blob: 931e5ef904ec8de4ca213cd40690d7160c8137a3 [file] [log] [blame]
Patrice Chotard4c3aebd2017-09-13 18:00:06 +02001/*
2 * Copyright (C) STMicroelectronics SA 2017
3 * Author(s): Patrice CHOTARD, <patrice.chotard@st.com> for STMicroelectronics.
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8#include <common.h>
9#include <clk-uclass.h>
10#include <dm.h>
11#include <regmap.h>
12#include <syscon.h>
13#include <asm/io.h>
14#include <dm/root.h>
15
16#include <dt-bindings/clock/stm32h7-clks.h>
17
18DECLARE_GLOBAL_DATA_PTR;
19
20/* RCC CR specific definitions */
21#define RCC_CR_HSION BIT(0)
22#define RCC_CR_HSIRDY BIT(2)
23
24#define RCC_CR_HSEON BIT(16)
25#define RCC_CR_HSERDY BIT(17)
26#define RCC_CR_HSEBYP BIT(18)
27#define RCC_CR_PLL1ON BIT(24)
28#define RCC_CR_PLL1RDY BIT(25)
29
30#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
31#define RCC_CR_HSIDIV_SHIFT 3
32
33#define RCC_CFGR_SW_MASK GENMASK(2, 0)
34#define RCC_CFGR_SW_HSI 0
35#define RCC_CFGR_SW_CSI 1
36#define RCC_CFGR_SW_HSE 2
37#define RCC_CFGR_SW_PLL1 3
38
39#define RCC_PLLCKSELR_PLLSRC_HSI 0
40#define RCC_PLLCKSELR_PLLSRC_CSI 1
41#define RCC_PLLCKSELR_PLLSRC_HSE 2
42#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
43
44#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
45
46#define RCC_PLLCKSELR_DIVM1_SHIFT 4
47#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
48
49#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
50
51#define RCC_PLL1DIVR_DIVP1_SHIFT 9
52#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
53
54#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
55#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
56
57#define RCC_PLL1DIVR_DIVR1_SHIFT 24
58#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
59
60#define RCC_PLL1FRACR_FRACN1_SHIFT 3
61#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
62
63#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
64#define PLL1RGE_1_2_MHZ 0
65#define PLL1RGE_2_4_MHZ 1
66#define PLL1RGE_4_8_MHZ 2
67#define PLL1RGE_8_16_MHZ 3
68#define RCC_PLLCFGR_DIVP1EN BIT(16)
69#define RCC_PLLCFGR_DIVQ1EN BIT(17)
70#define RCC_PLLCFGR_DIVR1EN BIT(18)
71
72#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
73#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
74#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
75
76#define RCC_D1CFGR_HPRE_DIV2 8
77
78#define RCC_D1CFGR_D1PPRE_SHIFT 4
79#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
80#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
81
82#define RCC_D1CFGR_D1CPRE_SHIFT 8
83#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
84#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
85
86#define RCC_D2CFGR_D2PPRE1_SHIFT 4
87#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
88#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
89
90#define RCC_D2CFGR_D2PPRE2_SHIFT 8
91#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
92#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
93
94#define RCC_D3CFGR_D3PPRE_SHIFT 4
95#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
96#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
97
98#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
99#define FMCSRC_HCLKD1 0
100#define FMCSRC_PLL1_Q_CK 1
101#define FMCSRC_PLL2_R_CK 2
102#define FMCSRC_PER_CK 3
103
104#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
105#define RCC_D1CCIPR_QSPISRC_SHIFT 4
106#define QSPISRC_HCLKD1 0
107#define QSPISRC_PLL1_Q_CK 1
108#define QSPISRC_PLL2_R_CK 2
109#define QSPISRC_PER_CK 3
110
111#define PWR_CR3 0x0c
112#define PWR_CR3_SDEN BIT(2)
113#define PWR_D3CR 0x18
