York Sun | 34e026f | 2014-03-27 17:54:47 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Freescale Semiconductor, Inc. |
| 3 | * |
| 4 | * calculate the organization and timing parameter |
| 5 | * from ddr3 spd, please refer to the spec |
| 6 | * JEDEC standard No.21-C 4_01_02_12R23A.pdf |
| 7 | * |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <common.h> |
| 12 | #include <fsl_ddr_sdram.h> |
| 13 | |
| 14 | #include <fsl_ddr.h> |
| 15 | |
| 16 | /* |
| 17 | * Calculate the Density of each Physical Rank. |
| 18 | * Returned size is in bytes. |
| 19 | * |
| 20 | * Total DIMM size = |
| 21 | * sdram capacity(bit) / 8 * primary bus width / sdram width |
| 22 | * * Logical Ranks per DIMM |
| 23 | * |
| 24 | * where: sdram capacity = spd byte4[3:0] |
| 25 | * primary bus width = spd byte13[2:0] |
| 26 | * sdram width = spd byte12[2:0] |
| 27 | * Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP |
| 28 | * spd byte12{5:3] * spd byte6[6:4] for 3DS |
| 29 | * |
| 30 | * To simplify each rank size = total DIMM size / Number of Package Ranks |
| 31 | * where Number of Package Ranks = spd byte12[5:3] |
| 32 | * |
| 33 | * SPD byte4 - sdram density and banks |
| 34 | * bit[3:0] size(bit) size(byte) |
| 35 | * 0000 256Mb 32MB |
| 36 | * 0001 512Mb 64MB |
| 37 | * 0010 1Gb 128MB |
| 38 | * 0011 2Gb 256MB |
| 39 | * 0100 4Gb 512MB |
| 40 | * 0101 8Gb 1GB |
| 41 | * 0110 16Gb 2GB |
| 42 | * 0111 32Gb 4GB |
| 43 | * |
| 44 | * SPD byte13 - module memory bus width |
| 45 | * bit[2:0] primary bus width |
| 46 | * 000 8bits |
| 47 | * 001 16bits |
| 48 | * 010 32bits |
| 49 | * 011 64bits |
| 50 | * |
| 51 | * SPD byte12 - module organization |
| 52 | * bit[2:0] sdram device width |
| 53 | * 000 4bits |
| 54 | * 001 8bits |
| 55 | * 010 16bits |
| 56 | * 011 32bits |
| 57 | * |
| 58 | * SPD byte12 - module organization |
| 59 | * bit[5:3] number of package ranks per DIMM |
| 60 | * 000 1 |
| 61 | * 001 2 |
| 62 | * 010 3 |
| 63 | * 011 4 |
| 64 | * |
| 65 | * SPD byte6 - SDRAM package type |
| 66 | * bit[6:4] Die count |
| 67 | * 000 1 |
| 68 | * 001 2 |
| 69 | * 010 3 |
| 70 | * 011 4 |
| 71 | * 100 5 |
| 72 | * 101 6 |
| 73 | * 110 7 |
| 74 | * 111 8 |
| 75 | * |
| 76 | * SPD byte6 - SRAM package type |
| 77 | * bit[1:0] Signal loading |
| 78 | * 00 Not specified |
| 79 | * 01 Multi load stack |
| 80 | * 10 Sigle load stack (3DS) |
| 81 | * 11 Reserved |
| 82 | */ |
| 83 | static unsigned long long |
| 84 | compute_ranksize(const struct ddr4_spd_eeprom_s *spd) |
| 85 | { |
| 86 | unsigned long long bsize; |
| 87 | |
| 88 | int nbit_sdram_cap_bsize = 0; |
| 89 | int nbit_primary_bus_width = 0; |
| 90 | int nbit_sdram_width = 0; |
| 91 | int die_count = 0; |
| 92 | bool package_3ds; |
| 93 | |
| 94 | if ((spd->density_banks & 0xf) <= 7) |
| 95 | nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28; |
| 96 | if ((spd->bus_width & 0x7) < 4) |
| 97 | nbit_primary_bus_width = (spd->bus_width & 0x7) + 3; |
| 98 | if ((spd->organization & 0x7) < 4) |
| 99 | nbit_sdram_width = (spd->organization & 0x7) + 2; |
| 100 | package_3ds = (spd->package_type & 0x3) == 0x2; |
| 101 | if (package_3ds) |
| 102 | die_count = (spd->package_type >> 4) & 0x7; |
| 103 | |
| 104 | bsize = 1ULL << (nbit_sdram_cap_bsize - 3 + |
| 105 | nbit_primary_bus_width - nbit_sdram_width + |
| 106 | die_count); |
| 107 | |
| 108 | debug("DDR: DDR III rank density = 0x%16llx\n", bsize); |
| 109 | |
| 110 | return bsize; |
| 111 | } |
