blob: 060b5189968e32dbc2c8db6fcfb40f8a9de97a6d [file] [log] [blame]
wdenk682011f2003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarzac3315c2008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk682011f2003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk8bde7f72003-06-27 21:31:46 +00009
wdenk682011f2003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk8bde7f72003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk682011f2003-06-03 23:54:09 +000015 any later version.
wdenk8bde7f72003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk682011f2003-06-03 23:54:09 +000020 more details.
wdenk8bde7f72003-06-27 21:31:46 +000021
wdenk682011f2003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk8bde7f72003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk8bde7f72003-06-27 21:31:46 +000025
wdenk682011f2003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk8bde7f72003-06-27 21:31:46 +000028
wdenk682011f2003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 */
44
45#include "e1000.h"
46
wdenk682011f2003-06-03 23:54:09 +000047#define TOUT_LOOP 100000
48
49#undef virt_to_bus
50#define virt_to_bus(x) ((unsigned long)x)
51#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -070052#define mdelay(n) udelay((n)*1000)
wdenk682011f2003-06-03 23:54:09 +000053
54#define E1000_DEFAULT_PBA 0x00000030
55
56/* NIC specific static variables go here */
57
58static char tx_pool[128 + 16];
59static char rx_pool[128 + 16];
60static char packet[2096];
61
62static struct e1000_tx_desc *tx_base;
63static struct e1000_rx_desc *rx_base;
64
65static int tx_tail;
66static int rx_tail, rx_last;
67
68static struct pci_device_id supported[] = {
69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker8915f112008-07-09 17:50:45 -040078 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk682011f2003-06-03 23:54:09 +000079 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarzac3315c2008-03-06 16:45:44 +010083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandeggeraa3b8bf2008-05-28 19:55:19 +020084 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
wdenk682011f2003-06-03 23:54:09 +000085};
86
87/* Function forward declarations */
88static int e1000_setup_link(struct eth_device *nic);
89static int e1000_setup_fiber_link(struct eth_device *nic);
90static int e1000_setup_copper_link(struct eth_device *nic);
91static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
92static void e1000_config_collision_dist(struct e1000_hw *hw);
93static int e1000_config_mac_to_phy(struct e1000_hw *hw);
94static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
95static int e1000_check_for_link(struct eth_device *nic);
96static int e1000_wait_autoneg(struct e1000_hw *hw);
97static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
98 uint16_t * duplex);
99static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
100 uint16_t * phy_data);
101static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
102 uint16_t phy_data);
103static void e1000_phy_hw_reset(struct e1000_hw *hw);
104static int e1000_phy_reset(struct e1000_hw *hw);
105static int e1000_detect_gig_phy(struct e1000_hw *hw);
106
107#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
108#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
109#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
110 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
111#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
wdenk8bde7f72003-06-27 21:31:46 +0000112 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
wdenk682011f2003-06-03 23:54:09 +0000113#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
114
Wolfgang Denk7521af12005-10-09 01:04:33 +0200115#ifndef CONFIG_AP1000 /* remove for warnings */
wdenk682011f2003-06-03 23:54:09 +0000116/******************************************************************************
117 * Raises the EEPROM's clock input.
118 *
119 * hw - Struct containing variables accessed by shared code
120 * eecd - EECD's current value
121 *****************************************************************************/
122static void
123e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
124{
125 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
126 * wait 50 microseconds.
127 */
128 *eecd = *eecd | E1000_EECD_SK;
129 E1000_WRITE_REG(hw, EECD, *eecd);
130 E1000_WRITE_FLUSH(hw);
131 udelay(50);
132}
133
134/******************************************************************************
135 * Lowers the EEPROM's clock input.
136 *
wdenk8bde7f72003-06-27 21:31:46 +0000137 * hw - Struct containing variables accessed by shared code
wdenk682011f2003-06-03 23:54:09 +0000138 * eecd - EECD's current value
139 *****************************************************************************/
140static void
141e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
142{
wdenk8bde7f72003-06-27 21:31:46 +0000143 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
144 * wait 50 microseconds.
wdenk682011f2003-06-03 23:54:09 +0000145 */
146 *eecd = *eecd & ~E1000_EECD_SK;
147 E1000_WRITE_REG(hw, EECD, *eecd);
148 E1000_WRITE_FLUSH(hw);
149 udelay(50);
150}
151
152/******************************************************************************
153 * Shift data bits out to the EEPROM.
154 *
155 * hw - Struct containing variables accessed by shared code
156 * data - data to send to the EEPROM
157 * count - number of bits to shift out
158 *****************************************************************************/
159static void
160e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
161{
162 uint32_t eecd;
163 uint32_t mask;
164
165 /* We need to shift "count" bits out to the EEPROM. So, value in the
166 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk8bde7f72003-06-27 21:31:46 +0000167 * In order to do this, "data" must be broken down into bits.
wdenk682011f2003-06-03 23:54:09 +0000168 */
169 mask = 0x01 << (count - 1);
170 eecd = E1000_READ_REG(hw, EECD);
171 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
172 do {
173 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
174 * and then raising and then lowering the clock (the SK bit controls
175 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
176 * by setting "DI" to "0" and then raising and then lowering the clock.
177 */
178 eecd &= ~E1000_EECD_DI;
179
180 if (data & mask)
181 eecd |= E1000_EECD_DI;
182
183 E1000_WRITE_REG(hw, EECD, eecd);
184 E1000_WRITE_FLUSH(hw);
185
186 udelay(50);
187
188 e1000_raise_ee_clk(hw, &eecd);
189 e1000_lower_ee_clk(hw, &eecd);
190
191 mask = mask >> 1;
192
193 } while (mask);
194
195 /* We leave the "DI" bit set to "0" when we leave this routine. */
196 eecd &= ~E1000_EECD_DI;
197 E1000_WRITE_REG(hw, EECD, eecd);
198}
199
200/******************************************************************************
201 * Shift data bits in from the EEPROM
202 *
203 * hw - Struct containing variables accessed by shared code
204 *****************************************************************************/
205static uint16_t
206e1000_shift_in_ee_bits(struct e1000_hw *hw)
207{
208 uint32_t eecd;
209 uint32_t i;
210 uint16_t data;
211
wdenk8bde7f72003-06-27 21:31:46 +0000212 /* In order to read a register from the EEPROM, we need to shift 16 bits
wdenk682011f2003-06-03 23:54:09 +0000213 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
214 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
wdenk8bde7f72003-06-27 21:31:46 +0000215 * bit. During this "shifting in" process the "DI" bit should always be
wdenk682011f2003-06-03 23:54:09 +0000216 * clear..
217 */
218
219 eecd = E1000_READ_REG(hw, EECD);
220
221 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
222 data = 0;
223
224 for (i = 0; i < 16; i++) {
225 data = data << 1;
226 e1000_raise_ee_clk(hw, &eecd);
227
228 eecd = E1000_READ_REG(hw, EECD);
229
230 eecd &= ~(E1000_EECD_DI);
231 if (eecd & E1000_EECD_DO)
232 data |= 1;
233
234 e1000_lower_ee_clk(hw, &eecd);
235 }
236
237 return data;
238}
239
240/******************************************************************************
241 * Prepares EEPROM for access
242 *
243 * hw - Struct containing variables accessed by shared code
244 *
wdenk8bde7f72003-06-27 21:31:46 +0000245 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
wdenk682011f2003-06-03 23:54:09 +0000246 * function should be called before issuing a command to the EEPROM.
247 *****************************************************************************/
248static void
249e1000_setup_eeprom(struct e1000_hw *hw)
250{
251 uint32_t eecd;
252
253 eecd = E1000_READ_REG(hw, EECD);
254
255 /* Clear SK and DI */
256 eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
257 E1000_WRITE_REG(hw, EECD, eecd);
258
259 /* Set CS */
260 eecd |= E1000_EECD_CS;
261 E1000_WRITE_REG(hw, EECD, eecd);
262}
263
264/******************************************************************************
265 * Returns EEPROM to a "standby" state
wdenk8bde7f72003-06-27 21:31:46 +0000266 *
wdenk682011f2003-06-03 23:54:09 +0000267 * hw - Struct containing variables accessed by shared code
268 *****************************************************************************/
269static void
270e1000_standby_eeprom(struct e1000_hw *hw)
271{
272 uint32_t eecd;
273
274 eecd = E1000_READ_REG(hw, EECD);
275
276 /* Deselct EEPROM */
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 E1000_WRITE_REG(hw, EECD, eecd);
279 E1000_WRITE_FLUSH(hw);
280 udelay(50);
281
282 /* Clock high */
283 eecd |= E1000_EECD_SK;
284 E1000_WRITE_REG(hw, EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
286 udelay(50);
287
288 /* Select EEPROM */
289 eecd |= E1000_EECD_CS;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
292 udelay(50);
293
294 /* Clock low */
295 eecd &= ~E1000_EECD_SK;
296 E1000_WRITE_REG(hw, EECD, eecd);
297 E1000_WRITE_FLUSH(hw);
298 udelay(50);
299}
300
301/******************************************************************************
302 * Reads a 16 bit word from the EEPROM.
303 *
304 * hw - Struct containing variables accessed by shared code
305 * offset - offset of word in the EEPROM to read
wdenk8bde7f72003-06-27 21:31:46 +0000306 * data - word read from the EEPROM
wdenk682011f2003-06-03 23:54:09 +0000307 *****************************************************************************/
308static int
309e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
310{
311 uint32_t eecd;
312 uint32_t i = 0;
313 int large_eeprom = FALSE;
314
315 /* Request EEPROM Access */
316 if (hw->mac_type > e1000_82544) {
317 eecd = E1000_READ_REG(hw, EECD);
318 if (eecd & E1000_EECD_SIZE)
319 large_eeprom = TRUE;
320 eecd |= E1000_EECD_REQ;
321 E1000_WRITE_REG(hw, EECD, eecd);
322 eecd = E1000_READ_REG(hw, EECD);
323 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
324 i++;
325 udelay(10);
326 eecd = E1000_READ_REG(hw, EECD);
327 }
328 if (!(eecd & E1000_EECD_GNT)) {
329 eecd &= ~E1000_EECD_REQ;
330 E1000_WRITE_REG(hw, EECD, eecd);
331 DEBUGOUT("Could not acquire EEPROM grant\n");
332 return -E1000_ERR_EEPROM;
333 }
334 }
335
336 /* Prepare the EEPROM for reading */
337 e1000_setup_eeprom(hw);
338
339 /* Send the READ command (opcode + addr) */
340 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
341 e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
342
343 /* Read the data */
344 *data = e1000_shift_in_ee_bits(hw);
345
346 /* End this read operation */
347 e1000_standby_eeprom(hw);
348
349 /* Stop requesting EEPROM access */
350 if (hw->mac_type > e1000_82544) {
351 eecd = E1000_READ_REG(hw, EECD);
352 eecd &= ~E1000_EECD_REQ;
353 E1000_WRITE_REG(hw, EECD, eecd);
354 }
355
356 return 0;
357}
358
359#if 0
360static void
361e1000_eeprom_cleanup(struct e1000_hw *hw)
362{
363 uint32_t eecd;
364
365 eecd = E1000_READ_REG(hw, EECD);
366 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
367 E1000_WRITE_REG(hw, EECD, eecd);
368 e1000_raise_ee_clk(hw, &eecd);
369 e1000_lower_ee_clk(hw, &eecd);
370}
371
372static uint16_t
373e1000_wait_eeprom_done(struct e1000_hw *hw)
374{
375 uint32_t eecd;
376 uint32_t i;
377
378 e1000_standby_eeprom(hw);
379 for (i = 0; i < 200; i++) {
380 eecd = E1000_READ_REG(hw, EECD);
381 if (eecd & E1000_EECD_DO)
382 return (TRUE);
383 udelay(5);
384 }
385 return (FALSE);
386}
387
388static int
389e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
390{
391 uint32_t eecd;
392 int large_eeprom = FALSE;
393 int i = 0;
394
395 /* Request EEPROM Access */
396 if (hw->mac_type > e1000_82544) {
397 eecd = E1000_READ_REG(hw, EECD);
398 if (eecd & E1000_EECD_SIZE)
399 large_eeprom = TRUE;
400 eecd |= E1000_EECD_REQ;
401 E1000_WRITE_REG(hw, EECD, eecd);
402 eecd = E1000_READ_REG(hw, EECD);
403 while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
404 i++;
405 udelay(5);
406 eecd = E1000_READ_REG(hw, EECD);
407 }
408 if (!(eecd & E1000_EECD_GNT)) {
409 eecd &= ~E1000_EECD_REQ;
410 E1000_WRITE_REG(hw, EECD, eecd);
411 DEBUGOUT("Could not acquire EEPROM grant\n");
412 return FALSE;
413 }
414 }
415 e1000_setup_eeprom(hw);
416 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
417 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
418 e1000_standby_eeprom(hw);
419 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
420 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
421 e1000_shift_out_ee_bits(hw, Data, 16);
422 if (!e1000_wait_eeprom_done(hw)) {
423 return FALSE;
424 }
425 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
426 e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
427 e1000_eeprom_cleanup(hw);
428
429 /* Stop requesting EEPROM access */
430 if (hw->mac_type > e1000_82544) {
431 eecd = E1000_READ_REG(hw, EECD);
432 eecd &= ~E1000_EECD_REQ;
433 E1000_WRITE_REG(hw, EECD, eecd);
434 }
435 i = 0;
436 eecd = E1000_READ_REG(hw, EECD);
437 while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
438 i++;
439 udelay(10);
440 eecd = E1000_READ_REG(hw, EECD);
441 }
442 if ((eecd & E1000_EECD_GNT)) {
443 DEBUGOUT("Could not release EEPROM grant\n");
444 }
445 return TRUE;
446}
447#endif
448
449/******************************************************************************
450 * Verifies that the EEPROM has a valid checksum
wdenk8bde7f72003-06-27 21:31:46 +0000451 *
wdenk682011f2003-06-03 23:54:09 +0000452 * hw - Struct containing variables accessed by shared code
453 *
454 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
455 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
456 * valid.
