 1;
128 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
129 return 2;
130 else
131 return 0;
132}
133
134static inline int nr_data_stripes(struct map_lookup *map)
135{
136 return map->num_stripes - nr_parity_stripes(map);
137}
138
139#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
140
141static LIST_HEAD(fs_uuids);
142
143/*
144 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
145 * return NULL.
146 *
147 * If devid and uuid are both specified, the match must be exact, otherwise
148 * only devid is used.
149 */
150static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
151 u64 devid, u8 *uuid)
152{
153 struct list_head *head = &fs_devices->devices;
154 struct btrfs_device *dev;
155
156 list_for_each_entry(dev, head, dev_list) {
157 if (dev->devid == devid &&
158 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
159 return dev;
160 }
161 }
162 return NULL;
163}
164
165static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
166{
167 struct btrfs_fs_devices *fs_devices;
168
169 list_for_each_entry(fs_devices, &fs_uuids, list) {
170 if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
171 BTRFS_FSID_SIZE) == 0) &&
172 (memcmp(metadata_uuid, fs_devices->metadata_uuid,
173 BTRFS_FSID_SIZE) == 0)) {
174 return fs_devices;
175 } else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
176 return fs_devices;
177 }
178 }
179 return NULL;
180}
181
182static int device_list_add(struct btrfs_super_block *disk_super,
183 u64 devid, struct blk_desc *desc,
184 struct disk_partition *part,
185 struct btrfs_fs_devices **fs_devices_ret)
186{
187 struct btrfs_device *device;
188 struct btrfs_fs_devices *fs_devices;
189 u64 found_transid = btrfs_super_generation(disk_super);
190 bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
191 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
192
193 if (metadata_uuid)
194 fs_devices = find_fsid(disk_super->fsid,
195 disk_super->metadata_uuid);
196 else
197 fs_devices = find_fsid(disk_super->fsid, NULL);
198
199 if (!fs_devices) {
200 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
201 if (!fs_devices)
202 return -ENOMEM;
203 INIT_LIST_HEAD(&fs_devices->devices);
204 list_add(&fs_devices->list, &fs_uuids);
205 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
206 if (metadata_uuid)
207 memcpy(fs_devices->metadata_uuid,
208 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
209 else
210 memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
211 BTRFS_FSID_SIZE);
212
213 fs_devices->latest_devid = devid;
214 fs_devices->latest_trans = found_transid;
215 fs_devices->lowest_devid = (u64)-1;
216 device = NULL;
217 } else {
218 device = find_device(fs_devices, devid,
219 disk_super->dev_item.uuid);
220 }
221 if (!device) {
222 device = kzalloc(sizeof(*device), GFP_NOFS);
223 if (!device) {
224 /* we can safely leave the fs_devices entry around */
225 return -ENOMEM;
226 }
227 device->devid = devid;
228 device->desc = desc;
229 device->part = part;
230 device->generation = found_transid;
231 memcpy(device->uuid, disk_super->dev_item.uuid,
232 BTRFS_UUID_SIZE);
233 device->total_devs = btrfs_super_num_devices(disk_super);
234 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
235 device->total_bytes =
236 btrfs_stack_device_total_bytes(&disk_super->dev_item);
237 device->bytes_used =
238 btrfs_stack_device_bytes_used(&disk_super->dev_item);
239 list_add(&device->dev_list, &fs_devices->devices);
240 device->fs_devices = fs_devices;
241 } else if (!device->desc || !device->part) {
242 /*
243 * The existing device has newer generation, so this one could
244 * be a stale one, don't add it.