114#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
115#define PWR_D3CR_VOS_SHIFT 14
116#define VOS_SCALE_3 1
117#define VOS_SCALE_2 2
118#define VOS_SCALE_1 3
119#define PWR_D3CR_VOSREADY BIT(13)
120
121struct stm32_rcc_regs {
122 u32 cr; /* 0x00 Source Control Register */
123 u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
124 u32 crrcr; /* 0x08 Clock Recovery RC Register */
125 u32 reserved1; /* 0x0c reserved */
126 u32 cfgr; /* 0x10 Clock Configuration Register */
127 u32 reserved2; /* 0x14 reserved */
128 u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
129 u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
130 u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
131 u32 reserved3; /* 0x24 reserved */
132 u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
133 u32 pllcfgr; /* 0x2c PLLs Configuration Register */
134 u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
135 u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
136 u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
137 u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
138 u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
139 u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
140 u32 reserved4; /* 0x48 reserved */
141 u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
142 u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
143 u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
144 u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
145 u32 reserved5; /* 0x5c reserved */
146 u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
147 u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
148 u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
149 u32 reserved6; /* 0x6c reserved */
150 u32 bdcr; /* 0x70 Backup Domain Control Register */
151 u32 csr; /* 0x74 Clock Control and Status Register */
152 u32 reserved7; /* 0x78 reserved */
153
154 u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
155 u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
156 u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
157 u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
158
159 u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
160 u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
161 u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
162 u32 apb2rstr; /* 0x98 APB2 Clock Register */
163 u32 apb4rstr; /* 0x9c APB4 Clock Register */
164
165 u32 gcr; /* 0xa0 Global Control Register */
166 u32 reserved8; /* 0xa4 reserved */
167 u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
168 u32 reserved9[9];/* 0xac to 0xcc reserved */
169 u32 rsr; /* 0xd0 Reset Status Register */
170 u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
171 u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
172 u32 ahb2enr; /* 0xdc AHB2 Clock Register */
173 u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
174
175 u32 apb3enr; /* 0xe4 APB3 Clock Register */
176 u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
177 u32 apb1henr; /* 0xec APB1 high Clock Register */
178 u32 apb2enr; /* 0xf0 APB2 Clock Register */
179 u32 apb4enr; /* 0xf4 APB4 Clock Register */
180};
181
182#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
183#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
184#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
185#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
186#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
187#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
188#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
189#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
