Karicheri, Muralidharan | fc9a8e8 | 2014-04-01 15:01:13 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Ethernet driver for TI K2HK EVM. |
| 3 | * |
| 4 | * (C) Copyright 2012-2014 |
| 5 | * Texas Instruments Incorporated, <www.ti.com> |
| 6 | * |
| 7 | * SPDX-License-Identifier: GPL-2.0+ |
| 8 | */ |
| 9 | #include <common.h> |
| 10 | #include <command.h> |
| 11 | |
| 12 | #include <net.h> |
| 13 | #include <miiphy.h> |
| 14 | #include <malloc.h> |
| 15 | #include <asm/arch/emac_defs.h> |
| 16 | #include <asm/arch/psc_defs.h> |
| 17 | #include <asm/arch/keystone_nav.h> |
| 18 | |
| 19 | unsigned int emac_dbg; |
| 20 | |
| 21 | unsigned int emac_open; |
| 22 | static unsigned int sys_has_mdio = 1; |
| 23 | |
| 24 | #ifdef KEYSTONE2_EMAC_GIG_ENABLE |
| 25 | #define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x) |
| 26 | #else |
| 27 | #define emac_gigabit_enable(x) /* no gigabit to enable */ |
| 28 | #endif |
| 29 | |
| 30 | #define RX_BUFF_NUMS 24 |
| 31 | #define RX_BUFF_LEN 1520 |
| 32 | #define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN |
| 33 | |
| 34 | static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16); |
| 35 | |
| 36 | struct rx_buff_desc net_rx_buffs = { |
| 37 | .buff_ptr = rx_buffs, |
| 38 | .num_buffs = RX_BUFF_NUMS, |
| 39 | .buff_len = RX_BUFF_LEN, |
| 40 | .rx_flow = 22, |
| 41 | }; |
| 42 | |
| 43 | static void keystone2_eth_mdio_enable(void); |
| 44 | |
| 45 | static int gen_get_link_speed(int phy_addr); |
| 46 | |
| 47 | /* EMAC Addresses */ |
| 48 | static volatile struct emac_regs *adap_emac = |
| 49 | (struct emac_regs *)EMAC_EMACSL_BASE_ADDR; |
| 50 | static volatile struct mdio_regs *adap_mdio = |
| 51 | (struct mdio_regs *)EMAC_MDIO_BASE_ADDR; |
| 52 | |
| 53 | int keystone2_eth_read_mac_addr(struct eth_device *dev) |
| 54 | { |
| 55 | struct eth_priv_t *eth_priv; |
| 56 | u32 maca = 0; |
| 57 | u32 macb = 0; |
| 58 | |
| 59 | eth_priv = (struct eth_priv_t *)dev->priv; |
| 60 | |
| 61 | /* Read the e-fuse mac address */ |
| 62 | if (eth_priv->slave_port == 1) { |
| 63 | maca = __raw_readl(MAC_ID_BASE_ADDR); |
| 64 | macb = __raw_readl(MAC_ID_BASE_ADDR + 4); |
| 65 | } |
| 66 | |
| 67 | dev->enetaddr[0] = (macb >> 8) & 0xff; |
| 68 | dev->enetaddr[1] = (macb >> 0) & 0xff; |
| 69 | dev->enetaddr[2] = (maca >> 24) & 0xff; |
| 70 | dev->enetaddr[3] = (maca >> 16) & 0xff; |
| 71 | dev->enetaddr[4] = (maca >> 8) & 0xff; |
| 72 | dev->enetaddr[5] = (maca >> 0) & 0xff; |
| 73 | |
| 74 | return 0; |
| 75 | } |
| 76 | |
| 77 | static void keystone2_eth_mdio_enable(void) |
| 78 | { |
| 79 | u_int32_t clkdiv; |
| 80 | |
| 81 | clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1; |
| 82 | |
| 83 | writel((clkdiv & 0xffff) | |
| 84 | MDIO_CONTROL_ENABLE | |
| 85 | MDIO_CONTROL_FAULT | |
| 86 | MDIO_CONTROL_FAULT_ENABLE, |
| 87 | &adap_mdio->control); |
| 88 | |
| 89 | while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE) |
| 90 | ; |
| 91 | } |
| 92 | |
| 93 | /* Read a PHY register via MDIO inteface. Returns 1 on success, 0 otherwise */ |