245 */
246 if (found_transid < device->generation) {
247 error(
248 "adding devid %llu gen %llu but found an existing device gen %llu",
249 device->devid, found_transid,
250 device->generation);
251 return -EEXIST;
252 } else {
253 device->desc = desc;
254 device->part = part;
255 }
256 }
257
Qu Wenruob1f00672020-06-24 18:02:54 +0200258 if (found_transid > fs_devices->latest_trans) {
259 fs_devices->latest_devid = devid;
260 fs_devices->latest_trans = found_transid;
261 }
262 if (fs_devices->lowest_devid > devid) {
263 fs_devices->lowest_devid = devid;
264 }
265 *fs_devices_ret = fs_devices;
266 return 0;
267}
268
269int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
270{
271 struct btrfs_fs_devices *seed_devices;
272 struct btrfs_device *device;
273 int ret = 0;
274
275again:
276 if (!fs_devices)
277 return 0;
278 while (!list_empty(&fs_devices->devices)) {
279 device = list_entry(fs_devices->devices.next,
280 struct btrfs_device, dev_list);
281 list_del(&device->dev_list);
282 /* free the memory */
283 free(device);
284 }
285
286 seed_devices = fs_devices->seed;
287 fs_devices->seed = NULL;
288 if (seed_devices) {
289 struct btrfs_fs_devices *orig;
290
291 orig = fs_devices;
292 fs_devices = seed_devices;
293 list_del(&orig->list);
294 free(orig);
295 goto again;
296 } else {
297 list_del(&fs_devices->list);
298 free(fs_devices);
299 }
300
301 return ret;
302}
303
304void btrfs_close_all_devices(void)
305{
306 struct btrfs_fs_devices *fs_devices;
307
308 while (!list_empty(&fs_uuids)) {
309 fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
310 list);
311 btrfs_close_devices(fs_devices);
312 }
313}
314
315int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
316{
317 struct btrfs_device *device;
318
319 list_for_each_entry(device, &fs_devices->devices, dev_list) {
320 if (!device->desc || !device->part) {
321 printf("no device found for devid %llu, skip it \n",
322 device->devid);
323 continue;
324 }
325 }
326 return 0;
327}
328
329int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
330 struct btrfs_fs_devices **fs_devices_ret,
331 u64 *total_devs)
332{
333 struct btrfs_super_block *disk_super;
334 char buf[BTRFS_SUPER_INFO_SIZE];
335 int ret;
336 u64 devid;
337
338 disk_super = (struct btrfs_super_block *)buf;
339 ret = btrfs_read_dev_super(desc, part, disk_super);
340 if (ret < 0)
341 return -EIO;
342 devid = btrfs_stack_device_id(&disk_super->dev_item);
343 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
344 *total_devs = 1;
345 else
346 *total_devs = btrfs_super_num_devices(disk_super);
347
348 ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);
349
350 return ret;
351}
352
353struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
354 u8 *uuid, u8 *fsid)
355{
356 struct btrfs_device *device;
357 struct btrfs_fs_devices *cur_devices;
358
359 cur_devices = fs_info->fs_devices;
360 while (cur_devices) {
361 if (!fsid ||
362 !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
363 device = find_device(cur_devices, devid, uuid);
364 if (device)
365 return device;
366 }
367 cur_devices = cur_devices->seed;
368 }
369 return NULL;
370}
371
Qu Wenruo57f24f12020-06-24 18:03:00 +0200372static struct btrfs_device *fill_missing_device(u64 devid)
373{
374 struct btrfs_device *device;
375
376 device = kzalloc(sizeof(*device), GFP_NOFS);
377 return device;
378}
379
Qu Wenruob1f00672020-06-24 18:02:54 +0200380/*
381 * slot == -1: SYSTEM chunk
382 * return -EIO on error, otherwise return 0
383 */
384int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
385 struct extent_buffer *leaf,
386 struct btrfs_chunk *chunk,
387 int slot, u64 logical)
388{
389 u64 length;
390 u64 stripe_len;
391 u16 num_stripes;
392 u16 sub_stripes;
393 u64 type;
394 u32 chunk_ondisk_size;
395 u32 sectorsize = fs_info->sectorsize;
396
397 /*
398 * Basic chunk item size check. Note that btrfs_chunk already contains
399 * one stripe, so no "==" check.
