blob: f309f29c0493422c2c09b73c319b1f2b2efe7729 [file] [log] [blame]
wdenk4a9cbbe2002-08-27 09:48:53 +00001/*
wdenkd4ca31c2004-01-02 14:00:00 +00002 * (C) Copyright 2000-2004
wdenk4a9cbbe2002-08-27 09:48:53 +00003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <mpc8xx.h>
26#include <asm/processor.h>
27
Wolfgang Denkd87080b2006-03-31 18:32:53 +020028DECLARE_GLOBAL_DATA_PTR;
29
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +020030#if !defined(CONFIG_8xx_CPUCLK_DEFAULT) || defined(CONFIG_SYS_MEASURE_CPUCLK) || defined(DEBUG)
wdenkc178d3d2004-01-24 20:25:54 +000031
wdenk4a9cbbe2002-08-27 09:48:53 +000032#define PITC_SHIFT 16
33#define PITR_SHIFT 16
34/* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */
35#define SPEED_PIT_COUNTS 58
36#define SPEED_PITC ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT)
37#define SPEED_PITC_INIT ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT)
38
wdenk4a9cbbe2002-08-27 09:48:53 +000039/* Access functions for the Machine State Register */
40static __inline__ unsigned long get_msr(void)
41{
42 unsigned long msr;
43
44 asm volatile("mfmsr %0" : "=r" (msr) :);
45 return msr;
46}
47
48static __inline__ void set_msr(unsigned long msr)
49{
50 asm volatile("mtmsr %0" : : "r" (msr));
51}
wdenk4a9cbbe2002-08-27 09:48:53 +000052
53/* ------------------------------------------------------------------------- */
54
55/*
56 * Measure CPU clock speed (core clock GCLK1, GCLK2),
57 * also determine bus clock speed (checking bus divider factor)
58 *
59 * (Approx. GCLK frequency in Hz)
60 *
61 * Initializes timer 2 and PIT, but disables them before return.
62 * [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4]
63 *
64 * When measuring the CPU clock against the PIT, we count cpu clocks
65 * for 58/8192 seconds with a prescale divide by 177 for the cpu clock.
66 * These strange values for the timing interval and prescaling are used
67 * because the formula for the CPU clock is:
68 *
wdenka2d18bb2004-02-11 21:35:18 +000069 * CPU clock = count * (177 * (8192 / 58))
wdenk4a9cbbe2002-08-27 09:48:53 +000070 *
wdenka2d18bb2004-02-11 21:35:18 +000071 * = count * 24999.7241
wdenk4a9cbbe2002-08-27 09:48:53 +000072 *
wdenka2d18bb2004-02-11 21:35:18 +000073 * which is very close to
wdenk4a9cbbe2002-08-27 09:48:53 +000074 *
wdenka2d18bb2004-02-11 21:35:18 +000075 * = count * 25000
wdenk4a9cbbe2002-08-27 09:48:53 +000076 *
77 * Since the count gives the CPU clock divided by 25000, we can get
78 * the CPU clock rounded to the nearest 0.1 MHz by
79 *
wdenka2d18bb2004-02-11 21:35:18 +000080 * CPU clock = ((count + 2) / 4) * 100000;
wdenk4a9cbbe2002-08-27 09:48:53 +000081 *
82 * The rounding is important since the measurement is sometimes going
83 * to be high or low by 0.025 MHz, depending on exactly how the clocks
84 * and counters interact. By rounding we get the exact answer for any
85 * CPU clock that is an even multiple of 0.1 MHz.
86 */
87
wdenk2535d602003-07-17 23:16:40 +000088unsigned long measure_gclk(void)
wdenk4a9cbbe2002-08-27 09:48:53 +000089{
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +020090 volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
wdenk4a9cbbe2002-08-27 09:48:53 +000091 volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer;
92 ulong timer2_val;
93 ulong msr_val;
94
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +020095#ifdef CONFIG_SYS_8XX_XIN
wdenk42d1f032003-10-15 23:53:47 +000096 /* dont use OSCM, only use EXTCLK/512 */
97 immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV;
wdenk2535d602003-07-17 23:16:40 +000098#else
wdenk42d1f032003-10-15 23:53:47 +000099 immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV);
wdenk2535d602003-07-17 23:16:40 +0000100#endif
101
wdenk4a9cbbe2002-08-27 09:48:53 +0000102 /* Reset + Stop Timer 2, no cascading
103 */
104 timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2);
105
106 /* Keep stopped, halt in debug mode
107 */
108 timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2);
109
110 /* Timer 2 setup:
111 * Output ref. interrupt disable, int. clock
112 * Prescale by 177. Note that prescaler divides by value + 1
113 * so we must subtract 1 here.