| 112 | |
| 113 | #define spd_to_ps(mtb, ftb) \ |
| 114 | (mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10) |
| 115 | /* |
| 116 | * ddr_compute_dimm_parameters for DDR3 SPD |
| 117 | * |
| 118 | * Compute DIMM parameters based upon the SPD information in spd. |
| 119 | * Writes the results to the dimm_params_t structure pointed by pdimm. |
| 120 | * |
| 121 | */ |
| 122 | unsigned int |
| 123 | ddr_compute_dimm_parameters(const generic_spd_eeprom_t *spd, |
| 124 | dimm_params_t *pdimm, |
| 125 | unsigned int dimm_number) |
| 126 | { |
| 127 | unsigned int retval; |
| 128 | int i; |
| 129 | |
| 130 | if (spd->mem_type) { |
| 131 | if (spd->mem_type != SPD_MEMTYPE_DDR4) { |
| 132 | printf("DIMM %u: is not a DDR4 SPD.\n", dimm_number); |
| 133 | return 1; |
| 134 | } |
| 135 | } else { |
| 136 | memset(pdimm, 0, sizeof(dimm_params_t)); |
| 137 | return 1; |
| 138 | } |
| 139 | |
| 140 | retval = ddr4_spd_check(spd); |
| 141 | if (retval) { |
| 142 | printf("DIMM %u: failed checksum\n", dimm_number); |
| 143 | return 2; |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * The part name in ASCII in the SPD EEPROM is not null terminated. |
| 148 | * Guarantee null termination here by presetting all bytes to 0 |
| 149 | * and copying the part name in ASCII from the SPD onto it |
| 150 | */ |
| 151 | memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); |
| 152 | if ((spd->info_size_crc & 0xF) > 2) |
| 153 | memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); |
| 154 | |
| 155 | /* DIMM organization parameters */ |
| 156 | pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1; |
| 157 | pdimm->rank_density = compute_ranksize(spd); |
| 158 | pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; |
| 159 | pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7)); |
| 160 | if ((spd->bus_width >> 3) & 0x3) |
| 161 | pdimm->ec_sdram_width = 8; |
| 162 | else |
| 163 | pdimm->ec_sdram_width = 0; |
| 164 | pdimm->data_width = pdimm->primary_sdram_width |
| 165 | + pdimm->ec_sdram_width; |
| 166 | pdimm->device_width = 1 << ((spd->organization & 0x7) + 2); |
| 167 | |
| 168 | /* These are the types defined by the JEDEC DDR3 SPD spec */ |
| 169 | pdimm->mirrored_dimm = 0; |
| 170 | pdimm->registered_dimm = 0; |
| 171 | switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) { |
| 172 | case DDR3_SPD_MODULETYPE_RDIMM: |
| 173 | /* Registered/buffered DIMMs */ |
| 174 | pdimm->registered_dimm = 1; |
| 175 | break; |
| 176 | |
| 177 | case DDR3_SPD_MODULETYPE_UDIMM: |
| 178 | case DDR3_SPD_MODULETYPE_SO_DIMM: |
| 179 | /* Unbuffered DIMMs */ |
| 180 | if (spd->mod_section.unbuffered.addr_mapping & 0x1) |
| 181 | pdimm->mirrored_dimm = 1; |
| 182 | break; |
| 183 | |
| 184 | default: |
| 185 | printf("unknown module_type 0x%02X\n", spd->module_type); |
| 186 | return 1; |
| 187 | } |
| 188 | |
| 189 | /* SDRAM device parameters */ |
| 190 | pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12; |
| 191 | pdimm->n_col_addr = (spd->addressing & 0x7) + 9; |
| 192 | pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3; |
| 193 | pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3; |
| 194 | |
| 195 | /* |
| 196 | * The SPD spec has not the ECC bit, |
| 197 | * We consider the DIMM as ECC capability |
| 198 | * when the extension bus exist |
| 199 | */ |
| 200 | if (pdimm->ec_sdram_width) |
| 201 | pdimm->edc_config = 0x02; |
| 202 | else |
| 203 | pdimm->edc_config = 0x00; |