| 94 | int keystone2_eth_phy_read(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t *data) |
| 95 | { |
| 96 | int tmp; |
| 97 | |
| 98 | while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) |
| 99 | ; |
| 100 | |
| 101 | writel(MDIO_USERACCESS0_GO | |
| 102 | MDIO_USERACCESS0_WRITE_READ | |
| 103 | ((reg_num & 0x1f) << 21) | |
| 104 | ((phy_addr & 0x1f) << 16), |
| 105 | &adap_mdio->useraccess0); |
| 106 | |
| 107 | /* Wait for command to complete */ |
| 108 | while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO) |
| 109 | ; |
| 110 | |
| 111 | if (tmp & MDIO_USERACCESS0_ACK) { |
| 112 | *data = tmp & 0xffff; |
| 113 | return 0; |
| 114 | } |
| 115 | |
| 116 | *data = -1; |
| 117 | return -1; |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Write to a PHY register via MDIO inteface. |
| 122 | * Blocks until operation is complete. |
| 123 | */ |
| 124 | int keystone2_eth_phy_write(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t data) |
| 125 | { |
| 126 | while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) |
| 127 | ; |
| 128 | |
| 129 | writel(MDIO_USERACCESS0_GO | |
| 130 | MDIO_USERACCESS0_WRITE_WRITE | |
| 131 | ((reg_num & 0x1f) << 21) | |
| 132 | ((phy_addr & 0x1f) << 16) | |
| 133 | (data & 0xffff), |
| 134 | &adap_mdio->useraccess0); |
| 135 | |
| 136 | /* Wait for command to complete */ |
| 137 | while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) |
| 138 | ; |
| 139 | |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | /* PHY functions for a generic PHY */ |
| 144 | static int gen_get_link_speed(int phy_addr) |
| 145 | { |
| 146 | u_int16_t tmp; |
| 147 | |
| 148 | if ((!keystone2_eth_phy_read(phy_addr, MII_STATUS_REG, &tmp)) && |
| 149 | (tmp & 0x04)) { |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | return -1; |
| 154 | } |
| 155 | |
| 156 | static void __attribute__((unused)) |
| 157 | keystone2_eth_gigabit_enable(struct eth_device *dev) |
| 158 | { |
| 159 | u_int16_t data; |
| 160 | struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| 161 | |
| 162 | if (sys_has_mdio) { |
| 163 | if (keystone2_eth_phy_read(eth_priv->phy_addr, 0, &data) || |
| 164 | !(data & (1 << 6))) /* speed selection MSB */ |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * Check if link detected is giga-bit |
| 170 | * If Gigabit mode detected, enable gigbit in MAC |
| 171 | */ |
| 172 | writel(readl(&(adap_emac[eth_priv->slave_port - 1].maccontrol)) | |
| 173 | EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE, |
| 174 | &(adap_emac[eth_priv->slave_port - 1].maccontrol)) |
| 175 | ; |
| 176 | } |
| 177 | |
| 178 | int keystone_sgmii_link_status(int port) |
| 179 | { |
| 180 | u32 status = 0; |
| 181 | |
| 182 | status = __raw_readl(SGMII_STATUS_REG(port)); |
| 183 | |
| 184 | return status & SGMII_REG_STATUS_LINK; |
| 185 | } |
| 186 | |
| 187 | |
| 188 | int keystone_get_link_status(struct eth_device *dev) |
| 189 | { |
| 190 | struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| 191 | int sgmii_link; |
| 192 | int link_state = 0; |
| 193 | #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1 |
| 194 | int j; |