190#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
191
192struct clk_cfg {
193 u32 gate_offset;
194 u8 gate_bit_idx;
195 const char *name;
196};
197
198#define CLK(_gate_offset, _bit_idx, _name) \
199{ \
200 .gate_offset = _gate_offset,\
201 .gate_bit_idx = _bit_idx,\
202 .name = _name,\
203}
204
205/*
206 * the way all these entries are sorted in this array could seem
207 * unlogical, but we are dependant of kernel DT_bindings,
208 * where clocks are separate in 2 banks, peripheral clocks and
209 * kernel clocks.
210 */
211
212static const struct clk_cfg clk_map[] = {
213 CLK(RCC_AHB3ENR, 31, "d1sram1"), /* peripheral clocks */
214 CLK(RCC_AHB3ENR, 30, "itcm"),
215 CLK(RCC_AHB3ENR, 29, "dtcm2"),
216 CLK(RCC_AHB3ENR, 28, "dtcm1"),
217 CLK(RCC_AHB3ENR, 8, "flitf"),
218 CLK(RCC_AHB3ENR, 5, "jpgdec"),
219 CLK(RCC_AHB3ENR, 4, "dma2d"),
220 CLK(RCC_AHB3ENR, 0, "mdma"),
221 CLK(RCC_AHB1ENR, 28, "usb2ulpi"),
222 CLK(RCC_AHB1ENR, 17, "eth1rx"),
223 CLK(RCC_AHB1ENR, 16, "eth1tx"),
224 CLK(RCC_AHB1ENR, 15, "eth1mac"),
225 CLK(RCC_AHB1ENR, 14, "art"),
226 CLK(RCC_AHB1ENR, 26, "usb1ulpi"),
227 CLK(RCC_AHB1ENR, 1, "dma2"),
228 CLK(RCC_AHB1ENR, 0, "dma1"),
229 CLK(RCC_AHB2ENR, 31, "d2sram3"),
230 CLK(RCC_AHB2ENR, 30, "d2sram2"),
231 CLK(RCC_AHB2ENR, 29, "d2sram1"),
232 CLK(RCC_AHB2ENR, 5, "hash"),
233 CLK(RCC_AHB2ENR, 4, "crypt"),
234 CLK(RCC_AHB2ENR, 0, "camitf"),
235 CLK(RCC_AHB4ENR, 28, "bkpram"),
236 CLK(RCC_AHB4ENR, 25, "hsem"),
237 CLK(RCC_AHB4ENR, 21, "bdma"),
238 CLK(RCC_AHB4ENR, 19, "crc"),
239 CLK(RCC_AHB4ENR, 10, "gpiok"),
240 CLK(RCC_AHB4ENR, 9, "gpioj"),
241 CLK(RCC_AHB4ENR, 8, "gpioi"),
242 CLK(RCC_AHB4ENR, 7, "gpioh"),
243 CLK(RCC_AHB4ENR, 6, "gpiog"),
244 CLK(RCC_AHB4ENR, 5, "gpiof"),
245 CLK(RCC_AHB4ENR, 4, "gpioe"),
246 CLK(RCC_AHB4ENR, 3, "gpiod"),
247 CLK(RCC_AHB4ENR, 2, "gpioc"),
248 CLK(RCC_AHB4ENR, 1, "gpiob"),
249 CLK(RCC_AHB4ENR, 0, "gpioa"),
250 CLK(RCC_APB3ENR, 6, "wwdg1"),
251 CLK(RCC_APB1LENR, 29, "dac12"),
252 CLK(RCC_APB1LENR, 11, "wwdg2"),
253 CLK(RCC_APB1LENR, 8, "tim14"),
254 CLK(RCC_APB1LENR, 7, "tim13"),
255 CLK(RCC_APB1LENR, 6, "tim12"),
256 CLK(RCC_APB1LENR, 5, "tim7"),
257 CLK(RCC_APB1LENR, 4, "tim6"),
258 CLK(RCC_APB1LENR, 3, "tim5"),
259 CLK(RCC_APB1LENR, 2, "tim4"),
260 CLK(RCC_APB1LENR, 1, "tim3"),
261 CLK(RCC_APB1LENR, 0, "tim2"),
262 CLK(RCC_APB1HENR, 5, "mdios"),
263 CLK(RCC_APB1HENR, 4, "opamp"),
264 CLK(RCC_APB1HENR, 1, "crs"),
265 CLK(RCC_APB2ENR, 18, "tim17"),
266 CLK(RCC_APB2ENR, 17, "tim16"),
267 CLK(RCC_APB2ENR, 16, "tim15"),
268 CLK(RCC_APB2ENR, 1, "tim8"),
269 CLK(RCC_APB2ENR, 0, "tim1"),
270 CLK(RCC_APB4ENR, 26, "tmpsens"),
271 CLK(RCC_APB4ENR, 16, "rtcapb"),
272 CLK(RCC_APB4ENR, 15, "vref"),
273 CLK(RCC_APB4ENR, 14, "comp12"),
274 CLK(RCC_APB4ENR, 1, "syscfg"),
275 CLK(RCC_AHB3ENR, 16, "sdmmc1"), /* kernel clocks */
276 CLK(RCC_AHB3ENR, 14, "quadspi"),
277 CLK(RCC_AHB3ENR, 12, "fmc"),
278 CLK(RCC_AHB1ENR, 27, "usb2otg"),
279 CLK(RCC_AHB1ENR, 25, "usb1otg"),
280 CLK(RCC_AHB1ENR, 5, "adc12"),
281 CLK(RCC_AHB2ENR, 9, "sdmmc2"),
282 CLK(RCC_AHB2ENR, 6, "rng"),
283 CLK(RCC_AHB4ENR, 24, "adc3"),
284 CLK(RCC_APB3ENR, 4, "dsi"),
285 CLK(RCC_APB3ENR, 3, "ltdc"),
286 CLK(RCC_APB1LENR, 31, "usart8"),
287 CLK(RCC_APB1LENR, 30, "usart7"),
288 CLK(RCC_APB1LENR, 27, "hdmicec"),
289 CLK(RCC_APB1LENR, 23, "i2c3"),
290 CLK(RCC_APB1LENR, 22, "i2c2"),
291 CLK(RCC_APB1LENR, 21, "i2c1"),
292 CLK(RCC_APB1LENR, 20, "uart5"),
293 CLK(RCC_APB1LENR, 19, "uart4"),
294 CLK(RCC_APB1LENR, 18, "usart3"),
295 CLK(RCC_APB1LENR, 17, "usart2"),
296 CLK(RCC_APB1LENR, 16, "spdifrx"),