400 */
401 if (slot >= 0 &&
402 btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
403 error("invalid chunk item size, have %u expect [%zu, %zu)",
404 btrfs_item_size_nr(leaf, slot),
405 sizeof(struct btrfs_chunk),
406 BTRFS_LEAF_DATA_SIZE(fs_info));
407 return -EUCLEAN;
408 }
409 length = btrfs_chunk_length(leaf, chunk);
410 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
411 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
412 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
413 type = btrfs_chunk_type(leaf, chunk);
414
415 if (num_stripes == 0) {
416 error("invalid num_stripes, have %u expect non-zero",
417 num_stripes);
418 return -EUCLEAN;
419 }
420 if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
421 btrfs_item_size_nr(leaf, slot)) {
422 error("invalid chunk item size, have %u expect %lu",
423 btrfs_item_size_nr(leaf, slot),
424 btrfs_chunk_item_size(num_stripes));
425 return -EUCLEAN;
426 }
427
428 /*
429 * These valid checks may be insufficient to cover every corner cases.
430 */
431 if (!IS_ALIGNED(logical, sectorsize)) {
432 error("invalid chunk logical %llu", logical);
433 return -EIO;
434 }
435 if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
436 error("invalid chunk sectorsize %llu",
437 (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
438 return -EIO;
439 }
440 if (!length || !IS_ALIGNED(length, sectorsize)) {
441 error("invalid chunk length %llu", length);
442 return -EIO;
443 }
444 if (stripe_len != BTRFS_STRIPE_LEN) {
445 error("invalid chunk stripe length: %llu", stripe_len);
446 return -EIO;
447 }
448 /* Check on chunk item type */
449 if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
450 error("invalid chunk type %llu", type);
451 return -EIO;
452 }
453 if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
454 BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
455 error("unrecognized chunk type: %llu",
456 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
457 BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
458 return -EIO;
459 }
460 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
461 error("missing chunk type flag: %llu", type);
462 return -EIO;
463 }
464 if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
465 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
466 error("conflicting chunk type detected: %llu", type);
467 return -EIO;
468 }
469 if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
470 !is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
471 error("conflicting chunk profile detected: %llu", type);
472 return -EIO;
473 }
474
475 chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
476 /*
477 * Btrfs_chunk contains at least one stripe, and for sys_chunk
478 * it can't exceed the system chunk array size
479 * For normal chunk, it should match its chunk item size.
480 */
481 if (num_stripes < 1 ||
482 (slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
483 (slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
484 error("invalid num_stripes: %u", num_stripes);
485 return -EIO;
486 }
487 /*
488 * Device number check against profile
489 */
490 if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
491 !IS_ALIGNED(num_stripes, sub_stripes))) ||
492 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
493 (type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
494 (type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
495 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
496 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
497 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
498 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
499 num_stripes != 1)) {
500 error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
501 num_stripes, sub_stripes,
502 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
503 return -EIO;
504 }
505
506 return 0;
507}
508
509/*
Qu Wenruo57f24f12020-06-24 18:03:00 +0200510 * Slot is used to verify the chunk item is valid
511 *
512 * For sys chunk in superblock, pass -1 to indicate sys chunk.