| 195 | |
| 196 | for (j = 0; (j < CONFIG_GET_LINK_STATUS_ATTEMPTS) && (link_state == 0); |
| 197 | j++) { |
| 198 | #endif |
| 199 | sgmii_link = |
| 200 | keystone_sgmii_link_status(eth_priv->slave_port - 1); |
| 201 | |
| 202 | if (sgmii_link) { |
| 203 | link_state = 1; |
| 204 | |
| 205 | if (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) |
| 206 | if (gen_get_link_speed(eth_priv->phy_addr)) |
| 207 | link_state = 0; |
| 208 | } |
| 209 | #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1 |
| 210 | } |
| 211 | #endif |
| 212 | return link_state; |
| 213 | } |
| 214 | |
| 215 | int keystone_sgmii_config(int port, int interface) |
| 216 | { |
| 217 | unsigned int i, status, mask; |
| 218 | unsigned int mr_adv_ability, control; |
| 219 | |
| 220 | switch (interface) { |
| 221 | case SGMII_LINK_MAC_MAC_AUTONEG: |
| 222 | mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | |
| 223 | SGMII_REG_MR_ADV_LINK | |
| 224 | SGMII_REG_MR_ADV_FULL_DUPLEX | |
| 225 | SGMII_REG_MR_ADV_GIG_MODE); |
| 226 | control = (SGMII_REG_CONTROL_MASTER | |
| 227 | SGMII_REG_CONTROL_AUTONEG); |
| 228 | |
| 229 | break; |
| 230 | case SGMII_LINK_MAC_PHY: |
| 231 | case SGMII_LINK_MAC_PHY_FORCED: |
| 232 | mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; |
| 233 | control = SGMII_REG_CONTROL_AUTONEG; |
| 234 | |
| 235 | break; |
| 236 | case SGMII_LINK_MAC_MAC_FORCED: |
| 237 | mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | |
| 238 | SGMII_REG_MR_ADV_LINK | |
| 239 | SGMII_REG_MR_ADV_FULL_DUPLEX | |
| 240 | SGMII_REG_MR_ADV_GIG_MODE); |
| 241 | control = SGMII_REG_CONTROL_MASTER; |
| 242 | |
| 243 | break; |
| 244 | case SGMII_LINK_MAC_FIBER: |
| 245 | mr_adv_ability = 0x20; |
| 246 | control = SGMII_REG_CONTROL_AUTONEG; |
| 247 | |
| 248 | break; |
| 249 | default: |
| 250 | mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; |
| 251 | control = SGMII_REG_CONTROL_AUTONEG; |
| 252 | } |
| 253 | |
| 254 | __raw_writel(0, SGMII_CTL_REG(port)); |
| 255 | |
| 256 | /* |
| 257 | * Wait for the SerDes pll to lock, |
| 258 | * but don't trap if lock is never read |
| 259 | */ |
| 260 | for (i = 0; i < 1000; i++) { |
| 261 | udelay(2000); |
| 262 | status = __raw_readl(SGMII_STATUS_REG(port)); |
| 263 | if ((status & SGMII_REG_STATUS_LOCK) != 0) |
| 264 | break; |
| 265 | } |
| 266 | |
| 267 | __raw_writel(mr_adv_ability, SGMII_MRADV_REG(port)); |
| 268 | __raw_writel(control, SGMII_CTL_REG(port)); |
| 269 | |
| 270 | |
| 271 | mask = SGMII_REG_STATUS_LINK; |
| 272 | |
| 273 | if (control & SGMII_REG_CONTROL_AUTONEG) |
| 274 | mask |= SGMII_REG_STATUS_AUTONEG; |
| 275 | |
| 276 | for (i = 0; i < 1000; i++) { |
| 277 | status = __raw_readl(SGMII_STATUS_REG(port)); |
| 278 | if ((status & mask) == mask) |
| 279 | break; |
| 280 | } |
| 281 | |
| 282 | return 0; |
| 283 | } |
| 284 | |
| 285 | int mac_sl_reset(u32 port) |
| 286 | { |
| 287 | u32 i, v; |
| 288 | |
| 289 | if (port >= DEVICE_N_GMACSL_PORTS) |
| 290 | return GMACSL_RET_INVALID_PORT; |
| 291 | |
| 292 | /* Set the soft reset bit */ |
| 293 | DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + |
| 294 | CPGMACSL_REG_RESET, CPGMAC_REG_RESET_VAL_RESET); |
| 295 | |
| 296 | /* Wait for the bit to clear */ |
| 297 | for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { |
| 298 | v = DEVICE_REG32_R(DEVICE_EMACSL_BASE(port) + |
| 299 | CPGMACSL_REG_RESET); |
| 300 | if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != |
| 301 | CPGMAC_REG_RESET_VAL_RESET) |
| 302 | return GMACSL_RET_OK; |
| 303 | } |
| 304 | |
| 305 | /* Timeout on the reset */ |
| 306 | return GMACSL_RET_WARN_RESET_INCOMPLETE; |
| 307 | } |
| 308 | |
| 309 | int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg) |
| 310 | { |
| 311 | u32 v, i; |
| 312 | int ret = GMACSL_RET_OK; |
| 313 | |
| 314 | if (port >= DEVICE_N_GMACSL_PORTS) |
| 315 | return GMACSL_RET_INVALID_PORT; |
| 316 | |
| 317 | if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) { |
| 318 | cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN; |
| 319 | ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG; |
| 320 | } |
| 321 | |
| 322 | /* Must wait if the device is undergoing reset */ |
| 323 | for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { |
| 324 | v = DEVICE_REG32_R(DEVICE_EMACSL_BASE(port) + |
| 325 | CPGMACSL_REG_RESET); |
| 326 | if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != |
| 327 | CPGMAC_REG_RESET_VAL_RESET) |
| 328 | break; |
| 329 | } |
| 330 | |
| 331 | if (i == DEVICE_EMACSL_RESET_POLL_COUNT) |
| 332 | return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE; |
| 333 | |
| 334 | DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN, |
| 335 | cfg->max_rx_len); |
| 336 | |
| 337 | DEVICE_REG32_W(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL, |
| 338 | cfg->ctl); |
| 339 | |
| 340 | return ret; |
| 341 | } |
| 342 | |
| 343 | int ethss_config(u32 ctl, u32 max_pkt_size) |
| 344 | { |
| 345 | u32 i; |
| 346 | |
| 347 | /* Max length register */ |
| 348 | DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_MAXLEN, max_pkt_size); |
| 349 | |
| 350 | /* Control register */ |
| 351 | DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_CTL, ctl); |
| 352 | |
| 353 | /* All statistics enabled by default */ |
| 354 | DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN, |
| 355 | CPSW_REG_VAL_STAT_ENABLE_ALL); |
| 356 | |
| 357 | /* Reset and enable the ALE */ |
| 358 | DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL, |
| 359 | CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE | |
| 360 | CPSW_REG_VAL_ALE_CTL_BYPASS); |
| 361 | |
| 362 | /* All ports put into forward mode */ |
| 363 | for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++) |
| 364 | DEVICE_REG32_W(DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i), |
| 365 | CPSW_REG_VAL_PORTCTL_FORWARD_MODE); |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | int ethss_start(void) |
| 371 | { |
| 372 | int i; |
| 373 | struct mac_sl_cfg cfg; |
| 374 | |
| 375 | cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER; |
| 376 | cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL; |
| 377 | |
| 378 | for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) { |