457 *****************************************************************************/
458static int
459e1000_validate_eeprom_checksum(struct eth_device *nic)
460{
461 struct e1000_hw *hw = nic->priv;
462 uint16_t checksum = 0;
463 uint16_t i, eeprom_data;
464
465 DEBUGFUNC();
466
467 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
468 if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
469 DEBUGOUT("EEPROM Read Error\n");
470 return -E1000_ERR_EEPROM;
471 }
472 checksum += eeprom_data;
473 }
wdenk8bde7f72003-06-27 21:31:46 +0000474
wdenk682011f2003-06-03 23:54:09 +0000475 if (checksum == (uint16_t) EEPROM_SUM) {
476 return 0;
477 } else {
478 DEBUGOUT("EEPROM Checksum Invalid\n");
479 return -E1000_ERR_EEPROM;
480 }
481}
Wolfgang Denk7521af12005-10-09 01:04:33 +0200482#endif /* #ifndef CONFIG_AP1000 */
wdenk682011f2003-06-03 23:54:09 +0000483
484/******************************************************************************
485 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
486 * second function of dual function devices
487 *
488 * nic - Struct containing variables accessed by shared code
489 *****************************************************************************/
490static int
491e1000_read_mac_addr(struct eth_device *nic)
492{
Wolfgang Denk7521af12005-10-09 01:04:33 +0200493#ifndef CONFIG_AP1000
wdenk682011f2003-06-03 23:54:09 +0000494 struct e1000_hw *hw = nic->priv;
495 uint16_t offset;
496 uint16_t eeprom_data;
497 int i;
498
499 DEBUGFUNC();
500
501 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
502 offset = i >> 1;
503 if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
504 DEBUGOUT("EEPROM Read Error\n");
505 return -E1000_ERR_EEPROM;
506 }
507 nic->enetaddr[i] = eeprom_data & 0xff;
508 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
509 }
510 if ((hw->mac_type == e1000_82546) &&
511 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
512 /* Invert the last bit if this is the second device */
513 nic->enetaddr[5] += 1;
514 }
Andre Schwarzac3315c2008-03-06 16:45:44 +0100515#ifdef CONFIG_E1000_FALLBACK_MAC
516 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 )
517 for ( i=0; i < NODE_ADDRESS_SIZE; i++ )
518 nic->enetaddr[i] = (CONFIG_E1000_FALLBACK_MAC >> (8*(5-i))) & 0xff;
519#endif
Wolfgang Denk7521af12005-10-09 01:04:33 +0200520#else
521 /*
522 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
523 * environment variables. Currently this does not support the addition
524 * of a PMC e1000 card, which is certainly a possibility, so this should
525 * be updated to properly use the env variable only for the onboard e1000
526 */
527
528 int ii;
529 char *s, *e;
530
531 DEBUGFUNC();
532
533 s = getenv ("ethaddr");
534 if (s == NULL){
535 return -E1000_ERR_EEPROM;
536 }
537 else{
538 for(ii = 0; ii < 6; ii++) {
539 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
540 if (s){
541 s = (*e) ? e + 1 : e;
542 }
543 }
544 }
545#endif
wdenk682011f2003-06-03 23:54:09 +0000546 return 0;
547}
548
549/******************************************************************************
550 * Initializes receive address filters.
551 *
wdenk8bde7f72003-06-27 21:31:46 +0000552 * hw - Struct containing variables accessed by shared code
wdenk682011f2003-06-03 23:54:09 +0000553 *
554 * Places the MAC address in receive address register 0 and clears the rest
555 * of the receive addresss registers. Clears the multicast table. Assumes
556 * the receiver is in reset when the routine is called.
557 *****************************************************************************/
558static void
559e1000_init_rx_addrs(struct eth_device *nic)
560{
561 struct e1000_hw *hw = nic->priv;
562 uint32_t i;
563 uint32_t addr_low;
564 uint32_t addr_high;
565
566 DEBUGFUNC();
567
568 /* Setup the receive address. */
569 DEBUGOUT("Programming MAC Address into RAR[0]\n");
570 addr_low = (nic->enetaddr[0] |
571 (nic->enetaddr[1] << 8) |
572 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
573
574 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
575
576 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
577 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
578
579 /* Zero out the other 15 receive addresses. */
580 DEBUGOUT("Clearing RAR[1-15]\n");
581 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
582 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
583 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
584 }
585}
586
587/******************************************************************************
588 * Clears the VLAN filer table
589 *
590 * hw - Struct containing variables accessed by shared code
591 *****************************************************************************/
592static void
593e1000_clear_vfta(struct e1000_hw *hw)
594{
595 uint32_t offset;
596
597 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
598 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
599}
600
601/******************************************************************************
602 * Set the mac type member in the hw struct.
wdenk8bde7f72003-06-27 21:31:46 +0000603 *
wdenk682011f2003-06-03 23:54:09 +0000604 * hw - Struct containing variables accessed by shared code
605 *****************************************************************************/
606static int
607e1000_set_mac_type(struct e1000_hw *hw)
608{
609 DEBUGFUNC();
610
611 switch (hw->device_id) {
612 case E1000_DEV_ID_82542:
613 switch (hw->revision_id) {
614 case E1000_82542_2_0_REV_ID:
615 hw->mac_type = e1000_82542_rev2_0;
616 break;
617 case E1000_82542_2_1_REV_ID:
618 hw->mac_type = e1000_82542_rev2_1;
619 break;
620 default:
621 /* Invalid 82542 revision ID */
622 return -E1000_ERR_MAC_TYPE;
623 }
624 break;
625 case E1000_DEV_ID_82543GC_FIBER:
626 case E1000_DEV_ID_82543GC_COPPER:
627 hw->mac_type = e1000_82543;
628 break;
629 case E1000_DEV_ID_82544EI_COPPER:
630 case E1000_DEV_ID_82544EI_FIBER:
631 case E1000_DEV_ID_82544GC_COPPER:
632 case E1000_DEV_ID_82544GC_LOM:
633 hw->mac_type = e1000_82544;
634 break;
635 case E1000_DEV_ID_82540EM:
636 case E1000_DEV_ID_82540EM_LOM:
637 hw->mac_type = e1000_82540;
638 break;
639 case E1000_DEV_ID_82545EM_COPPER:
Paul Gortmaker8915f112008-07-09 17:50:45 -0400640 case E1000_DEV_ID_82545GM_COPPER:
wdenk682011f2003-06-03 23:54:09 +0000641 case E1000_DEV_ID_82545EM_FIBER:
642 hw->mac_type = e1000_82545;
643 break;
644 case E1000_DEV_ID_82546EB_COPPER:
645 case E1000_DEV_ID_82546EB_FIBER:
646 hw->mac_type = e1000_82546;
647 break;
Andre Schwarzac3315c2008-03-06 16:45:44 +0100648 case E1000_DEV_ID_82541ER:
Wolfgang Grandeggeraa3b8bf2008-05-28 19:55:19 +0200649 case E1000_DEV_ID_82541GI_LF:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -0700650 hw->mac_type = e1000_82541_rev_2;
651 break;
wdenk682011f2003-06-03 23:54:09 +0000652 default:
653 /* Should never have loaded on this device */
654 return -E1000_ERR_MAC_TYPE;
655 }
656 return E1000_SUCCESS;
657}
658
659/******************************************************************************
660 * Reset the transmit and receive units; mask and clear all interrupts.
661 *
662 * hw - Struct containing variables accessed by shared code
663 *****************************************************************************/
664void
665e1000_reset_hw(struct e1000_hw *hw)
666{
667 uint32_t ctrl;
668 uint32_t ctrl_ext;
669 uint32_t icr;
670 uint32_t manc;
671
672 DEBUGFUNC();
673
674 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
675 if (hw->mac_type == e1000_82542_rev2_0) {
676 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
677 pci_write_config_word(hw->pdev, PCI_COMMAND,
678 hw->
679 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
680 }
681
682 /* Clear interrupt mask to stop board from generating interrupts */
683 DEBUGOUT("Masking off all interrupts\n");
684 E1000_WRITE_REG(hw, IMC, 0xffffffff);
685
686 /* Disable the Transmit and Receive units. Then delay to allow
687 * any pending transactions to complete before we hit the MAC with
688 * the global reset.
689 */
690 E1000_WRITE_REG(hw, RCTL, 0);
691 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
692 E1000_WRITE_FLUSH(hw);
693
694 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
695 hw->tbi_compatibility_on = FALSE;
696
697 /* Delay to allow any outstanding PCI transactions to complete before
698 * resetting the device
699 */
700 mdelay(10);
701
702 /* Issue a global reset to the MAC. This will reset the chip's
703 * transmit, receive, DMA, and link units. It will not effect
704 * the current PCI configuration. The global reset bit is self-
705 * clearing, and should clear within a microsecond.
706 */
707 DEBUGOUT("Issuing a global reset to MAC\n");
708 ctrl = E1000_READ_REG(hw, CTRL);
709
710#if 0
711 if (hw->mac_type > e1000_82543)
712 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
713 else
714#endif
715 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
716
717 /* Force a reload from the EEPROM if necessary */
718 if (hw->mac_type < e1000_82540) {
719 /* Wait for reset to complete */
720 udelay(10);
721 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
722 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
723 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
724 E1000_WRITE_FLUSH(hw);
725 /* Wait for EEPROM reload */
726 mdelay(2);
727 } else {
728 /* Wait for EEPROM reload (it happens automatically) */
729 mdelay(4);
730 /* Dissable HW ARPs on ASF enabled adapters */
731 manc = E1000_READ_REG(hw, MANC);
732 manc &= ~(E1000_MANC_ARP_EN);
733 E1000_WRITE_REG(hw, MANC, manc);
734 }
735
736 /* Clear interrupt mask to stop board from generating interrupts */
737 DEBUGOUT("Masking off all interrupts\n");
738 E1000_WRITE_REG(hw, IMC, 0xffffffff);
739
740 /* Clear any pending interrupt events. */
741 icr = E1000_READ_REG(hw, ICR);
742
743 /* If MWI was previously enabled, reenable it. */
744 if (hw->mac_type == e1000_82542_rev2_0) {
745 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
746 }
747}
748
749/******************************************************************************
750 * Performs basic configuration of the adapter.
751 *
752 * hw - Struct containing variables accessed by shared code
wdenk8bde7f72003-06-27 21:31:46 +0000753 *
754 * Assumes that the controller has previously been reset and is in a
wdenk682011f2003-06-03 23:54:09 +0000755 * post-reset uninitialized state. Initializes the receive address registers,
756 * multicast table, and VLAN filter table. Calls routines to setup link
757 * configuration and flow control settings. Clears all on-chip counters. Leaves
758 * the transmit and receive units disabled and uninitialized.
759 *****************************************************************************/
760static int
761e1000_init_hw(struct eth_device *nic)
762{
763 struct e1000_hw *hw = nic->priv;
764 uint32_t ctrl, status;
765 uint32_t i;
766 int32_t ret_val;
767 uint16_t pcix_cmd_word;
768 uint16_t pcix_stat_hi_word;
769 uint16_t cmd_mmrbc;
770 uint16_t stat_mmrbc;
771 e1000_bus_type bus_type = e1000_bus_type_unknown;
772
773 DEBUGFUNC();
774#if 0
775 /* Initialize Identification LED */
776 ret_val = e1000_id_led_init(hw);
777 if (ret_val < 0) {
778 DEBUGOUT("Error Initializing Identification LED\n");
779 return ret_val;
780 }
781#endif
782 /* Set the Media Type and exit with error if it is not valid. */
783 if (hw->mac_type != e1000_82543) {
784 /* tbi_compatibility is only valid on 82543 */
785 hw->tbi_compatibility_en = FALSE;
786 }
787
788 if (hw->mac_type >= e1000_82543) {
789 status = E1000_READ_REG(hw, STATUS);
790 if (status & E1000_STATUS_TBIMODE) {
791 hw->media_type = e1000_media_type_fiber;
792 /* tbi_compatibility not valid on fiber */
793 hw->tbi_compatibility_en = FALSE;
794 } else {
795 hw->media_type = e1000_media_type_copper;
796 }
797 } else {
798 /* This is an 82542 (fiber only) */
799 hw->media_type = e1000_media_type_fiber;
800 }
801
802 /* Disabling VLAN filtering. */
803 DEBUGOUT("Initializing the IEEE VLAN\n");
804 E1000_WRITE_REG(hw, VET, 0);
805
806 e1000_clear_vfta(hw);
807
808 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
809 if (hw->mac_type == e1000_82542_rev2_0) {
810 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
811 pci_write_config_word(hw->pdev, PCI_COMMAND,
812 hw->
813 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
814 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
815 E1000_WRITE_FLUSH(hw);
816 mdelay(5);
817 }
818
819 /* Setup the receive address. This involves initializing all of the Receive
820 * Address Registers (RARs 0 - 15).