513 */
514static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
515 struct extent_buffer *leaf,
516 struct btrfs_chunk *chunk, int slot)
517{
518 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
519 struct map_lookup *map;
520 struct cache_extent *ce;
521 u64 logical;
522 u64 length;
523 u64 devid;
524 u8 uuid[BTRFS_UUID_SIZE];
525 int num_stripes;
526 int ret;
527 int i;
528
529 logical = key->offset;
530 length = btrfs_chunk_length(leaf, chunk);
531 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
532 /* Validation check */
533 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, slot, logical);
534 if (ret) {
535 error("%s checksums match, but it has an invalid chunk, %s",
536 (slot == -1) ? "Superblock" : "Metadata",
537 (slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
538 return ret;
539 }
540
541 ce = search_cache_extent(&map_tree->cache_tree, logical);
542
543 /* already mapped? */
544 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
545 return 0;
546 }
547
548 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
549 if (!map)
550 return -ENOMEM;
551
552 map->ce.start = logical;
553 map->ce.size = length;
554 map->num_stripes = num_stripes;
555 map->io_width = btrfs_chunk_io_width(leaf, chunk);
556 map->io_align = btrfs_chunk_io_align(leaf, chunk);
557 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
558 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
559 map->type = btrfs_chunk_type(leaf, chunk);
560 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
561
562 for (i = 0; i < num_stripes; i++) {
563 map->stripes[i].physical =
564 btrfs_stripe_offset_nr(leaf, chunk, i);
565 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
566 read_extent_buffer(leaf, uuid, (unsigned long)
567 btrfs_stripe_dev_uuid_nr(chunk, i),
568 BTRFS_UUID_SIZE);
569 map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid,
570 NULL);
571 if (!map->stripes[i].dev) {
572 map->stripes[i].dev = fill_missing_device(devid);
573 printf("warning, device %llu is missing\n",
574 (unsigned long long)devid);
575 list_add(&map->stripes[i].dev->dev_list,
576 &fs_info->fs_devices->devices);
577 }
578
579 }
580 ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
581 if (ret < 0) {
582 errno = -ret;
583 error("failed to add chunk map start=%llu len=%llu: %d (%m)",
584 map->ce.start, map->ce.size, ret);
585 }
586
587 return ret;
588}
589
590static int fill_device_from_item(struct extent_buffer *leaf,
591 struct btrfs_dev_item *dev_item,
592 struct btrfs_device *device)
593{
594 unsigned long ptr;
595
596 device->devid = btrfs_device_id(leaf, dev_item);
597 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
598 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
599 device->type = btrfs_device_type(leaf, dev_item);
600 device->io_align = btrfs_device_io_align(leaf, dev_item);
601 device->io_width = btrfs_device_io_width(leaf, dev_item);
602 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
603
604 ptr = (unsigned long)btrfs_device_uuid(dev_item);
605 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
606
607 return 0;
608}
609
610static int read_one_dev(struct btrfs_fs_info *fs_info,
611 struct extent_buffer *leaf,
612 struct btrfs_dev_item *dev_item)
613{
614 struct btrfs_device *device;
615 u64 devid;
616 int ret = 0;
617 u8 fs_uuid[BTRFS_UUID_SIZE];
618 u8 dev_uuid[BTRFS_UUID_SIZE];
619
620 devid = btrfs_device_id(leaf, dev_item);
621 read_extent_buffer(leaf, dev_uuid,
622 (unsigned long)btrfs_device_uuid(dev_item),
623 BTRFS_UUID_SIZE);
624 read_extent_buffer(leaf, fs_uuid,
625 (unsigned long)btrfs_device_fsid(dev_item),
626 BTRFS_FSID_SIZE);
627
628 if (memcmp(fs_uuid, fs_info->fs_devices->fsid, BTRFS_UUID_SIZE)) {
629 error("Seed device is not yet supported\n");
630 return -ENOTSUPP;
631 }
632
633 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
634 if (!device) {
635 device = kzalloc(sizeof(*device), GFP_NOFS);
636 if (!device)
637 return -ENOMEM;
638 list_add(&device->dev_list,
639 &fs_info->fs_devices->devices);
640 }
641
642 fill_device_from_item(leaf, dev_item, device);
643 fs_info->fs_devices->total_rw_bytes +=
644 btrfs_device_total_bytes(leaf, dev_item);
645 return ret;
646}
647
648int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
649{
650 struct btrfs_super_block *super_copy = fs_info->super_copy;