297 CLK(RCC_APB1LENR, 15, "spi3"),
298 CLK(RCC_APB1LENR, 14, "spi2"),
299 CLK(RCC_APB1LENR, 9, "lptim1"),
300 CLK(RCC_APB1HENR, 8, "fdcan"),
301 CLK(RCC_APB1HENR, 2, "swp"),
302 CLK(RCC_APB2ENR, 29, "hrtim"),
303 CLK(RCC_APB2ENR, 28, "dfsdm1"),
304 CLK(RCC_APB2ENR, 24, "sai3"),
305 CLK(RCC_APB2ENR, 23, "sai2"),
306 CLK(RCC_APB2ENR, 22, "sai1"),
307 CLK(RCC_APB2ENR, 20, "spi5"),
308 CLK(RCC_APB2ENR, 13, "spi4"),
309 CLK(RCC_APB2ENR, 12, "spi1"),
310 CLK(RCC_APB2ENR, 5, "usart6"),
311 CLK(RCC_APB2ENR, 4, "usart1"),
312 CLK(RCC_APB4ENR, 21, "sai4a"),
313 CLK(RCC_APB4ENR, 21, "sai4b"),
314 CLK(RCC_APB4ENR, 12, "lptim5"),
315 CLK(RCC_APB4ENR, 11, "lptim4"),
316 CLK(RCC_APB4ENR, 10, "lptim3"),
317 CLK(RCC_APB4ENR, 9, "lptim2"),
318 CLK(RCC_APB4ENR, 7, "i2c4"),
319 CLK(RCC_APB4ENR, 5, "spi6"),
320 CLK(RCC_APB4ENR, 3, "lpuart1"),
321};
322
323struct stm32_clk {
324 struct stm32_rcc_regs *rcc_base;
325 struct regmap *pwr_regmap;
326};
327
328struct pll_psc {
329 u8 divm;
330 u16 divn;
331 u8 divp;
332 u8 divq;
333 u8 divr;
334};
335
336/*
337 * OSC_HSE = 25 MHz
338 * VCO = 500MHz
339 * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
340 */
341struct pll_psc sys_pll_psc = {
342 .divm = 4,
343 .divn = 80,
344 .divp = 2,
345 .divq = 2,
346 .divr = 2,
347};
348
349int configure_clocks(struct udevice *dev)
350{
351 struct stm32_clk *priv = dev_get_priv(dev);
352 struct stm32_rcc_regs *regs = priv->rcc_base;
353 uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
354 uint32_t pllckselr = 0;
355 uint32_t pll1divr = 0;
356 uint32_t pllcfgr = 0;
357
358 /* Switch on HSI */
359 setbits_le32(&regs->cr, RCC_CR_HSION);
360 while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
361 ;
362
363 /* Reset CFGR, now HSI is the default system clock */
364 writel(0, &regs->cfgr);
365
366 /* Set all kernel domain clock registers to reset value*/
367 writel(0x0, &regs->d1ccipr);
368 writel(0x0, &regs->d2ccip1r);
369 writel(0x0, &regs->d2ccip2r);
370
371 /* Set voltage scaling at scale 1 */
372 clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
373 VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
374 /* disable step down converter */
375 clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SDEN);
376 while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
377 ;
378
379 /* disable HSE to configure it */
380 clrbits_le32(&regs->cr, RCC_CR_HSEON);
381 while ((readl(&regs->cr) & RCC_CR_HSERDY))
382 ;
383
384 /* clear HSE bypass and set it ON */
385 clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
386 /* Switch on HSE */
387 setbits_le32(&regs->cr, RCC_CR_HSEON);
388 while (!(readl(&regs->cr) & RCC_CR_HSERDY))
389 ;
390
391 /* pll setup, disable it */
392 clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
393 while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
394 ;
395
396 /* Select HSE as PLL clock source */
397 pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
398 pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
399 writel(pllckselr, &regs->pllckselr);
400
401 pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
402 pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
403 pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
404 pll1divr |= (sys_pll_psc.divn - 1);
405 writel(pll1divr, &regs->pll1divr);
406
407 pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
408 pllcfgr |= RCC_PLLCFGR_DIVP1EN;
409 pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
410 pllcfgr |= RCC_PLLCFGR_DIVR1EN;
411 writel(pllcfgr, &regs->pllcfgr);
412
413 /* pll setup, enable it */
414 setbits_le32(&regs->cr, RCC_CR_PLL1ON);
415