821 */
822 e1000_init_rx_addrs(nic);
823
824 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
825 if (hw->mac_type == e1000_82542_rev2_0) {
826 E1000_WRITE_REG(hw, RCTL, 0);
827 E1000_WRITE_FLUSH(hw);
828 mdelay(1);
829 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
830 }
831
832 /* Zero out the Multicast HASH table */
833 DEBUGOUT("Zeroing the MTA\n");
834 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
835 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
836
837#if 0
838 /* Set the PCI priority bit correctly in the CTRL register. This
839 * determines if the adapter gives priority to receives, or if it
840 * gives equal priority to transmits and receives.
841 */
842 if (hw->dma_fairness) {
843 ctrl = E1000_READ_REG(hw, CTRL);
844 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
845 }
846#endif
847 if (hw->mac_type >= e1000_82543) {
848 status = E1000_READ_REG(hw, STATUS);
849 bus_type = (status & E1000_STATUS_PCIX_MODE) ?
850 e1000_bus_type_pcix : e1000_bus_type_pci;
851 }
852 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
853 if (bus_type == e1000_bus_type_pcix) {
854 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
855 &pcix_cmd_word);
856 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
857 &pcix_stat_hi_word);
858 cmd_mmrbc =
859 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
860 PCIX_COMMAND_MMRBC_SHIFT;
861 stat_mmrbc =
862 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
863 PCIX_STATUS_HI_MMRBC_SHIFT;
864 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
865 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
866 if (cmd_mmrbc > stat_mmrbc) {
867 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
868 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
869 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
870 pcix_cmd_word);
871 }
872 }
873
874 /* Call a subroutine to configure the link and setup flow control. */
875 ret_val = e1000_setup_link(nic);
876
877 /* Set the transmit descriptor write-back policy */
878 if (hw->mac_type > e1000_82544) {
879 ctrl = E1000_READ_REG(hw, TXDCTL);
880 ctrl =
881 (ctrl & ~E1000_TXDCTL_WTHRESH) |
882 E1000_TXDCTL_FULL_TX_DESC_WB;
883 E1000_WRITE_REG(hw, TXDCTL, ctrl);
884 }
885#if 0
886 /* Clear all of the statistics registers (clear on read). It is
887 * important that we do this after we have tried to establish link
888 * because the symbol error count will increment wildly if there
889 * is no link.
890 */
891 e1000_clear_hw_cntrs(hw);
892#endif
893
894 return ret_val;
895}
896
897/******************************************************************************
898 * Configures flow control and link settings.
wdenk8bde7f72003-06-27 21:31:46 +0000899 *
wdenk682011f2003-06-03 23:54:09 +0000900 * hw - Struct containing variables accessed by shared code
wdenk8bde7f72003-06-27 21:31:46 +0000901 *
wdenk682011f2003-06-03 23:54:09 +0000902 * Determines which flow control settings to use. Calls the apropriate media-
903 * specific link configuration function. Configures the flow control settings.
904 * Assuming the adapter has a valid link partner, a valid link should be
wdenk8bde7f72003-06-27 21:31:46 +0000905 * established. Assumes the hardware has previously been reset and the
wdenk682011f2003-06-03 23:54:09 +0000906 * transmitter and receiver are not enabled.
907 *****************************************************************************/
908static int
909e1000_setup_link(struct eth_device *nic)
910{
911 struct e1000_hw *hw = nic->priv;
912 uint32_t ctrl_ext;
913 int32_t ret_val;
914 uint16_t eeprom_data;
915
916 DEBUGFUNC();
917
Wolfgang Denk7521af12005-10-09 01:04:33 +0200918#ifndef CONFIG_AP1000
wdenk682011f2003-06-03 23:54:09 +0000919 /* Read and store word 0x0F of the EEPROM. This word contains bits
920 * that determine the hardware's default PAUSE (flow control) mode,
921 * a bit that determines whether the HW defaults to enabling or
922 * disabling auto-negotiation, and the direction of the
923 * SW defined pins. If there is no SW over-ride of the flow
924 * control setting, then the variable hw->fc will
925 * be initialized based on a value in the EEPROM.
926 */
927 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
928 DEBUGOUT("EEPROM Read Error\n");
929 return -E1000_ERR_EEPROM;
930 }
Wolfgang Denk7521af12005-10-09 01:04:33 +0200931#else
932 /* we have to hardcode the proper value for our hardware. */
933 /* this value is for the 82540EM pci card used for prototyping, and it works. */
934 eeprom_data = 0xb220;
935#endif
wdenk682011f2003-06-03 23:54:09 +0000936
937 if (hw->fc == e1000_fc_default) {
938 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
939 hw->fc = e1000_fc_none;
940 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
941 EEPROM_WORD0F_ASM_DIR)
942 hw->fc = e1000_fc_tx_pause;
943 else
944 hw->fc = e1000_fc_full;
945 }
946
947 /* We want to save off the original Flow Control configuration just
948 * in case we get disconnected and then reconnected into a different
949 * hub or switch with different Flow Control capabilities.
950 */
951 if (hw->mac_type == e1000_82542_rev2_0)
952 hw->fc &= (~e1000_fc_tx_pause);
953
954 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
955 hw->fc &= (~e1000_fc_rx_pause);
956
957 hw->original_fc = hw->fc;
958
959 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
960
961 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
962 * polarity value for the SW controlled pins, and setup the
963 * Extended Device Control reg with that info.
964 * This is needed because one of the SW controlled pins is used for
965 * signal detection. So this should be done before e1000_setup_pcs_link()
966 * or e1000_phy_setup() is called.
967 */
968 if (hw->mac_type == e1000_82543) {
969 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
970 SWDPIO__EXT_SHIFT);
971 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
972 }
973
974 /* Call the necessary subroutine to configure the link. */
975 ret_val = (hw->media_type == e1000_media_type_fiber) ?
976 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
977 if (ret_val < 0) {
978 return ret_val;
979 }
980
981 /* Initialize the flow control address, type, and PAUSE timer
982 * registers to their default values. This is done even if flow
983 * control is disabled, because it does not hurt anything to
984 * initialize these registers.
985 */
986 DEBUGOUT
987 ("Initializing the Flow Control address, type and timer regs\n");
988
989 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
990 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
991 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
992 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
993
994 /* Set the flow control receive threshold registers. Normally,
995 * these registers will be set to a default threshold that may be
996 * adjusted later by the driver's runtime code. However, if the
997 * ability to transmit pause frames in not enabled, then these
wdenk8bde7f72003-06-27 21:31:46 +0000998 * registers will be set to 0.
wdenk682011f2003-06-03 23:54:09 +0000999 */
1000 if (!(hw->fc & e1000_fc_tx_pause)) {
1001 E1000_WRITE_REG(hw, FCRTL, 0);
1002 E1000_WRITE_REG(hw, FCRTH, 0);
1003 } else {
1004 /* We need to set up the Receive Threshold high and low water marks
1005 * as well as (optionally) enabling the transmission of XON frames.
1006 */
1007 if (hw->fc_send_xon) {
1008 E1000_WRITE_REG(hw, FCRTL,
1009 (hw->fc_low_water | E1000_FCRTL_XONE));
1010 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1011 } else {
1012 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1013 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1014 }
1015 }
1016 return ret_val;
1017}
1018
1019/******************************************************************************
1020 * Sets up link for a fiber based adapter
1021 *
1022 * hw - Struct containing variables accessed by shared code
1023 *
1024 * Manipulates Physical Coding Sublayer functions in order to configure
1025 * link. Assumes the hardware has been previously reset and the transmitter
1026 * and receiver are not enabled.
1027 *****************************************************************************/
1028static int
1029e1000_setup_fiber_link(struct eth_device *nic)
1030{
1031 struct e1000_hw *hw = nic->priv;
1032 uint32_t ctrl;
1033 uint32_t status;
1034 uint32_t txcw = 0;
1035 uint32_t i;
1036 uint32_t signal;
1037 int32_t ret_val;
1038
1039 DEBUGFUNC();
wdenk8bde7f72003-06-27 21:31:46 +00001040 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1041 * set when the optics detect a signal. On older adapters, it will be
wdenk682011f2003-06-03 23:54:09 +00001042 * cleared when there is a signal
1043 */
1044 ctrl = E1000_READ_REG(hw, CTRL);
1045 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1046 signal = E1000_CTRL_SWDPIN1;
1047 else
1048 signal = 0;
1049
1050 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1051 ctrl);
1052 /* Take the link out of reset */
1053 ctrl &= ~(E1000_CTRL_LRST);
1054
1055 e1000_config_collision_dist(hw);
1056
1057 /* Check for a software override of the flow control settings, and setup
1058 * the device accordingly. If auto-negotiation is enabled, then software
1059 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1060 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk8bde7f72003-06-27 21:31:46 +00001061 * auto-negotiation is disabled, then software will have to manually
wdenk682011f2003-06-03 23:54:09 +00001062 * configure the two flow control enable bits in the CTRL register.
1063 *
1064 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001065 * 0: Flow control is completely disabled
1066 * 1: Rx flow control is enabled (we can receive pause frames, but
1067 * not send pause frames).
1068 * 2: Tx flow control is enabled (we can send pause frames but we do
1069 * not support receiving pause frames).
1070 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk682011f2003-06-03 23:54:09 +00001071 */
1072 switch (hw->fc) {
1073 case e1000_fc_none:
1074 /* Flow control is completely disabled by a software over-ride. */
1075 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1076 break;
1077 case e1000_fc_rx_pause:
wdenk8bde7f72003-06-27 21:31:46 +00001078 /* RX Flow control is enabled and TX Flow control is disabled by a
1079 * software over-ride. Since there really isn't a way to advertise
wdenk682011f2003-06-03 23:54:09 +00001080 * that we are capable of RX Pause ONLY, we will advertise that we
1081 * support both symmetric and asymmetric RX PAUSE. Later, we will
1082 * disable the adapter's ability to send PAUSE frames.
1083 */
1084 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1085 break;
1086 case e1000_fc_tx_pause:
wdenk8bde7f72003-06-27 21:31:46 +00001087 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk682011f2003-06-03 23:54:09 +00001088 * software over-ride.
1089 */
1090 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1091 break;
1092 case e1000_fc_full:
1093 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1094 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1095 break;
1096 default:
1097 DEBUGOUT("Flow control param set incorrectly\n");
1098 return -E1000_ERR_CONFIG;
1099 break;
1100 }
1101
1102 /* Since auto-negotiation is enabled, take the link out of reset (the link
1103 * will be in reset, because we previously reset the chip). This will
1104 * restart auto-negotiation. If auto-neogtiation is successful then the
1105 * link-up status bit will be set and the flow control enable bits (RFCE
1106 * and TFCE) will be set according to their negotiated value.
1107 */
1108 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1109
1110 E1000_WRITE_REG(hw, TXCW, txcw);
1111 E1000_WRITE_REG(hw, CTRL, ctrl);
1112 E1000_WRITE_FLUSH(hw);
1113
1114 hw->txcw = txcw;
1115 mdelay(1);
1116
1117 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk8bde7f72003-06-27 21:31:46 +00001118 * indication in the Device Status Register. Time-out if a link isn't
1119 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk682011f2003-06-03 23:54:09 +00001120 * less than 500 milliseconds even if the other end is doing it in SW).
1121 */
1122 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1123 DEBUGOUT("Looking for Link\n");
1124 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1125 mdelay(10);
1126 status = E1000_READ_REG(hw, STATUS);
1127 if (status & E1000_STATUS_LU)
1128 break;
1129 }
1130 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk8bde7f72003-06-27 21:31:46 +00001131 /* AutoNeg failed to achieve a link, so we'll call
wdenk682011f2003-06-03 23:54:09 +00001132 * e1000_check_for_link. This routine will force the link up if we
1133 * detect a signal. This will allow us to communicate with
1134 * non-autonegotiating link partners.