651 struct extent_buffer *sb;
652 struct btrfs_disk_key *disk_key;
653 struct btrfs_chunk *chunk;
654 u8 *array_ptr;
655 unsigned long sb_array_offset;
656 int ret = 0;
657 u32 num_stripes;
658 u32 array_size;
659 u32 len = 0;
660 u32 cur_offset;
661 struct btrfs_key key;
662
663 if (fs_info->nodesize < BTRFS_SUPER_INFO_SIZE) {
664 printf("ERROR: nodesize %u too small to read superblock\n",
665 fs_info->nodesize);
666 return -EINVAL;
667 }
668 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET,
669 BTRFS_SUPER_INFO_SIZE);
670 if (!sb)
671 return -ENOMEM;
672 btrfs_set_buffer_uptodate(sb);
673 write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
674 array_size = btrfs_super_sys_array_size(super_copy);
675
676 array_ptr = super_copy->sys_chunk_array;
677 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
678 cur_offset = 0;
679
680 while (cur_offset < array_size) {
681 disk_key = (struct btrfs_disk_key *)array_ptr;
682 len = sizeof(*disk_key);
683 if (cur_offset + len > array_size)
684 goto out_short_read;
685
686 btrfs_disk_key_to_cpu(&key, disk_key);
687
688 array_ptr += len;
689 sb_array_offset += len;
690 cur_offset += len;
691
692 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
693 chunk = (struct btrfs_chunk *)sb_array_offset;
694 /*
695 * At least one btrfs_chunk with one stripe must be
696 * present, exact stripe count check comes afterwards
697 */
698 len = btrfs_chunk_item_size(1);
699 if (cur_offset + len > array_size)
700 goto out_short_read;
701
702 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
703 if (!num_stripes) {
704 printk(
705 "ERROR: invalid number of stripes %u in sys_array at offset %u\n",
706 num_stripes, cur_offset);
707 ret = -EIO;
708 break;
709 }
710
711 len = btrfs_chunk_item_size(num_stripes);
712 if (cur_offset + len > array_size)
713 goto out_short_read;
714
715 ret = read_one_chunk(fs_info, &key, sb, chunk, -1);
716 if (ret)
717 break;
718 } else {
719 printk(
720 "ERROR: unexpected item type %u in sys_array at offset %u\n",
721 (u32)key.type, cur_offset);
722 ret = -EIO;
723 break;
724 }
725 array_ptr += len;
726 sb_array_offset += len;
727 cur_offset += len;
728 }
729 free_extent_buffer(sb);
730 return ret;
731
732out_short_read:
733 printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
734 len, cur_offset);
735 free_extent_buffer(sb);
736 return -EIO;
737}
738
739int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
740{
741 struct btrfs_path *path;
742 struct extent_buffer *leaf;
743 struct btrfs_key key;
744 struct btrfs_key found_key;
745 struct btrfs_root *root = fs_info->chunk_root;
746 int ret;
747 int slot;
748
749 path = btrfs_alloc_path();
750 if (!path)
751 return -ENOMEM;
752
753 /*
754 * Read all device items, and then all the chunk items. All
755 * device items are found before any chunk item (their object id
756 * is smaller than the lowest possible object id for a chunk
757 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
758 */
759 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
760 key.offset = 0;
761 key.type = 0;
762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763 if (ret < 0)
764 goto error;
765 while(1) {
766 leaf = path->nodes[0];
767 slot = path->slots[0];
768 if (slot >= btrfs_header_nritems(leaf)) {
769 ret = btrfs_next_leaf(root, path);
770 if (ret == 0)
771 continue;
772 if (ret < 0)
773 goto error;
774 break;
775 }
776 btrfs_item_key_to_cpu(leaf, &found_key, slot);
777 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
778 struct btrfs_dev_item *dev_item;
779 dev_item = btrfs_item_ptr(leaf, slot,
780 struct btrfs_dev_item);
781 ret = read_one_dev(fs_info, leaf, dev_item);
782 if (ret < 0)
783 goto error;
784 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
785 struct btrfs_chunk *chunk;
786 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
787 ret = read_one_chunk(fs_info, &found_key, leaf, chunk,
788 slot);
789 if (ret < 0)
790 goto error;
791 }
792 path->slots[0]++;
793 }
794
795 ret = 0;
796error:
797 btrfs_free_path(path);
798 return ret;
799}
800
801/*
Qu Wenruob1f00672020-06-24 18:02:54 +0200802 * Get stripe length from chunk item and its stripe items
803 *
804 * Caller should only call this function after validating the chunk item
805 * by using btrfs_check_chunk_valid().