| 204 | |
| 205 | /* |
| 206 | * The SPD spec has not the burst length byte |
| 207 | * but DDR4 spec has nature BL8 and BC4, |
| 208 | * BL8 -bit3, BC4 -bit2 |
| 209 | */ |
| 210 | pdimm->burst_lengths_bitmask = 0x0c; |
| 211 | pdimm->row_density = __ilog2(pdimm->rank_density); |
| 212 | |
| 213 | /* MTB - medium timebase |
| 214 | * The MTB in the SPD spec is 125ps, |
| 215 | * |
| 216 | * FTB - fine timebase |
| 217 | * use 1/10th of ps as our unit to avoid floating point |
| 218 | * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps |
| 219 | */ |
| 220 | if ((spd->timebases & 0xf) == 0x0) { |
| 221 | pdimm->mtb_ps = 125; |
| 222 | pdimm->ftb_10th_ps = 10; |
| 223 | |
| 224 | } else { |
| 225 | printf("Unknown Timebases\n"); |
| 226 | } |
| 227 | |
| 228 | /* sdram minimum cycle time */ |
| 229 | pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min); |
| 230 | |
| 231 | /* sdram max cycle time */ |
| 232 | pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max); |
| 233 | |
| 234 | /* |
| 235 | * CAS latency supported |
| 236 | * bit0 - CL7 |
| 237 | * bit4 - CL11 |
| 238 | * bit8 - CL15 |
| 239 | * bit12- CL19 |
| 240 | * bit16- CL23 |
| 241 | */ |
| 242 | pdimm->caslat_x = (spd->caslat_b1 << 7) | |
| 243 | (spd->caslat_b2 << 15) | |
| 244 | (spd->caslat_b3 << 23); |
| 245 | |
| 246 | BUG_ON(spd->caslat_b4 != 0); |
| 247 | |
| 248 | /* |
| 249 | * min CAS latency time |
| 250 | */ |
| 251 | pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min); |
| 252 | |
| 253 | /* |
| 254 | * min RAS to CAS delay time |
| 255 | */ |
| 256 | pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min); |
| 257 | |
| 258 | /* |
| 259 | * Min Row Precharge Delay Time |
| 260 | */ |
| 261 | pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min); |
| 262 | |
| 263 | /* min active to precharge delay time */ |
| 264 | pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) + |
| 265 | spd->tras_min_lsb) * pdimm->mtb_ps; |
| 266 | |
| 267 | /* min active to actice/refresh delay time */ |
| 268 | pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) + |
| 269 | spd->trc_min_lsb), spd->fine_trc_min); |
| 270 | /* Min Refresh Recovery Delay Time */ |
| 271 | pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) * |
| 272 | pdimm->mtb_ps; |
| 273 | pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) * |
| 274 | pdimm->mtb_ps; |
| 275 | pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) * |
| 276 | pdimm->mtb_ps; |
| 277 | /* min four active window delay time */ |
| 278 | pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) * |
| 279 | pdimm->mtb_ps; |
| 280 | |
| 281 | /* min row active to row active delay time, different bank group */ |
| 282 | pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min); |
| 283 | /* min row active to row active delay time, same bank group */ |
| 284 | pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min); |
| 285 | /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */ |
| 286 | pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min); |
| 287 | |
| 288 | /* |
| 289 | * Average periodic refresh interval |
| 290 | * tREFI = 7.8 us at normal temperature range |
| 291 | */ |
| 292 | pdimm->refresh_rate_ps = 7800000; |
| 293 | |
| 294 | for (i = 0; i < 18; i++) |
| 295 | pdimm->dq_mapping[i] = spd->mapping[i]; |
| 296 | |
| 297 | pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0; |
| 298 | |
| 299 | return 0; |
| 300 | } |