1135 */
1136 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1137 hw->autoneg_failed = 1;
1138 ret_val = e1000_check_for_link(nic);
1139 if (ret_val < 0) {
1140 DEBUGOUT("Error while checking for link\n");
1141 return ret_val;
1142 }
1143 hw->autoneg_failed = 0;
1144 } else {
1145 hw->autoneg_failed = 0;
1146 DEBUGOUT("Valid Link Found\n");
1147 }
1148 } else {
1149 DEBUGOUT("No Signal Detected\n");
1150 return -E1000_ERR_NOLINK;
1151 }
1152 return 0;
1153}
1154
1155/******************************************************************************
1156* Detects which PHY is present and the speed and duplex
1157*
1158* hw - Struct containing variables accessed by shared code
1159******************************************************************************/
1160static int
1161e1000_setup_copper_link(struct eth_device *nic)
1162{
1163 struct e1000_hw *hw = nic->priv;
1164 uint32_t ctrl;
1165 int32_t ret_val;
1166 uint16_t i;
1167 uint16_t phy_data;
1168
1169 DEBUGFUNC();
1170
1171 ctrl = E1000_READ_REG(hw, CTRL);
1172 /* With 82543, we need to force speed and duplex on the MAC equal to what
1173 * the PHY speed and duplex configuration is. In addition, we need to
1174 * perform a hardware reset on the PHY to take it out of reset.
1175 */
1176 if (hw->mac_type > e1000_82543) {
1177 ctrl |= E1000_CTRL_SLU;
1178 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1179 E1000_WRITE_REG(hw, CTRL, ctrl);
1180 } else {
1181 ctrl |=
1182 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1183 E1000_WRITE_REG(hw, CTRL, ctrl);
1184 e1000_phy_hw_reset(hw);
1185 }
1186
1187 /* Make sure we have a valid PHY */
1188 ret_val = e1000_detect_gig_phy(hw);
1189 if (ret_val < 0) {
1190 DEBUGOUT("Error, did not detect valid phy.\n");
1191 return ret_val;
1192 }
1193 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1194
1195 /* Enable CRS on TX. This must be set for half-duplex operation. */
1196 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1197 DEBUGOUT("PHY Read Error\n");
1198 return -E1000_ERR_PHY;
1199 }
1200 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1201
1202#if 0
1203 /* Options:
1204 * MDI/MDI-X = 0 (default)
1205 * 0 - Auto for all speeds
1206 * 1 - MDI mode
1207 * 2 - MDI-X mode
1208 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1209 */
1210 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1211 switch (hw->mdix) {
1212 case 1:
1213 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1214 break;
1215 case 2:
1216 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1217 break;
1218 case 3:
1219 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1220 break;
1221 case 0:
1222 default:
1223 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1224 break;
1225 }
1226#else
1227 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1228#endif
1229
1230#if 0
1231 /* Options:
1232 * disable_polarity_correction = 0 (default)
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001233 * Automatic Correction for Reversed Cable Polarity
wdenk682011f2003-06-03 23:54:09 +00001234 * 0 - Disabled
1235 * 1 - Enabled
1236 */
1237 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1238 if (hw->disable_polarity_correction == 1)
1239 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1240#else
1241 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1242#endif
1243 if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1244 DEBUGOUT("PHY Write Error\n");
1245 return -E1000_ERR_PHY;
1246 }
1247
1248 /* Force TX_CLK in the Extended PHY Specific Control Register
1249 * to 25MHz clock.
1250 */
1251 if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1252 DEBUGOUT("PHY Read Error\n");
1253 return -E1000_ERR_PHY;
1254 }
1255 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1256 /* Configure Master and Slave downshift values */
1257 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1258 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1259 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1260 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1261 if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1262 DEBUGOUT("PHY Write Error\n");
1263 return -E1000_ERR_PHY;
1264 }
1265
1266 /* SW Reset the PHY so all changes take effect */
1267 ret_val = e1000_phy_reset(hw);
1268 if (ret_val < 0) {
1269 DEBUGOUT("Error Resetting the PHY\n");
1270 return ret_val;
1271 }
1272
1273 /* Options:
1274 * autoneg = 1 (default)
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001275 * PHY will advertise value(s) parsed from
1276 * autoneg_advertised and fc
wdenk682011f2003-06-03 23:54:09 +00001277 * autoneg = 0
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001278 * PHY will be set to 10H, 10F, 100H, or 100F
1279 * depending on value parsed from forced_speed_duplex.
wdenk682011f2003-06-03 23:54:09 +00001280 */
1281
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001282 /* Is autoneg enabled? This is enabled by default or by software override.
wdenk682011f2003-06-03 23:54:09 +00001283 * If so, call e1000_phy_setup_autoneg routine to parse the
1284 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1285 * user should have provided a speed/duplex override. If so, then call
1286 * e1000_phy_force_speed_duplex to parse and set this up.
1287 */
1288 /* Perform some bounds checking on the hw->autoneg_advertised
1289 * parameter. If this variable is zero, then set it to the default.
1290 */
1291 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1292
1293 /* If autoneg_advertised is zero, we assume it was not defaulted
1294 * by the calling code so we set to advertise full capability.
1295 */
1296 if (hw->autoneg_advertised == 0)
1297 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1298
1299 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1300 ret_val = e1000_phy_setup_autoneg(hw);
1301 if (ret_val < 0) {
1302 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1303 return ret_val;
1304 }
1305 DEBUGOUT("Restarting Auto-Neg\n");
1306
1307 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1308 * the Auto Neg Restart bit in the PHY control register.
1309 */
1310 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1311 DEBUGOUT("PHY Read Error\n");
1312 return -E1000_ERR_PHY;
1313 }
1314 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1315 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1316 DEBUGOUT("PHY Write Error\n");
1317 return -E1000_ERR_PHY;
1318 }
1319#if 0
1320 /* Does the user want to wait for Auto-Neg to complete here, or
1321 * check at a later time (for example, callback routine).
1322 */
1323 if (hw->wait_autoneg_complete) {
1324 ret_val = e1000_wait_autoneg(hw);
1325 if (ret_val < 0) {
1326 DEBUGOUT
1327 ("Error while waiting for autoneg to complete\n");
1328 return ret_val;
1329 }
1330 }
1331#else
wdenk8bde7f72003-06-27 21:31:46 +00001332 /* If we do not wait for autonegtation to complete I
wdenk682011f2003-06-03 23:54:09 +00001333 * do not see a valid link status.
1334 */
1335 ret_val = e1000_wait_autoneg(hw);
1336 if (ret_val < 0) {
1337 DEBUGOUT("Error while waiting for autoneg to complete\n");
1338 return ret_val;
1339 }
1340#endif
1341
1342 /* Check link status. Wait up to 100 microseconds for link to become
1343 * valid.
1344 */
1345 for (i = 0; i < 10; i++) {
1346 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1347 DEBUGOUT("PHY Read Error\n");
1348 return -E1000_ERR_PHY;
1349 }
1350 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1351 DEBUGOUT("PHY Read Error\n");
1352 return -E1000_ERR_PHY;
1353 }
1354 if (phy_data & MII_SR_LINK_STATUS) {
1355 /* We have link, so we need to finish the config process:
1356 * 1) Set up the MAC to the current PHY speed/duplex
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001357 * if we are on 82543. If we
1358 * are on newer silicon, we only need to configure
1359 * collision distance in the Transmit Control Register.
wdenk682011f2003-06-03 23:54:09 +00001360 * 2) Set up flow control on the MAC to that established with
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001361 * the link partner.
wdenk682011f2003-06-03 23:54:09 +00001362 */
1363 if (hw->mac_type >= e1000_82544) {
1364 e1000_config_collision_dist(hw);
1365 } else {
1366 ret_val = e1000_config_mac_to_phy(hw);
1367 if (ret_val < 0) {
1368 DEBUGOUT
1369 ("Error configuring MAC to PHY settings\n");
1370 return ret_val;
1371 }
1372 }
1373 ret_val = e1000_config_fc_after_link_up(hw);
1374 if (ret_val < 0) {
1375 DEBUGOUT("Error Configuring Flow Control\n");
1376 return ret_val;
1377 }
1378 DEBUGOUT("Valid link established!!!\n");
1379 return 0;
1380 }
1381 udelay(10);
1382 }
1383
1384 DEBUGOUT("Unable to establish link!!!\n");
1385 return -E1000_ERR_NOLINK;
1386}
1387
1388/******************************************************************************
1389* Configures PHY autoneg and flow control advertisement settings
1390*
1391* hw - Struct containing variables accessed by shared code
1392******************************************************************************/
1393static int
1394e1000_phy_setup_autoneg(struct e1000_hw *hw)
1395{
1396 uint16_t mii_autoneg_adv_reg;
1397 uint16_t mii_1000t_ctrl_reg;
1398
1399 DEBUGFUNC();
1400
1401 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1402 if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1403 DEBUGOUT("PHY Read Error\n");
1404 return -E1000_ERR_PHY;
1405 }
1406
1407 /* Read the MII 1000Base-T Control Register (Address 9). */
1408 if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1409 DEBUGOUT("PHY Read Error\n");
1410 return -E1000_ERR_PHY;
1411 }
1412
1413 /* Need to parse both autoneg_advertised and fc and set up
1414 * the appropriate PHY registers. First we will parse for
1415 * autoneg_advertised software override. Since we can advertise
1416 * a plethora of combinations, we need to check each bit
1417 * individually.
1418 */
1419
1420 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1421 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001422 * the 1000Base-T Control Register (Address 9).
wdenk682011f2003-06-03 23:54:09 +00001423 */
1424 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1425 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1426
1427 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1428
1429 /* Do we want to advertise 10 Mb Half Duplex? */
1430 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1431 DEBUGOUT("Advertise 10mb Half duplex\n");
1432 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1433 }
1434
1435 /* Do we want to advertise 10 Mb Full Duplex? */
1436 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1437 DEBUGOUT("Advertise 10mb Full duplex\n");
1438 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1439 }
1440
1441 /* Do we want to advertise 100 Mb Half Duplex? */
1442 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1443 DEBUGOUT("Advertise 100mb Half duplex\n");
1444 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1445 }
1446
1447 /* Do we want to advertise 100 Mb Full Duplex? */
1448 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1449 DEBUGOUT("Advertise 100mb Full duplex\n");
1450 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1451 }
1452
1453 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1454 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1455 DEBUGOUT
1456 ("Advertise 1000mb Half duplex requested, request denied!\n");
1457 }
1458
1459 /* Do we want to advertise 1000 Mb Full Duplex? */
1460 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1461 DEBUGOUT("Advertise 1000mb Full duplex\n");
1462 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1463 }
1464
1465 /* Check for a software override of the flow control settings, and
1466 * setup the PHY advertisement registers accordingly. If
1467 * auto-negotiation is enabled, then software will have to set the
1468 * "PAUSE" bits to the correct value in the Auto-Negotiation
1469 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1470 *
1471 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001472 * 0: Flow control is completely disabled
1473 * 1: Rx flow control is enabled (we can receive pause frames
1474 * but not send pause frames).
1475 * 2: Tx flow control is enabled (we can send pause frames
1476 * but we do not support receiving pause frames).
1477 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk682011f2003-06-03 23:54:09 +00001478 * other: No software override. The flow control configuration
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001479 * in the EEPROM is used.
wdenk682011f2003-06-03 23:54:09 +00001480 */
1481 switch (hw->fc) {
1482 case e1000_fc_none: /* 0 */
1483 /* Flow control (RX & TX) is completely disabled by a
1484 * software over-ride.
1485 */
1486 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1487 break;
1488 case e1000_fc_rx_pause: /* 1 */
1489 /* RX Flow control is enabled, and TX Flow control is
1490 * disabled, by a software over-ride.
1491 */
1492 /* Since there really isn't a way to advertise that we are
1493 * capable of RX Pause ONLY, we will advertise that we
1494 * support both symmetric and asymmetric RX PAUSE. Later
1495 * (in e1000_config_fc_after_link_up) we will disable the
1496 *hw's ability to send PAUSE frames.
1497 */
1498 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1499 break;
1500 case e1000_fc_tx_pause: /* 2 */
1501 /* TX Flow control is enabled, and RX Flow control is
1502 * disabled, by a software over-ride.
1503 */
1504 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1505 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1506 break;
1507 case e1000_fc_full: /* 3 */
1508 /* Flow control (both RX and TX) is enabled by a software
1509 * over-ride.
1510 */
1511 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1512 break;
1513 default:
1514 DEBUGOUT("Flow control param set incorrectly\n");
1515 return -E1000_ERR_CONFIG;
1516 }
1517
1518 if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1519 DEBUGOUT("PHY Write Error\n");
1520 return -E1000_ERR_PHY;
1521 }
1522
1523 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1524
1525 if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1526 DEBUGOUT("PHY Write Error\n");
1527 return -E1000_ERR_PHY;
1528 }
1529 return 0;
1530}
1531
1532/******************************************************************************
1533* Sets the collision distance in the Transmit Control register
1534*
1535* hw - Struct containing variables accessed by shared code
1536*
1537* Link should have been established previously. Reads the speed and duplex
1538* information from the Device Status register.