806 */
807u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
808 struct extent_buffer *leaf,
809 struct btrfs_chunk *chunk)
810{
811 u64 stripe_len;
812 u64 chunk_len;
813 u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
814 u64 profile = btrfs_chunk_type(leaf, chunk) &
815 BTRFS_BLOCK_GROUP_PROFILE_MASK;
816
817 chunk_len = btrfs_chunk_length(leaf, chunk);
818
819 switch (profile) {
820 case 0: /* Single profile */
821 case BTRFS_BLOCK_GROUP_RAID1:
822 case BTRFS_BLOCK_GROUP_RAID1C3:
823 case BTRFS_BLOCK_GROUP_RAID1C4:
824 case BTRFS_BLOCK_GROUP_DUP:
825 stripe_len = chunk_len;
826 break;
827 case BTRFS_BLOCK_GROUP_RAID0:
828 stripe_len = chunk_len / num_stripes;
829 break;
830 case BTRFS_BLOCK_GROUP_RAID5:
831 stripe_len = chunk_len / (num_stripes - 1);
832 break;
833 case BTRFS_BLOCK_GROUP_RAID6:
834 stripe_len = chunk_len / (num_stripes - 2);
835 break;
836 case BTRFS_BLOCK_GROUP_RAID10:
837 stripe_len = chunk_len / (num_stripes /
838 btrfs_chunk_sub_stripes(leaf, chunk));
839 break;
840 default:
841 /* Invalid chunk profile found */
842 BUG_ON(1);
843 }
844 return stripe_len;
845}
846
847int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
848{
849 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
850 struct cache_extent *ce;
851 struct map_lookup *map;
852 int ret;
853
854 ce = search_cache_extent(&map_tree->cache_tree, logical);
855 if (!ce) {
856 fprintf(stderr, "No mapping for %llu-%llu\n",
857 (unsigned long long)logical,
858 (unsigned long long)logical+len);
859 return 1;
860 }
861 if (ce->start > logical || ce->start + ce->size < logical) {
862 fprintf(stderr, "Invalid mapping for %llu-%llu, got "
863 "%llu-%llu\n", (unsigned long long)logical,
864 (unsigned long long)logical+len,
865 (unsigned long long)ce->start,
866 (unsigned long long)ce->start + ce->size);
867 return 1;
868 }
869 map = container_of(ce, struct map_lookup, ce);
870
871 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
872 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
873 ret = map->num_stripes;
874 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
875 ret = map->sub_stripes;
876 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
877 ret = 2;
878 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
879 ret = 3;
880 else
881 ret = 1;
882 return ret;
883}
884
885int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
886 u64 *size, u64 type)
887{
888 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
889 struct cache_extent *ce;
890 struct map_lookup *map;
891 u64 cur = *logical;
892
893 ce = search_cache_extent(&map_tree->cache_tree, cur);
894
895 while (ce) {
896 /*
897 * only jump to next bg if our cur is not 0
898 * As the initial logical for btrfs_next_bg() is 0, and
899 * if we jump to next bg, we skipped a valid bg.