416 /* set HPRE (/2) DI clk --> 125MHz */
417 clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
418 RCC_D1CFGR_HPRE_DIV2);
419
420 /* select PLL1 as system clock source (sys_ck)*/
421 clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
422 while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
423 ;
424
425 /* sdram: use pll1_q as fmc_k clk */
426 clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
427 FMCSRC_PLL1_Q_CK);
428
429 return 0;
430}
431
432static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
433{
434 u32 divider;
435
436 /* get HSI divider value */
437 divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
438 divider = divider >> RCC_CR_HSIDIV_SHIFT;
439
440 return divider;
441};
442
443enum pllsrc {
444 HSE,
445 LSE,
446 HSI,
447 CSI,
448 I2S,
449 TIMER,
450 PLLSRC_NB,
451};
452
453static const char * const pllsrc_name[PLLSRC_NB] = {
454 [HSE] = "clk-hse",
455 [LSE] = "clk-lse",
456 [HSI] = "clk-hsi",
457 [CSI] = "clk-csi",
458 [I2S] = "clk-i2s",
459 [TIMER] = "timer-clk"
460};
461
462static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
463{
464 struct clk clk;
465 struct udevice *fixed_clock_dev = NULL;
466 u32 divider;
467 int ret;
468 const char *name = pllsrc_name[pllsrc];
469
470 debug("%s name %s\n", __func__, name);
471
472 clk.id = 0;
473 ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
474 if (ret) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900475 pr_err("Can't find clk %s (%d)", name, ret);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200476 return 0;
477 }
478
479 ret = clk_request(fixed_clock_dev, &clk);
480 if (ret) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900481 pr_err("Can't request %s clk (%d)", name, ret);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200482 return 0;
483 }
484
485 divider = 0;
486 if (pllsrc == HSI)
487 divider = stm32_get_HSI_divider(regs);
488
489 debug("%s divider %d rate %ld\n", __func__,
490 divider, clk_get_rate(&clk));
491
492 return clk_get_rate(&clk) >> divider;
493};
494
495enum pll1_output {
496 PLL1_P_CK,
497 PLL1_Q_CK,
498 PLL1_R_CK,
499};
500
501static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
502 enum pll1_output output)
503{
504 ulong pllsrc = 0;
505 u32 divm1, divn1, divp1, divq1, divr1, fracn1;
506 ulong vco, rate;
507
508 /* get the PLLSRC */
509 switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
510 case RCC_PLLCKSELR_PLLSRC_HSI:
511 pllsrc = stm32_get_rate(regs, HSI);
512 break;
513 case RCC_PLLCKSELR_PLLSRC_CSI:
514 pllsrc = stm32_get_rate(regs, CSI);
515 break;
516 case RCC_PLLCKSELR_PLLSRC_HSE:
517 pllsrc = stm32_get_rate(regs, HSE);
518 break;
519 case RCC_PLLCKSELR_PLLSRC_NO_CLK:
520 /* shouldn't happen */
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900521 pr_err("wrong value for RCC_PLLCKSELR register\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200522 pllsrc = 0;
523 break;
524 }
525
526 /* pllsrc = 0 ? no need to go ahead */
527 if (!pllsrc)
528 return pllsrc;
529
530 /* get divm1, divp1, divn1 and divr1 */
531 divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
532 divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
533
534 divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
535
536 divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
537 divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
538
539 divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
540 divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
541
542 divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
543 divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