1539******************************************************************************/
1540static void
1541e1000_config_collision_dist(struct e1000_hw *hw)
1542{
1543 uint32_t tctl;
1544
1545 tctl = E1000_READ_REG(hw, TCTL);
1546
1547 tctl &= ~E1000_TCTL_COLD;
1548 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1549
1550 E1000_WRITE_REG(hw, TCTL, tctl);
1551 E1000_WRITE_FLUSH(hw);
1552}
1553
1554/******************************************************************************
1555* Sets MAC speed and duplex settings to reflect the those in the PHY
1556*
1557* hw - Struct containing variables accessed by shared code
1558* mii_reg - data to write to the MII control register
1559*
1560* The contents of the PHY register containing the needed information need to
1561* be passed in.
1562******************************************************************************/
1563static int
1564e1000_config_mac_to_phy(struct e1000_hw *hw)
1565{
1566 uint32_t ctrl;
1567 uint16_t phy_data;
1568
1569 DEBUGFUNC();
1570
1571 /* Read the Device Control Register and set the bits to Force Speed
1572 * and Duplex.
1573 */
1574 ctrl = E1000_READ_REG(hw, CTRL);
1575 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1576 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1577
1578 /* Set up duplex in the Device Control and Transmit Control
1579 * registers depending on negotiated values.
1580 */
1581 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1582 DEBUGOUT("PHY Read Error\n");
1583 return -E1000_ERR_PHY;
1584 }
1585 if (phy_data & M88E1000_PSSR_DPLX)
1586 ctrl |= E1000_CTRL_FD;
1587 else
1588 ctrl &= ~E1000_CTRL_FD;
1589
1590 e1000_config_collision_dist(hw);
1591
1592 /* Set up speed in the Device Control register depending on
1593 * negotiated values.
1594 */
1595 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1596 ctrl |= E1000_CTRL_SPD_1000;
1597 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1598 ctrl |= E1000_CTRL_SPD_100;
1599 /* Write the configured values back to the Device Control Reg. */
1600 E1000_WRITE_REG(hw, CTRL, ctrl);
1601 return 0;
1602}
1603
1604/******************************************************************************
1605 * Forces the MAC's flow control settings.
wdenk8bde7f72003-06-27 21:31:46 +00001606 *
wdenk682011f2003-06-03 23:54:09 +00001607 * hw - Struct containing variables accessed by shared code
1608 *
1609 * Sets the TFCE and RFCE bits in the device control register to reflect
1610 * the adapter settings. TFCE and RFCE need to be explicitly set by
1611 * software when a Copper PHY is used because autonegotiation is managed
1612 * by the PHY rather than the MAC. Software must also configure these
1613 * bits when link is forced on a fiber connection.
1614 *****************************************************************************/
1615static int
1616e1000_force_mac_fc(struct e1000_hw *hw)
1617{
1618 uint32_t ctrl;
1619
1620 DEBUGFUNC();
1621
1622 /* Get the current configuration of the Device Control Register */
1623 ctrl = E1000_READ_REG(hw, CTRL);
1624
1625 /* Because we didn't get link via the internal auto-negotiation
1626 * mechanism (we either forced link or we got link via PHY
1627 * auto-neg), we have to manually enable/disable transmit an
1628 * receive flow control.
1629 *
1630 * The "Case" statement below enables/disable flow control
1631 * according to the "hw->fc" parameter.
1632 *
1633 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001634 * 0: Flow control is completely disabled
1635 * 1: Rx flow control is enabled (we can receive pause
1636 * frames but not send pause frames).
1637 * 2: Tx flow control is enabled (we can send pause frames
1638 * frames but we do not receive pause frames).
1639 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk682011f2003-06-03 23:54:09 +00001640 * other: No other values should be possible at this point.
1641 */
1642
1643 switch (hw->fc) {
1644 case e1000_fc_none:
1645 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1646 break;
1647 case e1000_fc_rx_pause:
1648 ctrl &= (~E1000_CTRL_TFCE);
1649 ctrl |= E1000_CTRL_RFCE;
1650 break;
1651 case e1000_fc_tx_pause:
1652 ctrl &= (~E1000_CTRL_RFCE);
1653 ctrl |= E1000_CTRL_TFCE;
1654 break;
1655 case e1000_fc_full:
1656 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1657 break;
1658 default:
1659 DEBUGOUT("Flow control param set incorrectly\n");
1660 return -E1000_ERR_CONFIG;
1661 }
1662
1663 /* Disable TX Flow Control for 82542 (rev 2.0) */
1664 if (hw->mac_type == e1000_82542_rev2_0)
1665 ctrl &= (~E1000_CTRL_TFCE);
1666
1667 E1000_WRITE_REG(hw, CTRL, ctrl);
1668 return 0;
1669}
1670
1671/******************************************************************************
1672 * Configures flow control settings after link is established
wdenk8bde7f72003-06-27 21:31:46 +00001673 *
wdenk682011f2003-06-03 23:54:09 +00001674 * hw - Struct containing variables accessed by shared code
1675 *
1676 * Should be called immediately after a valid link has been established.
1677 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1678 * and autonegotiation is enabled, the MAC flow control settings will be set
1679 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1680 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1681 *****************************************************************************/
1682static int
1683e1000_config_fc_after_link_up(struct e1000_hw *hw)
1684{
1685 int32_t ret_val;
1686 uint16_t mii_status_reg;
1687 uint16_t mii_nway_adv_reg;
1688 uint16_t mii_nway_lp_ability_reg;
1689 uint16_t speed;
1690 uint16_t duplex;
1691
1692 DEBUGFUNC();
1693
1694 /* Check for the case where we have fiber media and auto-neg failed
1695 * so we had to force link. In this case, we need to force the
1696 * configuration of the MAC to match the "fc" parameter.
1697 */
1698 if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1699 ret_val = e1000_force_mac_fc(hw);
1700 if (ret_val < 0) {
1701 DEBUGOUT("Error forcing flow control settings\n");
1702 return ret_val;
1703 }
1704 }
1705
1706 /* Check for the case where we have copper media and auto-neg is
1707 * enabled. In this case, we need to check and see if Auto-Neg
1708 * has completed, and if so, how the PHY and link partner has
1709 * flow control configured.
1710 */
1711 if (hw->media_type == e1000_media_type_copper) {
1712 /* Read the MII Status Register and check to see if AutoNeg
1713 * has completed. We read this twice because this reg has
1714 * some "sticky" (latched) bits.
1715 */
1716 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1717 DEBUGOUT("PHY Read Error \n");
1718 return -E1000_ERR_PHY;
1719 }
1720 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1721 DEBUGOUT("PHY Read Error \n");
1722 return -E1000_ERR_PHY;
1723 }
1724
1725 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1726 /* The AutoNeg process has completed, so we now need to
1727 * read both the Auto Negotiation Advertisement Register
1728 * (Address 4) and the Auto_Negotiation Base Page Ability
1729 * Register (Address 5) to determine how flow control was
1730 * negotiated.
1731 */
1732 if (e1000_read_phy_reg
1733 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1734 DEBUGOUT("PHY Read Error\n");
1735 return -E1000_ERR_PHY;
1736 }
1737 if (e1000_read_phy_reg
1738 (hw, PHY_LP_ABILITY,
1739 &mii_nway_lp_ability_reg) < 0) {
1740 DEBUGOUT("PHY Read Error\n");
1741 return -E1000_ERR_PHY;
1742 }
1743
1744 /* Two bits in the Auto Negotiation Advertisement Register
1745 * (Address 4) and two bits in the Auto Negotiation Base
1746 * Page Ability Register (Address 5) determine flow control
1747 * for both the PHY and the link partner. The following
1748 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1749 * 1999, describes these PAUSE resolution bits and how flow
1750 * control is determined based upon these settings.
1751 * NOTE: DC = Don't Care
1752 *
1753 * LOCAL DEVICE | LINK PARTNER
1754 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1755 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001756 * 0 | 0 | DC | DC | e1000_fc_none
1757 * 0 | 1 | 0 | DC | e1000_fc_none
1758 * 0 | 1 | 1 | 0 | e1000_fc_none
1759 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1760 * 1 | 0 | 0 | DC | e1000_fc_none
1761 * 1 | DC | 1 | DC | e1000_fc_full
1762 * 1 | 1 | 0 | 0 | e1000_fc_none
1763 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk682011f2003-06-03 23:54:09 +00001764 *
1765 */
1766 /* Are both PAUSE bits set to 1? If so, this implies
1767 * Symmetric Flow Control is enabled at both ends. The
1768 * ASM_DIR bits are irrelevant per the spec.
1769 *
1770 * For Symmetric Flow Control:
1771 *
1772 * LOCAL DEVICE | LINK PARTNER
1773 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1774 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001775 * 1 | DC | 1 | DC | e1000_fc_full
wdenk682011f2003-06-03 23:54:09 +00001776 *
1777 */
1778 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1779 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1780 /* Now we need to check if the user selected RX ONLY
1781 * of pause frames. In this case, we had to advertise
1782 * FULL flow control because we could not advertise RX
1783 * ONLY. Hence, we must now check to see if we need to
1784 * turn OFF the TRANSMISSION of PAUSE frames.
1785 */
1786 if (hw->original_fc == e1000_fc_full) {
1787 hw->fc = e1000_fc_full;
1788 DEBUGOUT("Flow Control = FULL.\r\n");
1789 } else {
1790 hw->fc = e1000_fc_rx_pause;
1791 DEBUGOUT
1792 ("Flow Control = RX PAUSE frames only.\r\n");
1793 }
1794 }
1795 /* For receiving PAUSE frames ONLY.
1796 *
1797 * LOCAL DEVICE | LINK PARTNER
1798 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1799 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001800 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk682011f2003-06-03 23:54:09 +00001801 *
1802 */
1803 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1804 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1805 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1806 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1807 {
1808 hw->fc = e1000_fc_tx_pause;
1809 DEBUGOUT
1810 ("Flow Control = TX PAUSE frames only.\r\n");
1811 }
1812 /* For transmitting PAUSE frames ONLY.
1813 *
1814 * LOCAL DEVICE | LINK PARTNER
1815 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1816 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001817 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk682011f2003-06-03 23:54:09 +00001818 *
1819 */
1820 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1821 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1822 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1823 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1824 {
1825 hw->fc = e1000_fc_rx_pause;
1826 DEBUGOUT
1827 ("Flow Control = RX PAUSE frames only.\r\n");
1828 }
1829 /* Per the IEEE spec, at this point flow control should be
1830 * disabled. However, we want to consider that we could
1831 * be connected to a legacy switch that doesn't advertise
1832 * desired flow control, but can be forced on the link
1833 * partner. So if we advertised no flow control, that is
1834 * what we will resolve to. If we advertised some kind of
1835 * receive capability (Rx Pause Only or Full Flow Control)
1836 * and the link partner advertised none, we will configure
1837 * ourselves to enable Rx Flow Control only. We can do
1838 * this safely for two reasons: If the link partner really
1839 * didn't want flow control enabled, and we enable Rx, no
1840 * harm done since we won't be receiving any PAUSE frames
1841 * anyway. If the intent on the link partner was to have
1842 * flow control enabled, then by us enabling RX only, we
1843 * can at least receive pause frames and process them.
1844 * This is a good idea because in most cases, since we are
1845 * predominantly a server NIC, more times than not we will
1846 * be asked to delay transmission of packets than asking
1847 * our link partner to pause transmission of frames.
1848 */
1849 else if (hw->original_fc == e1000_fc_none ||
1850 hw->original_fc == e1000_fc_tx_pause) {
1851 hw->fc = e1000_fc_none;
1852 DEBUGOUT("Flow Control = NONE.\r\n");
1853 } else {
1854 hw->fc = e1000_fc_rx_pause;
1855 DEBUGOUT
1856 ("Flow Control = RX PAUSE frames only.\r\n");
1857 }
1858
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001859 /* Now we need to do one last check... If we auto-
wdenk682011f2003-06-03 23:54:09 +00001860 * negotiated to HALF DUPLEX, flow control should not be
1861 * enabled per IEEE 802.3 spec.
1862 */
1863 e1000_get_speed_and_duplex(hw, &speed, &duplex);
1864
1865 if (duplex == HALF_DUPLEX)
1866 hw->fc = e1000_fc_none;
1867
1868 /* Now we call a subroutine to actually force the MAC
1869 * controller to use the correct flow control settings.
1870 */
1871 ret_val = e1000_force_mac_fc(hw);
1872 if (ret_val < 0) {
1873 DEBUGOUT
1874 ("Error forcing flow control settings\n");
1875 return ret_val;
1876 }
1877 } else {
1878 DEBUGOUT
1879 ("Copper PHY and Auto Neg has not completed.\r\n");
1880 }
1881 }
1882 return 0;
1883}
1884
1885/******************************************************************************
1886 * Checks to see if the link status of the hardware has changed.
1887 *
1888 * hw - Struct containing variables accessed by shared code
1889 *
1890 * Called by any function that needs to check the link status of the adapter.