| 379 | mac_sl_reset(i); |
| 380 | mac_sl_config(i, &cfg); |
| 381 | } |
| 382 | |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | int ethss_stop(void) |
| 387 | { |
| 388 | int i; |
| 389 | |
| 390 | for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) |
| 391 | mac_sl_reset(i); |
| 392 | |
| 393 | return 0; |
| 394 | } |
| 395 | |
| 396 | int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num) |
| 397 | { |
| 398 | if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE) |
| 399 | num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE; |
| 400 | |
| 401 | return netcp_send(buffer, num_bytes, (slave_port_num) << 16); |
| 402 | } |
| 403 | |
| 404 | /* Eth device open */ |
| 405 | static int keystone2_eth_open(struct eth_device *dev, bd_t *bis) |
| 406 | { |
| 407 | u_int32_t clkdiv; |
| 408 | int link; |
| 409 | struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| 410 | |
| 411 | debug("+ emac_open\n"); |
| 412 | |
| 413 | net_rx_buffs.rx_flow = eth_priv->rx_flow; |
| 414 | |
| 415 | sys_has_mdio = |
| 416 | (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0; |
| 417 | |
| 418 | psc_enable_module(KS2_LPSC_PA); |
| 419 | psc_enable_module(KS2_LPSC_CPGMAC); |
| 420 | |
| 421 | sgmii_serdes_setup_156p25mhz(); |
| 422 | |
| 423 | if (sys_has_mdio) |
| 424 | keystone2_eth_mdio_enable(); |
| 425 | |
| 426 | keystone_sgmii_config(eth_priv->slave_port - 1, |
| 427 | eth_priv->sgmii_link_type); |
| 428 | |
| 429 | udelay(10000); |
| 430 | |
| 431 | /* On chip switch configuration */ |
| 432 | ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE); |
| 433 | |
| 434 | /* TODO: add error handling code */ |
| 435 | if (qm_init()) { |
| 436 | printf("ERROR: qm_init()\n"); |
| 437 | return -1; |
| 438 | } |
| 439 | if (netcp_init(&net_rx_buffs)) { |
| 440 | qm_close(); |
| 441 | printf("ERROR: netcp_init()\n"); |
| 442 | return -1; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Streaming switch configuration. If not present this |
| 447 | * statement is defined to void in target.h. |
| 448 | * If present this is usually defined to a series of register writes |
| 449 | */ |
| 450 | hw_config_streaming_switch(); |
| 451 | |
| 452 | if (sys_has_mdio) { |
| 453 | /* Init MDIO & get link state */ |
| 454 | clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1; |
| 455 | writel((clkdiv & 0xff) | MDIO_CONTROL_ENABLE | |
| 456 | MDIO_CONTROL_FAULT, &adap_mdio->control) |
| 457 | ; |
| 458 | |
| 459 | /* We need to wait for MDIO to start */ |
| 460 | udelay(1000); |
| 461 | |
| 462 | link = keystone_get_link_status(dev); |
| 463 | if (link == 0) { |
| 464 | netcp_close(); |
| 465 | qm_close(); |
| 466 | return -1; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | emac_gigabit_enable(dev); |
| 471 | |
| 472 | ethss_start(); |
| 473 | |
| 474 | debug("- emac_open\n"); |
| 475 | |
| 476 | emac_open = 1; |
| 477 | |
| 478 | return 0; |
| 479 | } |
| 480 | |
| 481 | /* Eth device close */ |
| 482 | void keystone2_eth_close(struct eth_device *dev) |
| 483 | { |
| 484 | debug("+ emac_close\n"); |
