Alessandro Rubini | 0d8c6ea | 2009-02-09 15:53:31 +0100 | [diff] [blame] | 1 | /* |
| 2 | * (C) Copyright 2007 STMicroelectronics, <www.st.com> |
| 3 | * (C) Copyright 2009 Alessandro Rubini <rubini@unipv.it> |
| 4 | * |
| 5 | * See file CREDITS for list of people who contributed to this |
| 6 | * project. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License as |
| 10 | * published by the Free Software Foundation; either version 2 of |
| 11 | * the License, or (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 21 | * MA 02111-1307 USA |
| 22 | */ |
| 23 | |
| 24 | #include <common.h> |
| 25 | #include <nand.h> |
| 26 | #include <asm/io.h> |
| 27 | |
| 28 | static inline int parity(int b) /* b is really a byte; returns 0 or ~0 */ |
| 29 | { |
| 30 | __asm__ __volatile__( |
| 31 | "eor %0, %0, %0, lsr #4\n\t" |
| 32 | "eor %0, %0, %0, lsr #2\n\t" |
| 33 | "eor %0, %0, %0, lsr #1\n\t" |
| 34 | "ands %0, %0, #1\n\t" |
| 35 | "subne %0, %0, #2\t" |
| 36 | : "=r" (b) : "0" (b)); |
| 37 | return b; |
| 38 | } |
| 39 | |
| 40 | /* |
| 41 | * This is the ECC routine used in hardware, according to the manual. |
| 42 | * HW claims to make the calculation but not the correction; so we must |
| 43 | * recalculate the bytes for a comparison. |
| 44 | */ |
Jean-Christophe PLAGNIOL-VILLARD | 0176c03 | 2009-02-22 17:56:50 +0100 | [diff] [blame] | 45 | static int ecc512(const unsigned char *data, unsigned char *ecc) |
Alessandro Rubini | 0d8c6ea | 2009-02-09 15:53:31 +0100 | [diff] [blame] | 46 | { |
| 47 | int gpar = 0; |
| 48 | int i, val, par; |
| 49 | int pbits = 0; /* P8, P16, ... P2048 */ |
| 50 | int pprime = 0; /* P8', P16', ... P2048' */ |
| 51 | int lowbits; /* P1, P2, P4 and primes */ |
| 52 | |
| 53 | for (i = 0; i < 512; i++) { |
| 54 | par = parity((val = data[i])); |
| 55 | gpar ^= val; |
| 56 | pbits ^= (i & par); |
| 57 | } |
| 58 | /* |
| 59 | * Ok, now gpar is global parity (xor of all bytes) |
| 60 | * pbits are all the parity bits (non-prime ones) |
| 61 | */ |
| 62 | par = parity(gpar); |
| 63 | pprime = pbits ^ par; |
| 64 | /* Put low bits in the right position for ecc[2] (bits 7..2) */ |
| 65 | lowbits = 0 |
| 66 | | (parity(gpar & 0xf0) & 0x80) /* P4 */ |
| 67 | | (parity(gpar & 0x0f) & 0x40) /* P4' */ |
| 68 | | (parity(gpar & 0xcc) & 0x20) /* P2 */ |
| 69 | | (parity(gpar & 0x33) & 0x10) /* P2' */ |
| 70 | | (parity(gpar & 0xaa) & 0x08) /* P1 */ |
| 71 | | (parity(gpar & 0x55) & 0x04); /* P1' */ |
| 72 | |
| 73 | ecc[2] = ~(lowbits | ((pbits & 0x100) >> 7) | ((pprime & 0x100) >> 8)); |
| 74 | /* now intermix bits for ecc[1] (P1024..P128') and ecc[0] (P64..P8') */ |
| 75 | ecc[1] = ~( (pbits & 0x80) >> 0 | ((pprime & 0x80) >> 1) |
| 76 | | ((pbits & 0x40) >> 1) | ((pprime & 0x40) >> 2) |
| 77 | | ((pbits & 0x20) >> 2) | ((pprime & 0x20) >> 3) |