544
545 fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
546 fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
547
548 vco = (pllsrc / divm1) * divn1;
549 rate = (pllsrc * fracn1) / (divm1 * 8192);
550
551 debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
552 __func__, divm1, divn1, divp1, divq1, divr1);
553 debug("%s fracn1 = %d vco = %ld rate = %ld\n",
554 __func__, fracn1, vco, rate);
555
556 switch (output) {
557 case PLL1_P_CK:
558 return (vco + rate) / divp1;
559 break;
560 case PLL1_Q_CK:
561 return (vco + rate) / divq1;
562 break;
563
564 case PLL1_R_CK:
565 return (vco + rate) / divr1;
566 break;
567 }
568
569 return -EINVAL;
570}
571
572static ulong stm32_clk_get_rate(struct clk *clk)
573{
574 struct stm32_clk *priv = dev_get_priv(clk->dev);
575 struct stm32_rcc_regs *regs = priv->rcc_base;
576 ulong sysclk = 0;
577 u32 gate_offset;
578 u32 d1cfgr;
579 /* prescaler table lookups for clock computation */
580 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
581 u8 source, idx;
582
583 /*
584 * get system clock (sys_ck) source
585 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
586 */
587 source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
588 switch (source) {
589 case RCC_CFGR_SW_PLL1:
590 sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
591 break;
592 case RCC_CFGR_SW_HSE:
593 sysclk = stm32_get_rate(regs, HSE);
594 break;
595
596 case RCC_CFGR_SW_CSI:
597 sysclk = stm32_get_rate(regs, CSI);
598 break;
599
600 case RCC_CFGR_SW_HSI:
601 sysclk = stm32_get_rate(regs, HSI);
602 break;
603 }
604
605 /* sysclk = 0 ? no need to go ahead */
606 if (!sysclk)
607 return sysclk;
608
609 debug("%s system clock: source = %d freq = %ld\n",
610 __func__, source, sysclk);
611
612 d1cfgr = readl(&regs->d1cfgr);
613
614 if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
615 /* get D1 domain Core prescaler */
616 idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
617 RCC_D1CFGR_D1CPRE_SHIFT;
618 sysclk = sysclk / prescaler_table[idx];
619 }
620
621 if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
622 /* get D1 domain AHB prescaler */
623 idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
624 sysclk = sysclk / prescaler_table[idx];
625 }
626
627 gate_offset = clk_map[clk->id].gate_offset;
628
629 debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
630 __func__, clk->id, gate_offset, sysclk);
631
632 switch (gate_offset) {
633 case RCC_AHB3ENR:
634 case RCC_AHB1ENR:
635 case RCC_AHB2ENR:
636 case RCC_AHB4ENR:
637 return sysclk;
638 break;
639
640 case RCC_APB3ENR:
641 if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
642 /* get D1 domain APB3 prescaler */
643 idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
644 RCC_D1CFGR_D1PPRE_SHIFT;
645 sysclk = sysclk / prescaler_table[idx];
646 }
647
648 debug("%s system clock: freq after APB3 prescaler = %ld\n",
649 __func__, sysclk);
650
651 return sysclk;
652 break;
653
654 case RCC_APB4ENR:
655 if (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
656 /* get D3 domain APB4 prescaler */
657 idx = (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
658 RCC_D3CFGR_D3PPRE_SHIFT;
659 sysclk = sysclk / prescaler_table[idx];
660 }
661
662 debug("%s system clock: freq after APB4 prescaler = %ld\n",
663 __func__, sysclk);
664
665 return sysclk;
666 break;
667
668 case RCC_APB1LENR:
669 case RCC_APB1HENR:
670 if (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED) {
671 /* get D2 domain APB1 prescaler */
672 idx = (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER) >>
673 RCC_D2CFGR_D2PPRE1_SHIFT;