900 */
901 if (cur) {
902 ce = next_cache_extent(ce);
903 if (!ce)
904 return -ENOENT;
905 }
906
907 cur = ce->start;
908 map = container_of(ce, struct map_lookup, ce);
909 if (map->type & type) {
910 *logical = ce->start;
911 *size = ce->size;
912 return 0;
913 }
914 if (!cur)
915 ce = next_cache_extent(ce);
916 }
917
918 return -ENOENT;
919}
920
921static inline int parity_smaller(u64 a, u64 b)
922{
923 return a > b;
924}
925
926/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
927static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
928{
929 struct btrfs_bio_stripe s;
930 int i;
931 u64 l;
932 int again = 1;
933
934 while (again) {
935 again = 0;
936 for (i = 0; i < bbio->num_stripes - 1; i++) {
937 if (parity_smaller(raid_map[i], raid_map[i+1])) {
938 s = bbio->stripes[i];
939 l = raid_map[i];
940 bbio->stripes[i] = bbio->stripes[i+1];
941 raid_map[i] = raid_map[i+1];
942 bbio->stripes[i+1] = s;
943 raid_map[i+1] = l;
944 again = 1;
945 }
946 }
947 }
948}
949
950int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
951 u64 logical, u64 *length, u64 *type,
952 struct btrfs_multi_bio **multi_ret, int mirror_num,
953 u64 **raid_map_ret)
954{
955 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
956 struct cache_extent *ce;
957 struct map_lookup *map;
Qu Wenruo511a1302023-02-13 08:37:59 +0800958 u64 orig_len = *length;
Qu Wenruob1f00672020-06-24 18:02:54 +0200959 u64 offset;
960 u64 stripe_offset;
961 u64 *raid_map = NULL;
962 int stripe_nr;
963 int stripes_allocated = 8;
964 int stripes_required = 1;
965 int stripe_index;
966 int i;
967 struct btrfs_multi_bio *multi = NULL;
968
969 if (multi_ret && rw == READ) {
970 stripes_allocated = 1;
971 }
972again:
973 ce = search_cache_extent(&map_tree->cache_tree, logical);
974 if (!ce) {
975 kfree(multi);
976 *length = (u64)-1;
977 return -ENOENT;
978 }
979 if (ce->start > logical) {
980 kfree(multi);
981 *length = ce->start - logical;
982 return -ENOENT;
983 }
984
985 if (multi_ret) {
986 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
987 GFP_NOFS);
988 if (!multi)
989 return -ENOMEM;
990 }
991 map = container_of(ce, struct map_lookup, ce);
992 offset = logical - ce->start;
993
994 if (rw == WRITE) {
995 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
996 BTRFS_BLOCK_GROUP_RAID1C3 |
997 BTRFS_BLOCK_GROUP_RAID1C4 |
998 BTRFS_BLOCK_GROUP_DUP)) {
999 stripes_required = map->num_stripes;
1000 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1001 stripes_required = map->sub_stripes;
1002 }
1003 }
1004 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1005 && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1006 /* RAID[56] write or recovery. Return all stripes */
1007 stripes_required = map->num_stripes;
1008
1009 /* Only allocate the map if we've already got a large enough multi_ret */
1010 if (stripes_allocated >= stripes_required) {
1011 raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1012 if (!raid_map) {
1013 kfree(multi);
1014 return -ENOMEM;
1015 }
1016 }
1017 }
1018
1019 /* if our multi bio struct is too small, back off and try again */
1020 if (multi_ret && stripes_allocated < stripes_required) {
1021 stripes_allocated = stripes_required;
1022 kfree(multi);
1023 multi = NULL;
1024 goto again;
1025 }
1026 stripe_nr = offset;
1027 /*
1028 * stripe_nr counts the total number of stripes we have to stride
1029 * to get to this block
1030 */
1031 stripe_nr = stripe_nr / map->stripe_len;
1032
Qu Wenruo3b726122020-10-31 09:07:50 +08001033 stripe_offset = stripe_nr * (u64)map->stripe_len;
Qu Wenruob1f00672020-06-24 18:02:54 +02001034 BUG_ON(offset < stripe_offset);
1035
1036 /* stripe_offset is the offset of this block in its stripe*/
1037 stripe_offset = offset - stripe_offset;
1038
1039 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1040 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
1041 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1042 BTRFS_BLOCK_GROUP_RAID10 |
1043 BTRFS_BLOCK_GROUP_DUP)) {
1044 /* we limit the length of each bio to what fits in a stripe */
1045 *length = min_t(u64, ce->size - offset,
1046 map->stripe_len - stripe_offset);