| 78 | | ((pbits & 0x10) >> 3) | ((pprime & 0x10) >> 4)); |
| 79 | |
| 80 | ecc[0] = ~( (pbits & 0x8) << 4 | ((pprime & 0x8) << 3) |
| 81 | | ((pbits & 0x4) << 3) | ((pprime & 0x4) << 2) |
| 82 | | ((pbits & 0x2) << 2) | ((pprime & 0x2) << 1) |
| 83 | | ((pbits & 0x1) << 1) | ((pprime & 0x1) << 0)); |
| 84 | return 0; |
| 85 | } |
| 86 | |
| 87 | /* This is the method in the chip->ecc field */ |
| 88 | static int nomadik_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, |
| 89 | uint8_t *ecc_code) |
| 90 | { |
| 91 | return ecc512(dat, ecc_code); |
| 92 | } |
| 93 | |
| 94 | static int nomadik_ecc_correct(struct mtd_info *mtd, uint8_t *dat, |
| 95 | uint8_t *r_ecc, uint8_t *c_ecc) |
| 96 | { |
| 97 | struct nand_chip *chip = mtd->priv; |
| 98 | uint32_t r, c, d, diff; /*read, calculated, xor of them */ |
| 99 | |
| 100 | if (!memcmp(r_ecc, c_ecc, chip->ecc.bytes)) |
| 101 | return 0; |
| 102 | |
| 103 | /* Reorder the bytes into ascending-order 24 bits -- see manual */ |
| 104 | r = r_ecc[2] << 22 | r_ecc[1] << 14 | r_ecc[0] << 6 | r_ecc[2] >> 2; |
| 105 | c = c_ecc[2] << 22 | c_ecc[1] << 14 | c_ecc[0] << 6 | c_ecc[2] >> 2; |
| 106 | diff = (r ^ c) & ((1<<24)-1); /* use 24 bits only */ |
| 107 | |
| 108 | /* If 12 bits are different, one per pair, it's correctable */ |
| 109 | if (((diff | (diff>>1)) & 0x555555) == 0x555555) { |
| 110 | int bit = ((diff & 2) >> 1) |
| 111 | | ((diff & 0x8) >> 2) | ((diff & 0x20) >> 3); |
| 112 | int byte; |
| 113 | |
| 114 | d = diff >> 6; /* remove bit-order info */ |
| 115 | byte = ((d & 2) >> 1) |
| 116 | | ((d & 0x8) >> 2) | ((d & 0x20) >> 3) |
| 117 | | ((d & 0x80) >> 4) | ((d & 0x200) >> 5) |
| 118 | | ((d & 0x800) >> 6) | ((d & 0x2000) >> 7) |
| 119 | | ((d & 0x8000) >> 8) | ((d & 0x20000) >> 9); |
| 120 | /* correct the single bit */ |
| 121 | dat[byte] ^= 1<<bit; |
| 122 | return 0; |
| 123 | } |
| 124 | /* If 1 bit only differs, it's one bit error in ECC, ignore */ |
| 125 | if ((diff ^ (1 << (ffs(diff) - 1))) == 0) |
| 126 | return 0; |
| 127 | /* Otherwise, uncorrectable */ |
| 128 | return -1; |
| 129 | } |
| 130 | |
| 131 | static void nomadik_ecc_hwctl(struct mtd_info *mtd, int mode) |
| 132 | { /* mandatory in the structure but not used here */ } |
| 133 | |
| 134 | |
| 135 | /* This is the layout used by older installations, we keep compatible */ |
| 136 | struct nand_ecclayout nomadik_ecc_layout = { |
| 137 | .eccbytes = 3 * 4, |
| 138 | .eccpos = { /* each subpage has 16 bytes: pos 2,3,4 hosts ECC */ |
| 139 | 0x02, 0x03, 0x04, |
| 140 | 0x12, 0x13, 0x14, |
| 141 | 0x22, 0x23, 0x24, |
| 142 | 0x32, 0x33, 0x34}, |
| 143 | .oobfree = { {0x08, 0x08}, {0x18, 0x08}, {0x28, 0x08}, {0x38, 0x08} }, |
| 144 | }; |
| 145 | |
| 146 | #define MASK_ALE (1 << 24) /* our ALE is AD21 */ |