1891 *****************************************************************************/
1892static int
1893e1000_check_for_link(struct eth_device *nic)
1894{
1895 struct e1000_hw *hw = nic->priv;
1896 uint32_t rxcw;
1897 uint32_t ctrl;
1898 uint32_t status;
1899 uint32_t rctl;
1900 uint32_t signal;
1901 int32_t ret_val;
1902 uint16_t phy_data;
1903 uint16_t lp_capability;
1904
1905 DEBUGFUNC();
1906
wdenk8bde7f72003-06-27 21:31:46 +00001907 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1908 * set when the optics detect a signal. On older adapters, it will be
wdenk682011f2003-06-03 23:54:09 +00001909 * cleared when there is a signal
1910 */
1911 ctrl = E1000_READ_REG(hw, CTRL);
1912 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1913 signal = E1000_CTRL_SWDPIN1;
1914 else
1915 signal = 0;
1916
1917 status = E1000_READ_REG(hw, STATUS);
1918 rxcw = E1000_READ_REG(hw, RXCW);
1919 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1920
1921 /* If we have a copper PHY then we only want to go out to the PHY
1922 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001923 * status has changed. The get_link_status flag will be set if we
wdenk682011f2003-06-03 23:54:09 +00001924 * receive a Link Status Change interrupt or we have Rx Sequence
1925 * Errors.
1926 */
1927 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1928 /* First we want to see if the MII Status Register reports
1929 * link. If so, then we want to get the current speed/duplex
1930 * of the PHY.
1931 * Read the register twice since the link bit is sticky.
1932 */
1933 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1934 DEBUGOUT("PHY Read Error\n");
1935 return -E1000_ERR_PHY;
1936 }
1937 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1938 DEBUGOUT("PHY Read Error\n");
1939 return -E1000_ERR_PHY;
1940 }
1941
1942 if (phy_data & MII_SR_LINK_STATUS) {
1943 hw->get_link_status = FALSE;
1944 } else {
1945 /* No link detected */
1946 return -E1000_ERR_NOLINK;
1947 }
1948
1949 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
1950 * have Si on board that is 82544 or newer, Auto
1951 * Speed Detection takes care of MAC speed/duplex
1952 * configuration. So we only need to configure Collision
1953 * Distance in the MAC. Otherwise, we need to force
1954 * speed/duplex on the MAC to the current PHY speed/duplex
1955 * settings.
1956 */
1957 if (hw->mac_type >= e1000_82544)
1958 e1000_config_collision_dist(hw);
1959 else {
1960 ret_val = e1000_config_mac_to_phy(hw);
1961 if (ret_val < 0) {
1962 DEBUGOUT
1963 ("Error configuring MAC to PHY settings\n");
1964 return ret_val;
1965 }
1966 }
1967
wdenk8bde7f72003-06-27 21:31:46 +00001968 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk682011f2003-06-03 23:54:09 +00001969 * need to restore the desired flow control settings because we may
1970 * have had to re-autoneg with a different link partner.
1971 */
1972 ret_val = e1000_config_fc_after_link_up(hw);
1973 if (ret_val < 0) {
1974 DEBUGOUT("Error configuring flow control\n");
1975 return ret_val;
1976 }
1977
1978 /* At this point we know that we are on copper and we have
1979 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001980 * parter capability register. We use the link partner capability to
wdenk682011f2003-06-03 23:54:09 +00001981 * determine if TBI Compatibility needs to be turned on or off. If
1982 * the link partner advertises any speed in addition to Gigabit, then
1983 * we assume that they are GMII-based, and TBI compatibility is not
1984 * needed. If no other speeds are advertised, we assume the link
1985 * partner is TBI-based, and we turn on TBI Compatibility.
1986 */
1987 if (hw->tbi_compatibility_en) {
1988 if (e1000_read_phy_reg
1989 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1990 DEBUGOUT("PHY Read Error\n");
1991 return -E1000_ERR_PHY;
1992 }
1993 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1994 NWAY_LPAR_10T_FD_CAPS |
1995 NWAY_LPAR_100TX_HD_CAPS |
1996 NWAY_LPAR_100TX_FD_CAPS |
1997 NWAY_LPAR_100T4_CAPS)) {
wdenk8bde7f72003-06-27 21:31:46 +00001998 /* If our link partner advertises anything in addition to
wdenk682011f2003-06-03 23:54:09 +00001999 * gigabit, we do not need to enable TBI compatibility.
2000 */
2001 if (hw->tbi_compatibility_on) {
2002 /* If we previously were in the mode, turn it off. */
2003 rctl = E1000_READ_REG(hw, RCTL);
2004 rctl &= ~E1000_RCTL_SBP;
2005 E1000_WRITE_REG(hw, RCTL, rctl);
2006 hw->tbi_compatibility_on = FALSE;
2007 }
2008 } else {
2009 /* If TBI compatibility is was previously off, turn it on. For
2010 * compatibility with a TBI link partner, we will store bad
2011 * packets. Some frames have an additional byte on the end and
2012 * will look like CRC errors to to the hardware.
2013 */
2014 if (!hw->tbi_compatibility_on) {
2015 hw->tbi_compatibility_on = TRUE;
2016 rctl = E1000_READ_REG(hw, RCTL);
2017 rctl |= E1000_RCTL_SBP;
2018 E1000_WRITE_REG(hw, RCTL, rctl);
2019 }
2020 }
2021 }
2022 }
2023 /* If we don't have link (auto-negotiation failed or link partner cannot
2024 * auto-negotiate), the cable is plugged in (we have signal), and our
2025 * link partner is not trying to auto-negotiate with us (we are receiving
2026 * idles or data), we need to force link up. We also need to give
2027 * auto-negotiation time to complete, in case the cable was just plugged
2028 * in. The autoneg_failed flag does this.
2029 */
2030 else if ((hw->media_type == e1000_media_type_fiber) &&
2031 (!(status & E1000_STATUS_LU)) &&
2032 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2033 (!(rxcw & E1000_RXCW_C))) {
2034 if (hw->autoneg_failed == 0) {
2035 hw->autoneg_failed = 1;
2036 return 0;
2037 }
2038 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2039
2040 /* Disable auto-negotiation in the TXCW register */
2041 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2042
2043 /* Force link-up and also force full-duplex. */
2044 ctrl = E1000_READ_REG(hw, CTRL);
2045 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2046 E1000_WRITE_REG(hw, CTRL, ctrl);
2047
2048 /* Configure Flow Control after forcing link up. */
2049 ret_val = e1000_config_fc_after_link_up(hw);
2050 if (ret_val < 0) {
2051 DEBUGOUT("Error configuring flow control\n");
2052 return ret_val;
2053 }
2054 }
2055 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2056 * auto-negotiation in the TXCW register and disable forced link in the
2057 * Device Control register in an attempt to auto-negotiate with our link
2058 * partner.
2059 */
2060 else if ((hw->media_type == e1000_media_type_fiber) &&
2061 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2062 DEBUGOUT
2063 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2064 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2065 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2066 }
2067 return 0;
2068}
2069
2070/******************************************************************************
2071 * Detects the current speed and duplex settings of the hardware.
2072 *
2073 * hw - Struct containing variables accessed by shared code
2074 * speed - Speed of the connection
2075 * duplex - Duplex setting of the connection
2076 *****************************************************************************/
2077static void
2078e1000_get_speed_and_duplex(struct e1000_hw *hw,
2079 uint16_t * speed, uint16_t * duplex)
2080{
2081 uint32_t status;
2082
2083 DEBUGFUNC();
2084
2085 if (hw->mac_type >= e1000_82543) {
2086 status = E1000_READ_REG(hw, STATUS);
2087 if (status & E1000_STATUS_SPEED_1000) {
2088 *speed = SPEED_1000;
2089 DEBUGOUT("1000 Mbs, ");
2090 } else if (status & E1000_STATUS_SPEED_100) {
2091 *speed = SPEED_100;
2092 DEBUGOUT("100 Mbs, ");
2093 } else {
2094 *speed = SPEED_10;
2095 DEBUGOUT("10 Mbs, ");
2096 }
2097
2098 if (status & E1000_STATUS_FD) {
2099 *duplex = FULL_DUPLEX;
2100 DEBUGOUT("Full Duplex\r\n");
2101 } else {
2102 *duplex = HALF_DUPLEX;
2103 DEBUGOUT(" Half Duplex\r\n");
2104 }
2105 } else {
2106 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2107 *speed = SPEED_1000;
2108 *duplex = FULL_DUPLEX;
2109 }
2110}
2111
2112/******************************************************************************
2113* Blocks until autoneg completes or times out (~4.5 seconds)
2114*
2115* hw - Struct containing variables accessed by shared code
2116******************************************************************************/
2117static int
2118e1000_wait_autoneg(struct e1000_hw *hw)
2119{
2120 uint16_t i;
2121 uint16_t phy_data;
2122
2123 DEBUGFUNC();
2124 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2125
2126 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2127 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2128 /* Read the MII Status Register and wait for Auto-Neg
2129 * Complete bit to be set.
2130 */
2131 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2132 DEBUGOUT("PHY Read Error\n");
2133 return -E1000_ERR_PHY;
2134 }
2135 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2136 DEBUGOUT("PHY Read Error\n");
2137 return -E1000_ERR_PHY;
2138 }
2139 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2140 DEBUGOUT("Auto-Neg complete.\n");
2141 return 0;
2142 }
2143 mdelay(100);
2144 }
2145 DEBUGOUT("Auto-Neg timedout.\n");
2146 return -E1000_ERR_TIMEOUT;
2147}
2148
2149/******************************************************************************
2150* Raises the Management Data Clock
2151*
2152* hw - Struct containing variables accessed by shared code
2153* ctrl - Device control register's current value
2154******************************************************************************/
2155static void
2156e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2157{
2158 /* Raise the clock input to the Management Data Clock (by setting the MDC
2159 * bit), and then delay 2 microseconds.
2160 */
2161 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2162 E1000_WRITE_FLUSH(hw);
2163 udelay(2);
2164}
2165
2166/******************************************************************************
2167* Lowers the Management Data Clock
2168*
2169* hw - Struct containing variables accessed by shared code
2170* ctrl - Device control register's current value
2171******************************************************************************/
2172static void
2173e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2174{
2175 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2176 * bit), and then delay 2 microseconds.
2177 */
2178 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2179 E1000_WRITE_FLUSH(hw);
2180 udelay(2);
2181}
2182
2183/******************************************************************************
2184* Shifts data bits out to the PHY
2185*
2186* hw - Struct containing variables accessed by shared code
2187* data - Data to send out to the PHY
2188* count - Number of bits to shift out
2189*
2190* Bits are shifted out in MSB to LSB order.
2191******************************************************************************/
2192static void
2193e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2194{
2195 uint32_t ctrl;
2196 uint32_t mask;
2197
2198 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk8bde7f72003-06-27 21:31:46 +00002199 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk682011f2003-06-03 23:54:09 +00002200 * time. In order to do this, "data" must be broken down into bits.
2201 */
2202 mask = 0x01;
2203 mask <<= (count - 1);
2204
2205 ctrl = E1000_READ_REG(hw, CTRL);
2206
2207 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2208 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2209
2210 while (mask) {
2211 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2212 * then raising and lowering the Management Data Clock. A "0" is
2213 * shifted out to the PHY by setting the MDIO bit to "0" and then
2214 * raising and lowering the clock.
2215 */
2216 if (data & mask)
2217 ctrl |= E1000_CTRL_MDIO;
2218 else
2219 ctrl &= ~E1000_CTRL_MDIO;
2220
2221 E1000_WRITE_REG(hw, CTRL, ctrl);
2222 E1000_WRITE_FLUSH(hw);
2223
2224 udelay(2);
2225
2226 e1000_raise_mdi_clk(hw, &ctrl);
2227 e1000_lower_mdi_clk(hw, &ctrl);
2228
2229 mask = mask >> 1;
2230 }
2231}
2232
2233/******************************************************************************
2234* Shifts data bits in from the PHY
2235*
2236* hw - Struct containing variables accessed by shared code
2237*
wdenk8bde7f72003-06-27 21:31:46 +00002238* Bits are shifted in in MSB to LSB order.
wdenk682011f2003-06-03 23:54:09 +00002239******************************************************************************/
2240static uint16_t
2241e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2242{
2243 uint32_t ctrl;
2244 uint16_t data = 0;
2245 uint8_t i;
2246
2247 /* In order to read a register from the PHY, we need to shift in a total
2248 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2249 * to avoid contention on the MDIO pin when a read operation is performed.
2250 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2251 * by raising the input to the Management Data Clock (setting the MDC bit),
2252 * and then reading the value of the MDIO bit.
2253 */
2254 ctrl = E1000_READ_REG(hw, CTRL);
2255
2256 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2257 ctrl &= ~E1000_CTRL_MDIO_DIR;
2258 ctrl &= ~E1000_CTRL_MDIO;
2259
2260 E1000_WRITE_REG(hw, CTRL, ctrl);
2261 E1000_WRITE_FLUSH(hw);
2262
2263 /* Raise and Lower the clock before reading in the data. This accounts for
2264 * the turnaround bits. The first clock occurred when we clocked out the
2265 * last bit of the Register Address.