| 485 | |
| 486 | if (!emac_open) |
| 487 | return; |
| 488 | |
| 489 | ethss_stop(); |
| 490 | |
| 491 | netcp_close(); |
| 492 | qm_close(); |
| 493 | |
| 494 | emac_open = 0; |
| 495 | |
| 496 | debug("- emac_close\n"); |
| 497 | } |
| 498 | |
| 499 | static int tx_send_loop; |
| 500 | |
| 501 | /* |
| 502 | * This function sends a single packet on the network and returns |
| 503 | * positive number (number of bytes transmitted) or negative for error |
| 504 | */ |
| 505 | static int keystone2_eth_send_packet(struct eth_device *dev, |
| 506 | void *packet, int length) |
| 507 | { |
| 508 | int ret_status = -1; |
| 509 | struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| 510 | |
| 511 | tx_send_loop = 0; |
| 512 | |
| 513 | if (keystone_get_link_status(dev) == 0) |
| 514 | return -1; |
| 515 | |
| 516 | emac_gigabit_enable(dev); |
| 517 | |
| 518 | if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0) |
| 519 | return ret_status; |
| 520 | |
| 521 | if (keystone_get_link_status(dev) == 0) |
| 522 | return -1; |
| 523 | |
| 524 | emac_gigabit_enable(dev); |
| 525 | |
| 526 | return length; |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * This function handles receipt of a packet from the network |
| 531 | */ |
| 532 | static int keystone2_eth_rcv_packet(struct eth_device *dev) |
| 533 | { |
| 534 | void *hd; |
| 535 | int pkt_size; |
| 536 | u32 *pkt; |
| 537 | |
| 538 | hd = netcp_recv(&pkt, &pkt_size); |
| 539 | if (hd == NULL) |
| 540 | return 0; |
| 541 | |
| 542 | NetReceive((uchar *)pkt, pkt_size); |
| 543 | |
| 544 | netcp_release_rxhd(hd); |
| 545 | |
| 546 | return pkt_size; |
| 547 | } |
| 548 | |
| 549 | /* |
| 550 | * This function initializes the EMAC hardware. |
| 551 | */ |
| 552 | int keystone2_emac_initialize(struct eth_priv_t *eth_priv) |
| 553 | { |
| 554 | struct eth_device *dev; |
| 555 | |
| 556 | dev = malloc(sizeof(struct eth_device)); |
| 557 | if (dev == NULL) |
| 558 | return -1; |
| 559 | |
| 560 | memset(dev, 0, sizeof(struct eth_device)); |
| 561 | |
| 562 | strcpy(dev->name, eth_priv->int_name); |
| 563 | dev->priv = eth_priv; |
| 564 | |
| 565 | keystone2_eth_read_mac_addr(dev); |
| 566 | |
| 567 | dev->iobase = 0; |
| 568 | dev->init = keystone2_eth_open; |
| 569 | dev->halt = keystone2_eth_close; |
| 570 | dev->send = keystone2_eth_send_packet; |
| 571 | dev->recv = keystone2_eth_rcv_packet; |
| 572 | |
| 573 | eth_register(dev); |
| 574 | |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | void sgmii_serdes_setup_156p25mhz(void) |
| 579 | { |
| 580 | unsigned int cnt; |
| 581 | |
| 582 | /* |
| 583 | * configure Serializer/Deserializer (SerDes) hardware. SerDes IP |
| 584 | * hardware vendor published only register addresses and their values |
| 585 | * to be used for configuring SerDes. So had to use hardcoded values |
| 586 | * below. |
| 587 | */ |
| 588 | clrsetbits_le32(0x0232a000, 0xffff0000, 0x00800000); |
| 589 | clrsetbits_le32(0x0232a014, 0x0000ffff, 0x00008282); |
| 590 | clrsetbits_le32(0x0232a060, 0x00ffffff, 0x00142438); |
| 591 | clrsetbits_le32(0x0232a064, 0x00ffff00, 0x00c3c700); |