| 147 | #define MASK_CLE (1 << 23) /* our CLE is AD22 */ |
| 148 | |
| 149 | /* This is copied from the AT91SAM9 devices (Stelian Pop, Lead Tech Design) */ |
| 150 | static void nomadik_nand_hwcontrol(struct mtd_info *mtd, |
| 151 | int cmd, unsigned int ctrl) |
| 152 | { |
| 153 | struct nand_chip *this = mtd->priv; |
| 154 | u32 pcr0 = readl(REG_FSMC_PCR0); |
| 155 | |
| 156 | if (ctrl & NAND_CTRL_CHANGE) { |
| 157 | ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; |
| 158 | IO_ADDR_W &= ~(MASK_ALE | MASK_CLE); |
| 159 | |
| 160 | if (ctrl & NAND_CLE) |
| 161 | IO_ADDR_W |= MASK_CLE; |
| 162 | if (ctrl & NAND_ALE) |
| 163 | IO_ADDR_W |= MASK_ALE; |
| 164 | |
| 165 | if (ctrl & NAND_NCE) |
| 166 | writel(pcr0 | 0x4, REG_FSMC_PCR0); |
| 167 | else |
| 168 | writel(pcr0 & ~0x4, REG_FSMC_PCR0); |
| 169 | |
| 170 | this->IO_ADDR_W = (void *) IO_ADDR_W; |
| 171 | this->IO_ADDR_R = (void *) IO_ADDR_W; |
| 172 | } |
| 173 | |
| 174 | if (cmd != NAND_CMD_NONE) |
| 175 | writeb(cmd, this->IO_ADDR_W); |
| 176 | } |
| 177 | |
| 178 | /* Returns 1 when ready; upper layers timeout at 20ms with timer routines */ |
| 179 | static int nomadik_nand_ready(struct mtd_info *mtd) |
| 180 | { |
| 181 | return 1; /* The ready bit is handled in hardware */ |
| 182 | } |
| 183 | |
| 184 | /* Copy a buffer 32bits at a time: faster than defualt method which is 8bit */ |
| 185 | static void nomadik_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 186 | { |
| 187 | int i; |
| 188 | struct nand_chip *chip = mtd->priv; |
| 189 | u32 *p = (u32 *) buf; |
| 190 | |
| 191 | len >>= 2; |
| 192 | writel(0, REG_FSMC_ECCR0); |
| 193 | for (i = 0; i < len; i++) |
| 194 | p[i] = readl(chip->IO_ADDR_R); |
| 195 | } |
| 196 | |
| 197 | int board_nand_init(struct nand_chip *chip) |
| 198 | { |
| 199 | /* Set up the FSMC_PCR0 for nand access*/ |
| 200 | writel(0x0000004a, REG_FSMC_PCR0); |
| 201 | /* Set up FSMC_PMEM0, FSMC_PATT0 with timing data for access */ |
| 202 | writel(0x00020401, REG_FSMC_PMEM0); |
| 203 | writel(0x00020404, REG_FSMC_PATT0); |
| 204 | |
| 205 | chip->options = NAND_COPYBACK | NAND_CACHEPRG | NAND_NO_PADDING; |
| 206 | chip->cmd_ctrl = nomadik_nand_hwcontrol; |
| 207 | chip->dev_ready = nomadik_nand_ready; |
| 208 | /* The chip allows 32bit reads, so avoid the default 8bit copy */ |
| 209 | chip->read_buf = nomadik_nand_read_buf; |
| 210 | |
| 211 | /* ECC: follow the hardware-defined rulse, but do it in sw */ |
| 212 | chip->ecc.mode = NAND_ECC_HW; |
| 213 | chip->ecc.bytes = 3; |
| 214 | chip->ecc.size = 512; |
| 215 | chip->ecc.layout = &nomadik_ecc_layout; |
| 216 | chip->ecc.calculate = nomadik_ecc_calculate; |
| 217 | chip->ecc.hwctl = nomadik_ecc_hwctl; |
| 218 | chip->ecc.correct = nomadik_ecc_correct; |
| 219 | |
| 220 | return 0; |
| 221 | } |