1047 } else {
1048 *length = ce->size - offset;
1049 }
Qu Wenruo511a1302023-02-13 08:37:59 +08001050 *length = min_t(u64, *length, orig_len);
Qu Wenruob1f00672020-06-24 18:02:54 +02001051
1052 if (!multi_ret)
1053 goto out;
1054
1055 multi->num_stripes = 1;
1056 stripe_index = 0;
1057 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1058 BTRFS_BLOCK_GROUP_RAID1C3 |
1059 BTRFS_BLOCK_GROUP_RAID1C4)) {
1060 if (rw == WRITE)
1061 multi->num_stripes = map->num_stripes;
1062 else if (mirror_num)
1063 stripe_index = mirror_num - 1;
1064 else
1065 stripe_index = stripe_nr % map->num_stripes;
1066 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1067 int factor = map->num_stripes / map->sub_stripes;
1068
1069 stripe_index = stripe_nr % factor;
1070 stripe_index *= map->sub_stripes;
1071
1072 if (rw == WRITE)
1073 multi->num_stripes = map->sub_stripes;
1074 else if (mirror_num)
1075 stripe_index += mirror_num - 1;
1076
1077 stripe_nr = stripe_nr / factor;
1078 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1079 if (rw == WRITE)
1080 multi->num_stripes = map->num_stripes;
1081 else if (mirror_num)
1082 stripe_index = mirror_num - 1;
1083 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1084 BTRFS_BLOCK_GROUP_RAID6)) {
1085
1086 if (raid_map) {
1087 int rot;
1088 u64 tmp;
1089 u64 raid56_full_stripe_start;
1090 u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1091
1092 /*
1093 * align the start of our data stripe in the logical
1094 * address space
1095 */
1096 raid56_full_stripe_start = offset / full_stripe_len;
1097 raid56_full_stripe_start *= full_stripe_len;
1098
1099 /* get the data stripe number */
1100 stripe_nr = raid56_full_stripe_start / map->stripe_len;
1101 stripe_nr = stripe_nr / nr_data_stripes(map);
1102
1103 /* Work out the disk rotation on this stripe-set */
1104 rot = stripe_nr % map->num_stripes;
1105
1106 /* Fill in the logical address of each stripe */
Qu Wenruo3b726122020-10-31 09:07:50 +08001107 tmp = (u64)stripe_nr * nr_data_stripes(map);
Qu Wenruob1f00672020-06-24 18:02:54 +02001108
1109 for (i = 0; i < nr_data_stripes(map); i++)
1110 raid_map[(i+rot) % map->num_stripes] =
1111 ce->start + (tmp + i) * map->stripe_len;
1112
1113 raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1114 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1115 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1116
1117 *length = map->stripe_len;
1118 stripe_index = 0;
1119 stripe_offset = 0;
1120 multi->num_stripes = map->num_stripes;
1121 } else {
1122 stripe_index = stripe_nr % nr_data_stripes(map);
1123 stripe_nr = stripe_nr / nr_data_stripes(map);
1124
1125 /*
1126 * Mirror #0 or #1 means the original data block.
1127 * Mirror #2 is RAID5 parity block.
1128 * Mirror #3 is RAID6 Q block.
1129 */
1130 if (mirror_num > 1)
1131 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1132
1133 /* We distribute the parity blocks across stripes */
1134 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1135 }
1136 } else {
1137 /*
1138 * after this do_div call, stripe_nr is the number of stripes
1139 * on this device we have to walk to find the data, and
1140 * stripe_index is the number of our device in the stripe array
1141 */
1142 stripe_index = stripe_nr % map->num_stripes;
1143 stripe_nr = stripe_nr / map->num_stripes;
1144 }
1145 BUG_ON(stripe_index >= map->num_stripes);
1146
1147 for (i = 0; i < multi->num_stripes; i++) {
1148 multi->stripes[i].physical =
1149 map->stripes[stripe_index].physical + stripe_offset +
1150 stripe_nr * map->stripe_len;
1151 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1152 stripe_index++;
1153 }
1154 *multi_ret = multi;
1155
1156 if (type)
1157 *type = map->type;
1158
1159 if (raid_map) {
1160 sort_parity_stripes(multi, raid_map);
1161 *raid_map_ret = raid_map;
1162 }
1163out:
1164 return 0;
1165}
1166
1167int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
1168 u64 logical, u64 *length,
1169 struct btrfs_multi_bio **multi_ret, int mirror_num,
1170 u64 **raid_map_ret)
1171{
1172 return __btrfs_map_block(fs_info, rw, logical, length, NULL,
1173 multi_ret, mirror_num, raid_map_ret);
1174}