| 592 | clrsetbits_le32(0x0232a078, 0x0000ff00, 0x0000c000); |
| 593 | |
| 594 | clrsetbits_le32(0x0232a204, 0xff0000ff, 0x38000080); |
| 595 | clrsetbits_le32(0x0232a208, 0x000000ff, 0x00000000); |
| 596 | clrsetbits_le32(0x0232a20c, 0xff000000, 0x02000000); |
| 597 | clrsetbits_le32(0x0232a210, 0xff000000, 0x1b000000); |
| 598 | clrsetbits_le32(0x0232a214, 0x0000ffff, 0x00006fb8); |
| 599 | clrsetbits_le32(0x0232a218, 0xffff00ff, 0x758000e4); |
| 600 | clrsetbits_le32(0x0232a2ac, 0x0000ff00, 0x00004400); |
| 601 | clrsetbits_le32(0x0232a22c, 0x00ffff00, 0x00200800); |
| 602 | clrsetbits_le32(0x0232a280, 0x00ff00ff, 0x00820082); |
| 603 | clrsetbits_le32(0x0232a284, 0xffffffff, 0x1d0f0385); |
| 604 | |
| 605 | clrsetbits_le32(0x0232a404, 0xff0000ff, 0x38000080); |
| 606 | clrsetbits_le32(0x0232a408, 0x000000ff, 0x00000000); |
| 607 | clrsetbits_le32(0x0232a40c, 0xff000000, 0x02000000); |
| 608 | clrsetbits_le32(0x0232a410, 0xff000000, 0x1b000000); |
| 609 | clrsetbits_le32(0x0232a414, 0x0000ffff, 0x00006fb8); |
| 610 | clrsetbits_le32(0x0232a418, 0xffff00ff, 0x758000e4); |
| 611 | clrsetbits_le32(0x0232a4ac, 0x0000ff00, 0x00004400); |
| 612 | clrsetbits_le32(0x0232a42c, 0x00ffff00, 0x00200800); |
| 613 | clrsetbits_le32(0x0232a480, 0x00ff00ff, 0x00820082); |
| 614 | clrsetbits_le32(0x0232a484, 0xffffffff, 0x1d0f0385); |
| 615 | |
| 616 | clrsetbits_le32(0x0232a604, 0xff0000ff, 0x38000080); |
| 617 | clrsetbits_le32(0x0232a608, 0x000000ff, 0x00000000); |
| 618 | clrsetbits_le32(0x0232a60c, 0xff000000, 0x02000000); |
| 619 | clrsetbits_le32(0x0232a610, 0xff000000, 0x1b000000); |
| 620 | clrsetbits_le32(0x0232a614, 0x0000ffff, 0x00006fb8); |
| 621 | clrsetbits_le32(0x0232a618, 0xffff00ff, 0x758000e4); |
| 622 | clrsetbits_le32(0x0232a6ac, 0x0000ff00, 0x00004400); |
| 623 | clrsetbits_le32(0x0232a62c, 0x00ffff00, 0x00200800); |
| 624 | clrsetbits_le32(0x0232a680, 0x00ff00ff, 0x00820082); |
| 625 | clrsetbits_le32(0x0232a684, 0xffffffff, 0x1d0f0385); |
| 626 | |
| 627 | clrsetbits_le32(0x0232a804, 0xff0000ff, 0x38000080); |
| 628 | clrsetbits_le32(0x0232a808, 0x000000ff, 0x00000000); |
| 629 | clrsetbits_le32(0x0232a80c, 0xff000000, 0x02000000); |
| 630 | clrsetbits_le32(0x0232a810, 0xff000000, 0x1b000000); |
| 631 | clrsetbits_le32(0x0232a814, 0x0000ffff, 0x00006fb8); |
| 632 | clrsetbits_le32(0x0232a818, 0xffff00ff, 0x758000e4); |
| 633 | clrsetbits_le32(0x0232a8ac, 0x0000ff00, 0x00004400); |
| 634 | clrsetbits_le32(0x0232a82c, 0x00ffff00, 0x00200800); |
| 635 | clrsetbits_le32(0x0232a880, 0x00ff00ff, 0x00820082); |
| 636 | clrsetbits_le32(0x0232a884, 0xffffffff, 0x1d0f0385); |
| 637 | |
| 638 | clrsetbits_le32(0x0232aa00, 0x0000ff00, 0x00000800); |
| 639 | clrsetbits_le32(0x0232aa08, 0xffff0000, 0x38a20000); |
| 640 | clrsetbits_le32(0x0232aa30, 0x00ffff00, 0x008a8a00); |
| 641 | clrsetbits_le32(0x0232aa84, 0x0000ff00, 0x00000600); |
| 642 | clrsetbits_le32(0x0232aa94, 0xff000000, 0x10000000); |
| 643 | clrsetbits_le32(0x0232aaa0, 0xff000000, 0x81000000); |
| 644 | clrsetbits_le32(0x0232aabc, 0xff000000, 0xff000000); |