2266 */
2267 e1000_raise_mdi_clk(hw, &ctrl);
2268 e1000_lower_mdi_clk(hw, &ctrl);
2269
2270 for (data = 0, i = 0; i < 16; i++) {
2271 data = data << 1;
2272 e1000_raise_mdi_clk(hw, &ctrl);
2273 ctrl = E1000_READ_REG(hw, CTRL);
2274 /* Check to see if we shifted in a "1". */
2275 if (ctrl & E1000_CTRL_MDIO)
2276 data |= 1;
2277 e1000_lower_mdi_clk(hw, &ctrl);
2278 }
2279
2280 e1000_raise_mdi_clk(hw, &ctrl);
2281 e1000_lower_mdi_clk(hw, &ctrl);
2282
2283 return data;
2284}
2285
2286/*****************************************************************************
2287* Reads the value from a PHY register
2288*
2289* hw - Struct containing variables accessed by shared code
2290* reg_addr - address of the PHY register to read
2291******************************************************************************/
2292static int
2293e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2294{
2295 uint32_t i;
2296 uint32_t mdic = 0;
2297 const uint32_t phy_addr = 1;
2298
2299 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2300 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2301 return -E1000_ERR_PARAM;
2302 }
2303
2304 if (hw->mac_type > e1000_82543) {
2305 /* Set up Op-code, Phy Address, and register address in the MDI
2306 * Control register. The MAC will take care of interfacing with the
2307 * PHY to retrieve the desired data.
2308 */
2309 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2310 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2311 (E1000_MDIC_OP_READ));
2312
2313 E1000_WRITE_REG(hw, MDIC, mdic);
2314
2315 /* Poll the ready bit to see if the MDI read completed */
2316 for (i = 0; i < 64; i++) {
2317 udelay(10);
2318 mdic = E1000_READ_REG(hw, MDIC);
2319 if (mdic & E1000_MDIC_READY)
2320 break;
2321 }
2322 if (!(mdic & E1000_MDIC_READY)) {
2323 DEBUGOUT("MDI Read did not complete\n");
2324 return -E1000_ERR_PHY;
2325 }
2326 if (mdic & E1000_MDIC_ERROR) {
2327 DEBUGOUT("MDI Error\n");
2328 return -E1000_ERR_PHY;
2329 }
2330 *phy_data = (uint16_t) mdic;
2331 } else {
2332 /* We must first send a preamble through the MDIO pin to signal the
2333 * beginning of an MII instruction. This is done by sending 32
2334 * consecutive "1" bits.
2335 */
2336 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2337
2338 /* Now combine the next few fields that are required for a read
2339 * operation. We use this method instead of calling the
2340 * e1000_shift_out_mdi_bits routine five different times. The format of
2341 * a MII read instruction consists of a shift out of 14 bits and is
2342 * defined as follows:
2343 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2344 * followed by a shift in of 18 bits. This first two bits shifted in
2345 * are TurnAround bits used to avoid contention on the MDIO pin when a
2346 * READ operation is performed. These two bits are thrown away
2347 * followed by a shift in of 16 bits which contains the desired data.
2348 */
2349 mdic = ((reg_addr) | (phy_addr << 5) |
2350 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2351
2352 e1000_shift_out_mdi_bits(hw, mdic, 14);
2353
2354 /* Now that we've shifted out the read command to the MII, we need to
2355 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2356 * register address.
2357 */
2358 *phy_data = e1000_shift_in_mdi_bits(hw);
2359 }
2360 return 0;
2361}
2362
2363/******************************************************************************
2364* Writes a value to a PHY register
2365*
2366* hw - Struct containing variables accessed by shared code
2367* reg_addr - address of the PHY register to write
2368* data - data to write to the PHY
2369******************************************************************************/
2370static int
2371e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2372{
2373 uint32_t i;
2374 uint32_t mdic = 0;
2375 const uint32_t phy_addr = 1;
2376
2377 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2378 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2379 return -E1000_ERR_PARAM;
2380 }
2381
2382 if (hw->mac_type > e1000_82543) {
2383 /* Set up Op-code, Phy Address, register address, and data intended
2384 * for the PHY register in the MDI Control register. The MAC will take
2385 * care of interfacing with the PHY to send the desired data.
2386 */
2387 mdic = (((uint32_t) phy_data) |
2388 (reg_addr << E1000_MDIC_REG_SHIFT) |
2389 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2390 (E1000_MDIC_OP_WRITE));
2391
2392 E1000_WRITE_REG(hw, MDIC, mdic);
2393
2394 /* Poll the ready bit to see if the MDI read completed */
2395 for (i = 0; i < 64; i++) {
2396 udelay(10);
2397 mdic = E1000_READ_REG(hw, MDIC);
2398 if (mdic & E1000_MDIC_READY)
2399 break;
2400 }
2401 if (!(mdic & E1000_MDIC_READY)) {
2402 DEBUGOUT("MDI Write did not complete\n");
2403 return -E1000_ERR_PHY;
2404 }
2405 } else {
2406 /* We'll need to use the SW defined pins to shift the write command
2407 * out to the PHY. We first send a preamble to the PHY to signal the
wdenk8bde7f72003-06-27 21:31:46 +00002408 * beginning of the MII instruction. This is done by sending 32
wdenk682011f2003-06-03 23:54:09 +00002409 * consecutive "1" bits.
2410 */
2411 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2412
wdenk8bde7f72003-06-27 21:31:46 +00002413 /* Now combine the remaining required fields that will indicate a
wdenk682011f2003-06-03 23:54:09 +00002414 * write operation. We use this method instead of calling the
2415 * e1000_shift_out_mdi_bits routine for each field in the command. The
2416 * format of a MII write instruction is as follows:
2417 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2418 */
2419 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2420 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2421 mdic <<= 16;
2422 mdic |= (uint32_t) phy_data;
2423
2424 e1000_shift_out_mdi_bits(hw, mdic, 32);
2425 }
2426 return 0;
2427}
2428
2429/******************************************************************************
2430* Returns the PHY to the power-on reset state
2431*
2432* hw - Struct containing variables accessed by shared code
2433******************************************************************************/
2434static void
2435e1000_phy_hw_reset(struct e1000_hw *hw)
2436{
2437 uint32_t ctrl;
2438 uint32_t ctrl_ext;
2439
2440 DEBUGFUNC();
2441
2442 DEBUGOUT("Resetting Phy...\n");
2443
2444 if (hw->mac_type > e1000_82543) {
2445 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2446 * bit. Then, take it out of reset.
2447 */
2448 ctrl = E1000_READ_REG(hw, CTRL);
2449 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2450 E1000_WRITE_FLUSH(hw);
2451 mdelay(10);
2452 E1000_WRITE_REG(hw, CTRL, ctrl);
2453 E1000_WRITE_FLUSH(hw);
2454 } else {
2455 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2456 * bit to put the PHY into reset. Then, take it out of reset.
2457 */
2458 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2459 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2460 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2461 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2462 E1000_WRITE_FLUSH(hw);
2463 mdelay(10);
2464 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2465 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2466 E1000_WRITE_FLUSH(hw);
2467 }
2468 udelay(150);
2469}
2470
2471/******************************************************************************
2472* Resets the PHY
2473*
2474* hw - Struct containing variables accessed by shared code
2475*
2476* Sets bit 15 of the MII Control regiser
2477******************************************************************************/
2478static int
2479e1000_phy_reset(struct e1000_hw *hw)
2480{
2481 uint16_t phy_data;
2482
2483 DEBUGFUNC();
2484
2485 if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2486 DEBUGOUT("PHY Read Error\n");
2487 return -E1000_ERR_PHY;
2488 }
2489 phy_data |= MII_CR_RESET;
2490 if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2491 DEBUGOUT("PHY Write Error\n");
2492 return -E1000_ERR_PHY;
2493 }
2494 udelay(1);
2495 return 0;
2496}
2497
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002498static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarzac3315c2008-03-06 16:45:44 +01002499{
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002500 DEBUGFUNC ();
Andre Schwarzac3315c2008-03-06 16:45:44 +01002501
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002502 if (hw->mac_type == e1000_undefined)
2503 return -E1000_ERR_PHY_TYPE;
Andre Schwarzac3315c2008-03-06 16:45:44 +01002504
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002505 switch (hw->phy_id) {
2506 case M88E1000_E_PHY_ID:
2507 case M88E1000_I_PHY_ID:
2508 case M88E1011_I_PHY_ID:
2509 hw->phy_type = e1000_phy_m88;
2510 break;
2511 case IGP01E1000_I_PHY_ID:
2512 if (hw->mac_type == e1000_82541 ||
2513 hw->mac_type == e1000_82541_rev_2) {
2514 hw->phy_type = e1000_phy_igp;
2515 break;
2516 }
2517 /* Fall Through */
2518 default:
2519 /* Should never have loaded on this device */
2520 hw->phy_type = e1000_phy_undefined;
2521 return -E1000_ERR_PHY_TYPE;
2522 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01002523
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002524 return E1000_SUCCESS;
Andre Schwarzac3315c2008-03-06 16:45:44 +01002525}
2526
wdenk682011f2003-06-03 23:54:09 +00002527/******************************************************************************
2528* Probes the expected PHY address for known PHY IDs
2529*
2530* hw - Struct containing variables accessed by shared code
2531******************************************************************************/
2532static int
2533e1000_detect_gig_phy(struct e1000_hw *hw)
2534{
Andre Schwarzac3315c2008-03-06 16:45:44 +01002535 int32_t phy_init_status;
wdenk682011f2003-06-03 23:54:09 +00002536 uint16_t phy_id_high, phy_id_low;
2537 int match = FALSE;
2538
2539 DEBUGFUNC();
2540
2541 /* Read the PHY ID Registers to identify which PHY is onboard. */
2542 if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2543 DEBUGOUT("PHY Read Error\n");
2544 return -E1000_ERR_PHY;
2545 }
2546 hw->phy_id = (uint32_t) (phy_id_high << 16);
2547 udelay(2);
2548 if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2549 DEBUGOUT("PHY Read Error\n");
2550 return -E1000_ERR_PHY;
2551 }
2552 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2553
2554 switch (hw->mac_type) {
2555 case e1000_82543:
2556 if (hw->phy_id == M88E1000_E_PHY_ID)
2557 match = TRUE;
2558 break;
2559 case e1000_82544:
2560 if (hw->phy_id == M88E1000_I_PHY_ID)
2561 match = TRUE;
2562 break;
2563 case e1000_82540:
2564 case e1000_82545:
2565 case e1000_82546:
2566 if (hw->phy_id == M88E1011_I_PHY_ID)
2567 match = TRUE;
2568 break;
Andre Schwarzac3315c2008-03-06 16:45:44 +01002569 case e1000_82541_rev_2:
2570 if(hw->phy_id == IGP01E1000_I_PHY_ID)
2571 match = TRUE;
2572
2573 break;
wdenk682011f2003-06-03 23:54:09 +00002574 default:
2575 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2576 return -E1000_ERR_CONFIG;
2577 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01002578
2579 phy_init_status = e1000_set_phy_type(hw);
2580
2581 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk682011f2003-06-03 23:54:09 +00002582 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2583 return 0;
2584 }
2585 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2586 return -E1000_ERR_PHY;
2587}
2588
2589/**
2590 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2591 *
2592 * e1000_sw_init initializes the Adapter private data structure.
2593 * Fields are initialized based on PCI device information and
2594 * OS network device settings (MTU size).
2595 **/
2596
2597static int
2598e1000_sw_init(struct eth_device *nic, int cardnum)
2599{
2600 struct e1000_hw *hw = (typeof(hw)) nic->priv;
2601 int result;
2602
2603 /* PCI config space info */
2604 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2605 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2606 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2607 &hw->subsystem_vendor_id);
2608 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2609
2610 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2611 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2612
2613 /* identify the MAC */
2614 result = e1000_set_mac_type(hw);
2615 if (result) {
2616 E1000_ERR("Unknown MAC Type\n");
2617 return result;
2618 }
2619
2620 /* lan a vs. lan b settings */
2621 if (hw->mac_type == e1000_82546)
2622 /*this also works w/ multiple 82546 cards */
2623 /*but not if they're intermingled /w other e1000s */
2624 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2625 else
2626 hw->lan_loc = e1000_lan_a;
2627
2628 /* flow control settings */
2629 hw->fc_high_water = E1000_FC_HIGH_THRESH;
2630 hw->fc_low_water = E1000_FC_LOW_THRESH;
2631 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2632 hw->fc_send_xon = 1;
2633
2634 /* Media type - copper or fiber */
2635
2636 if (hw->mac_type >= e1000_82543) {
2637 uint32_t status = E1000_READ_REG(hw, STATUS);
2638
2639 if (status & E1000_STATUS_TBIMODE) {
2640 DEBUGOUT("fiber interface\n");
2641 hw->media_type = e1000_media_type_fiber;
2642 } else {
2643 DEBUGOUT("copper interface\n");
2644 hw->media_type = e1000_media_type_copper;
2645 }
2646 } else {
2647 hw->media_type = e1000_media_type_fiber;
2648 }
2649
2650 if (hw->mac_type < e1000_82543)
2651 hw->report_tx_early = 0;
2652 else
2653 hw->report_tx_early = 1;
2654
2655 hw->tbi_compatibility_en = TRUE;
2656#if 0
2657 hw->wait_autoneg_complete = FALSE;
2658 hw->adaptive_ifs = TRUE;
2659
2660 /* Copper options */
2661 if (hw->media_type == e1000_media_type_copper) {
2662 hw->mdix = AUTO_ALL_MODES;
2663 hw->disable_polarity_correction = FALSE;
2664 }
2665#endif
2666 return E1000_SUCCESS;
2667}
2668
2669void
2670fill_rx(struct e1000_hw *hw)
2671{
2672 struct e1000_rx_desc *rd;
2673
2674 rx_last = rx_tail;
2675 rd = rx_base + rx_tail;
2676 rx_tail = (rx_tail + 1) % 8;
2677 memset(rd, 0, 16);
2678 rd->buffer_addr = cpu_to_le64((u32) & packet);
2679 E1000_WRITE_REG(hw, RDT, rx_tail);
2680}
2681
2682/**
2683 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2684 * @adapter: board private structure
2685 *
2686 * Configure the Tx unit of the MAC after a reset.