674 sysclk = sysclk / prescaler_table[idx];
675 }
676
677 debug("%s system clock: freq after APB1 prescaler = %ld\n",
678 __func__, sysclk);
679
680 return sysclk;
681 break;
682
683 case RCC_APB2ENR:
684 if (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED) {
685 /* get D2 domain APB1 prescaler */
686 idx = (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER) >>
687 RCC_D2CFGR_D2PPRE2_SHIFT;
688 sysclk = sysclk / prescaler_table[idx];
689 }
690
691 debug("%s system clock: freq after APB2 prescaler = %ld\n",
692 __func__, sysclk);
693
694 return sysclk;
695 break;
696
697 default:
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900698 pr_err("unexpected gate_offset value (0x%x)\n", gate_offset);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200699 return -EINVAL;
700 break;
701 }
702}
703
704static int stm32_clk_enable(struct clk *clk)
705{
706 struct stm32_clk *priv = dev_get_priv(clk->dev);
707 struct stm32_rcc_regs *regs = priv->rcc_base;
708 u32 gate_offset;
709 u32 gate_bit_index;
710 unsigned long clk_id = clk->id;
711
712 gate_offset = clk_map[clk_id].gate_offset;
713 gate_bit_index = clk_map[clk_id].gate_bit_idx;
714
715 debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
716 __func__, clk->id, gate_offset, gate_bit_index,
717 clk_map[clk_id].name);
718
719 setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
720
721 return 0;
722}
723
724static int stm32_clk_probe(struct udevice *dev)
725{
726 struct stm32_clk *priv = dev_get_priv(dev);
727 struct udevice *syscon;
728 fdt_addr_t addr;
729 int err;
730
731 addr = dev_read_addr(dev);
732 if (addr == FDT_ADDR_T_NONE)
733 return -EINVAL;
734
735 priv->rcc_base = (struct stm32_rcc_regs *)addr;
736
737 /* get corresponding syscon phandle */
738 err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
739 "st,syscfg", &syscon);
740
741 if (err) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900742 pr_err("unable to find syscon device\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200743 return err;
744 }
745
746 priv->pwr_regmap = syscon_get_regmap(syscon);
747 if (!priv->pwr_regmap) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900748 pr_err("unable to find regmap\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200749 return -ENODEV;
750 }
751
752 configure_clocks(dev);
753
754 return 0;
755}
756
757static int stm32_clk_of_xlate(struct clk *clk,
758 struct ofnode_phandle_args *args)
759{
760 if (args->args_count != 1) {
761 debug("Invaild args_count: %d\n", args->args_count);
762 return -EINVAL;
763 }
764
765 if (args->args_count) {
766 clk->id = args->args[0];
767 /*
768 * this computation convert DT clock index which is used to
769 * point into 2 separate clock arrays (peripheral and kernel
770 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
771 * into index to point into only one array where peripheral
772 * and kernel clocks are consecutive
773 */
774 if (clk->id >= KERN_BANK) {
775 clk->id -= KERN_BANK;
776 clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
777 } else {
778 clk->id -= PERIF_BANK;
779 }
780 } else {
781 clk->id = 0;
782 }
783
784 debug("%s clk->id %ld\n", __func__, clk->id);
785
786 return 0;
787}
788
789static struct clk_ops stm32_clk_ops = {
790 .of_xlate = stm32_clk_of_xlate,
791 .enable = stm32_clk_enable,
792 .get_rate = stm32_clk_get_rate,
793};
794
795U_BOOT_DRIVER(stm32h7_clk) = {
796 .name = "stm32h7_rcc_clock",
797 .id = UCLASS_CLK,
798 .ops = &stm32_clk_ops,
799 .probe = stm32_clk_probe,
800 .priv_auto_alloc_size = sizeof(struct stm32_clk),
801 .flags = DM_FLAG_PRE_RELOC,
802};