| 645 | clrsetbits_le32(0x0232aac0, 0x000000ff, 0x0000008b); |
| 646 | clrsetbits_le32(0x0232ab08, 0xffff0000, 0x583f0000); |
| 647 | clrsetbits_le32(0x0232ab0c, 0x000000ff, 0x0000004e); |
| 648 | clrsetbits_le32(0x0232a000, 0x000000ff, 0x00000003); |
| 649 | clrsetbits_le32(0x0232aa00, 0x000000ff, 0x0000005f); |
| 650 | |
| 651 | clrsetbits_le32(0x0232aa48, 0x00ffff00, 0x00fd8c00); |
| 652 | clrsetbits_le32(0x0232aa54, 0x00ffffff, 0x002fec72); |
| 653 | clrsetbits_le32(0x0232aa58, 0xffffff00, 0x00f92100); |
| 654 | clrsetbits_le32(0x0232aa5c, 0xffffffff, 0x00040060); |
| 655 | clrsetbits_le32(0x0232aa60, 0xffffffff, 0x00008000); |
| 656 | clrsetbits_le32(0x0232aa64, 0xffffffff, 0x0c581220); |
| 657 | clrsetbits_le32(0x0232aa68, 0xffffffff, 0xe13b0602); |
| 658 | clrsetbits_le32(0x0232aa6c, 0xffffffff, 0xb8074cc1); |
| 659 | clrsetbits_le32(0x0232aa70, 0xffffffff, 0x3f02e989); |
| 660 | clrsetbits_le32(0x0232aa74, 0x000000ff, 0x00000001); |
| 661 | clrsetbits_le32(0x0232ab20, 0x00ff0000, 0x00370000); |
| 662 | clrsetbits_le32(0x0232ab1c, 0xff000000, 0x37000000); |
| 663 | clrsetbits_le32(0x0232ab20, 0x000000ff, 0x0000005d); |
| 664 | |
| 665 | /*Bring SerDes out of Reset if SerDes is Shutdown & is in Reset Mode*/ |
| 666 | clrbits_le32(0x0232a010, 1 << 28); |
| 667 | |
| 668 | /* Enable TX and RX via the LANExCTL_STS 0x0000 + x*4 */ |
| 669 | clrbits_le32(0x0232a228, 1 << 29); |
| 670 | writel(0xF800F8C0, 0x0232bfe0); |
| 671 | clrbits_le32(0x0232a428, 1 << 29); |
| 672 | writel(0xF800F8C0, 0x0232bfe4); |
| 673 | clrbits_le32(0x0232a628, 1 << 29); |
| 674 | writel(0xF800F8C0, 0x0232bfe8); |
| 675 | clrbits_le32(0x0232a828, 1 << 29); |
| 676 | writel(0xF800F8C0, 0x0232bfec); |
| 677 | |
| 678 | /*Enable pll via the pll_ctrl 0x0014*/ |
| 679 | writel(0xe0000000, 0x0232bff4) |
| 680 | ; |
| 681 | |
| 682 | /*Waiting for SGMII Serdes PLL lock.*/ |
| 683 | for (cnt = 10000; cnt > 0 && ((readl(0x02090114) & 0x10) == 0); cnt--) |
| 684 | ; |
| 685 | |
| 686 | for (cnt = 10000; cnt > 0 && ((readl(0x02090214) & 0x10) == 0); cnt--) |
| 687 | ; |
| 688 | |
| 689 | for (cnt = 10000; cnt > 0 && ((readl(0x02090414) & 0x10) == 0); cnt--) |
| 690 | ; |
| 691 | |
| 692 | for (cnt = 10000; cnt > 0 && ((readl(0x02090514) & 0x10) == 0); cnt--) |
| 693 | ; |
| 694 | |
| 695 | udelay(45000); |
| 696 | } |
| 697 | |
| 698 | void sgmii_serdes_shutdown(void) |
| 699 | { |
| 700 | /* |
| 701 | * shutdown SerDes hardware. SerDes hardware vendor published only |
| 702 | * register addresses and their values. So had to use hardcoded |
| 703 | * values below. |
| 704 | */ |
| 705 | clrbits_le32(0x0232bfe0, 3 << 29 | 3 << 13); |
| 706 | setbits_le32(0x02320228, 1 << 29); |
| 707 | clrbits_le32(0x0232bfe4, 3 << 29 | 3 << 13); |
| 708 | setbits_le32(0x02320428, 1 << 29); |
| 709 | clrbits_le32(0x0232bfe8, 3 << 29 | 3 << 13); |
| 710 | setbits_le32(0x02320628, 1 << 29); |
| 711 | clrbits_le32(0x0232bfec, 3 << 29 | 3 << 13); |
| 712 | setbits_le32(0x02320828, 1 << 29); |
| 713 | |
| 714 | clrbits_le32(0x02320034, 3 << 29); |
| 715 | setbits_le32(0x02320010, 1 << 28); |
| 716 | } |