2687 **/
2688
2689static void
2690e1000_configure_tx(struct e1000_hw *hw)
2691{
2692 unsigned long ptr;
2693 unsigned long tctl;
2694 unsigned long tipg;
2695
2696 ptr = (u32) tx_pool;
2697 if (ptr & 0xf)
2698 ptr = (ptr + 0x10) & (~0xf);
2699
2700 tx_base = (typeof(tx_base)) ptr;
2701
2702 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2703 E1000_WRITE_REG(hw, TDBAH, 0);
2704
2705 E1000_WRITE_REG(hw, TDLEN, 128);
2706
2707 /* Setup the HW Tx Head and Tail descriptor pointers */
2708 E1000_WRITE_REG(hw, TDH, 0);
2709 E1000_WRITE_REG(hw, TDT, 0);
2710 tx_tail = 0;
2711
2712 /* Set the default values for the Tx Inter Packet Gap timer */
2713 switch (hw->mac_type) {
2714 case e1000_82542_rev2_0:
2715 case e1000_82542_rev2_1:
2716 tipg = DEFAULT_82542_TIPG_IPGT;
2717 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2718 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2719 break;
2720 default:
2721 if (hw->media_type == e1000_media_type_fiber)
2722 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2723 else
2724 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2725 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2726 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2727 }
2728 E1000_WRITE_REG(hw, TIPG, tipg);
2729#if 0
2730 /* Set the Tx Interrupt Delay register */
2731 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2732 if (hw->mac_type >= e1000_82540)
2733 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2734#endif
2735 /* Program the Transmit Control Register */
2736 tctl = E1000_READ_REG(hw, TCTL);
2737 tctl &= ~E1000_TCTL_CT;
2738 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2739 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2740 E1000_WRITE_REG(hw, TCTL, tctl);
2741
2742 e1000_config_collision_dist(hw);
2743#if 0
2744 /* Setup Transmit Descriptor Settings for this adapter */
2745 adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2746
2747 if (adapter->hw.report_tx_early == 1)
2748 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2749 else
2750 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2751#endif
2752}
2753
2754/**
2755 * e1000_setup_rctl - configure the receive control register
2756 * @adapter: Board private structure
2757 **/
2758static void
2759e1000_setup_rctl(struct e1000_hw *hw)
2760{
2761 uint32_t rctl;
2762
2763 rctl = E1000_READ_REG(hw, RCTL);
2764
2765 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2766
2767 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* |
2768 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2769
2770 if (hw->tbi_compatibility_on == 1)
2771 rctl |= E1000_RCTL_SBP;
2772 else
2773 rctl &= ~E1000_RCTL_SBP;
2774
2775 rctl &= ~(E1000_RCTL_SZ_4096);
2776#if 0
2777 switch (adapter->rx_buffer_len) {
2778 case E1000_RXBUFFER_2048:
2779 default:
2780#endif
2781 rctl |= E1000_RCTL_SZ_2048;
2782 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2783#if 0
2784 break;
2785 case E1000_RXBUFFER_4096:
2786 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2787 break;
2788 case E1000_RXBUFFER_8192:
2789 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2790 break;
2791 case E1000_RXBUFFER_16384:
2792 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2793 break;
2794 }
2795#endif
2796 E1000_WRITE_REG(hw, RCTL, rctl);
2797}
2798
2799/**
2800 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2801 * @adapter: board private structure
2802 *
2803 * Configure the Rx unit of the MAC after a reset.
2804 **/
2805static void
2806e1000_configure_rx(struct e1000_hw *hw)
2807{
2808 unsigned long ptr;
2809 unsigned long rctl;
2810#if 0
2811 unsigned long rxcsum;
2812#endif
2813 rx_tail = 0;
2814 /* make sure receives are disabled while setting up the descriptors */
2815 rctl = E1000_READ_REG(hw, RCTL);
2816 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2817#if 0
2818 /* set the Receive Delay Timer Register */
2819
2820 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2821#endif
2822 if (hw->mac_type >= e1000_82540) {
2823#if 0
2824 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2825#endif
2826 /* Set the interrupt throttling rate. Value is calculated
2827 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002828#define MAX_INTS_PER_SEC 8000
2829#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk682011f2003-06-03 23:54:09 +00002830 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2831 }
2832
2833 /* Setup the Base and Length of the Rx Descriptor Ring */
2834 ptr = (u32) rx_pool;
2835 if (ptr & 0xf)
2836 ptr = (ptr + 0x10) & (~0xf);
2837 rx_base = (typeof(rx_base)) ptr;
2838 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2839 E1000_WRITE_REG(hw, RDBAH, 0);
2840
2841 E1000_WRITE_REG(hw, RDLEN, 128);
2842
2843 /* Setup the HW Rx Head and Tail Descriptor Pointers */
2844 E1000_WRITE_REG(hw, RDH, 0);
2845 E1000_WRITE_REG(hw, RDT, 0);
2846#if 0
2847 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2848 if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2849 rxcsum = E1000_READ_REG(hw, RXCSUM);
2850 rxcsum |= E1000_RXCSUM_TUOFL;
2851 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2852 }
2853#endif
2854 /* Enable Receives */
2855
2856 E1000_WRITE_REG(hw, RCTL, rctl);
2857 fill_rx(hw);
2858}
2859
2860/**************************************************************************
2861POLL - Wait for a frame
2862***************************************************************************/
2863static int
2864e1000_poll(struct eth_device *nic)
2865{
2866 struct e1000_hw *hw = nic->priv;
2867 struct e1000_rx_desc *rd;
2868 /* return true if there's an ethernet packet ready to read */
2869 rd = rx_base + rx_last;
2870 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2871 return 0;
2872 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk77ddac92005-10-13 16:45:02 +02002873 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk682011f2003-06-03 23:54:09 +00002874 fill_rx(hw);
2875 return 1;
2876}
2877
2878/**************************************************************************
2879TRANSMIT - Transmit a frame
2880***************************************************************************/
2881static int
2882e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2883{
2884 struct e1000_hw *hw = nic->priv;
2885 struct e1000_tx_desc *txp;
2886 int i = 0;
2887
2888 txp = tx_base + tx_tail;
2889 tx_tail = (tx_tail + 1) % 8;
2890
2891 txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2892 txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2893 E1000_TXD_CMD_IFCS | length);
2894 txp->upper.data = 0;
2895 E1000_WRITE_REG(hw, TDT, tx_tail);
2896
2897 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2898 if (i++ > TOUT_LOOP) {
2899 DEBUGOUT("e1000: tx timeout\n");
2900 return 0;
2901 }
2902 udelay(10); /* give the nic a chance to write to the register */
2903 }
2904 return 1;
2905}
2906
2907/*reset function*/
2908static inline int
2909e1000_reset(struct eth_device *nic)
2910{
2911 struct e1000_hw *hw = nic->priv;
2912
2913 e1000_reset_hw(hw);
2914 if (hw->mac_type >= e1000_82544) {
2915 E1000_WRITE_REG(hw, WUC, 0);
2916 }
2917 return e1000_init_hw(nic);
2918}
2919
2920/**************************************************************************
2921DISABLE - Turn off ethernet interface
2922***************************************************************************/
2923static void
2924e1000_disable(struct eth_device *nic)
2925{
2926 struct e1000_hw *hw = nic->priv;
2927
2928 /* Turn off the ethernet interface */
2929 E1000_WRITE_REG(hw, RCTL, 0);
2930 E1000_WRITE_REG(hw, TCTL, 0);
2931
2932 /* Clear the transmit ring */
2933 E1000_WRITE_REG(hw, TDH, 0);
2934 E1000_WRITE_REG(hw, TDT, 0);
2935
2936 /* Clear the receive ring */
2937 E1000_WRITE_REG(hw, RDH, 0);
2938 E1000_WRITE_REG(hw, RDT, 0);
2939
2940 /* put the card in its initial state */
2941#if 0
2942 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2943#endif
2944 mdelay(10);
2945
2946}
2947
2948/**************************************************************************
2949INIT - set up ethernet interface(s)
2950***************************************************************************/
2951static int
2952e1000_init(struct eth_device *nic, bd_t * bis)
2953{
2954 struct e1000_hw *hw = nic->priv;
2955 int ret_val = 0;
2956
2957 ret_val = e1000_reset(nic);
2958 if (ret_val < 0) {
2959 if ((ret_val == -E1000_ERR_NOLINK) ||
2960 (ret_val == -E1000_ERR_TIMEOUT)) {
2961 E1000_ERR("Valid Link not detected\n");
2962 } else {
2963 E1000_ERR("Hardware Initialization Failed\n");
2964 }
2965 return 0;
2966 }
2967 e1000_configure_tx(hw);
2968 e1000_setup_rctl(hw);
2969 e1000_configure_rx(hw);
2970 return 1;
2971}
2972
2973/**************************************************************************
2974PROBE - Look for an adapter, this routine's visible to the outside
2975You should omit the last argument struct pci_device * for a non-PCI NIC
2976***************************************************************************/
2977int
2978e1000_initialize(bd_t * bis)
2979{
2980 pci_dev_t devno;
2981 int card_number = 0;
2982 struct eth_device *nic = NULL;
2983 struct e1000_hw *hw = NULL;
2984 u32 iobase;
2985 int idx = 0;
2986 u32 PciCommandWord;
2987
2988 while (1) { /* Find PCI device(s) */
2989 if ((devno = pci_find_devices(supported, idx++)) < 0) {
2990 break;
2991 }
2992
2993 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2994 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
2995 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2996
2997 pci_write_config_dword(devno, PCI_COMMAND,
2998 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
2999 /* Check if I/O accesses and Bus Mastering are enabled. */
3000 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
3001 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
3002 printf("Error: Can not enable MEM access.\n");
3003 continue;
3004 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
3005 printf("Error: Can not enable Bus Mastering.\n");
3006 continue;
3007 }
3008
3009 nic = (struct eth_device *) malloc(sizeof (*nic));
3010 hw = (struct e1000_hw *) malloc(sizeof (*hw));
3011 hw->pdev = devno;
3012 nic->priv = hw;
3013 nic->iobase = bus_to_phys(devno, iobase);
3014
3015 sprintf(nic->name, "e1000#%d", card_number);
3016
3017 /* Are these variables needed? */
3018#if 0
3019 hw->fc = e1000_fc_none;
3020 hw->original_fc = e1000_fc_none;
3021#else
3022 hw->fc = e1000_fc_default;
3023 hw->original_fc = e1000_fc_default;
3024#endif
3025 hw->autoneg_failed = 0;
3026 hw->get_link_status = TRUE;
3027 hw->hw_addr = (typeof(hw->hw_addr)) iobase;
3028 hw->mac_type = e1000_undefined;
3029
3030 /* MAC and Phy settings */
3031 if (e1000_sw_init(nic, card_number) < 0) {
3032 free(hw);
3033 free(nic);
3034 return 0;
3035 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01003036#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
wdenk682011f2003-06-03 23:54:09 +00003037 if (e1000_validate_eeprom_checksum(nic) < 0) {
3038 printf("The EEPROM Checksum Is Not Valid\n");
3039 free(hw);
3040 free(nic);
3041 return 0;
3042 }
Wolfgang Denk7521af12005-10-09 01:04:33 +02003043#endif
wdenk682011f2003-06-03 23:54:09 +00003044 e1000_read_mac_addr(nic);
3045
3046 E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
3047
3048 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3049 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3050 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3051
3052 nic->init = e1000_init;
3053 nic->recv = e1000_poll;
3054 nic->send = e1000_transmit;
3055 nic->halt = e1000_disable;
3056
3057 eth_register(nic);
3058
3059 card_number++;
3060 }
3061 return 1;
3062}