114 */
115 timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN;
116
wdenka2d18bb2004-02-11 21:35:18 +0000117 timerp->cpmt_tcn2 = 0; /* reset state */
118 timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000119
120 /*
121 * PIT setup:
122 *
wdenk8bde7f72003-06-27 21:31:46 +0000123 * We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz),
124 * so the count value would be SPEED_PITC_COUNTS - 1.
125 * But there would be an uncertainty in the start time of 1/4
126 * count since when we enable the PIT the count is not
127 * synchronized to the 32768 Hz oscillator. The trick here is
128 * to start the count higher and wait until the PIT count
129 * changes to the required value before starting timer 2.
wdenk4a9cbbe2002-08-27 09:48:53 +0000130 *
wdenk8bde7f72003-06-27 21:31:46 +0000131 * One count high should be enough, but occasionally the start
132 * is off by 1 or 2 counts of 32768 Hz. With the start value
133 * set two counts high it seems very reliable.
134 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000135
136 immr->im_sitk.sitk_pitck = KAPWR_KEY; /* PIT initialization */
137 immr->im_sit.sit_pitc = SPEED_PITC_INIT;
138
139 immr->im_sitk.sitk_piscrk = KAPWR_KEY;
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200140 immr->im_sit.sit_piscr = CONFIG_SYS_PISCR;
wdenk4a9cbbe2002-08-27 09:48:53 +0000141
142 /*
143 * Start measurement - disable interrupts, just in case
144 */
145 msr_val = get_msr ();
146 set_msr (msr_val & ~MSR_EE);
147
148 immr->im_sit.sit_piscr |= PISCR_PTE;
149
150 /* spin until get exact count when we want to start */
151 while (immr->im_sit.sit_pitr > SPEED_PITC);
152
wdenka2d18bb2004-02-11 21:35:18 +0000153 timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000154 while ((immr->im_sit.sit_piscr & PISCR_PS) == 0);
wdenka2d18bb2004-02-11 21:35:18 +0000155 timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */
wdenk4a9cbbe2002-08-27 09:48:53 +0000156
157 /* re-enable external interrupts if they were on */
158 set_msr (msr_val);
159
160 /* Disable timer and PIT
161 */
162 timer2_val = timerp->cpmt_tcn2; /* save before reset timer */
163
164 timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2);
165 immr->im_sit.sit_piscr &= ~PISCR_PTE;
166
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200167#if defined(CONFIG_SYS_8XX_XIN)
wdenk42d1f032003-10-15 23:53:47 +0000168 /* not using OSCM, using XIN, so scale appropriately */
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200169 return (((timer2_val + 2) / 4) * (CONFIG_SYS_8XX_XIN/512))/8192 * 100000L;
wdenk2535d602003-07-17 23:16:40 +0000170#else
wdenka2d18bb2004-02-11 21:35:18 +0000171 return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */
wdenk2535d602003-07-17 23:16:40 +0000172#endif
173}
wdenk4a9cbbe2002-08-27 09:48:53 +0000174
wdenk75d1ea72004-01-31 20:06:54 +0000175#endif
176
Bryan O'Donoghue77ff7b72008-02-17 22:57:47 +0000177void get_brgclk(uint sccr)
178{
179 uint divider = 0;
180
181 switch((sccr&SCCR_DFBRG11)>>11){
182 case 0:
183 divider = 1;
184 break;
185 case 1:
186 divider = 4;
187 break;
188 case 2:
189 divider = 16;
190 break;
191 case 3:
192 divider = 64;
193 break;
194 }
195 gd->brg_clk = gd->cpu_clk/divider;
196}
197
wdenk66ca92a2004-09-28 17:59:53 +0000198#if !defined(CONFIG_8xx_CPUCLK_DEFAULT)
wdenk75d1ea72004-01-31 20:06:54 +0000199
wdenk2535d602003-07-17 23:16:40 +0000200/*
201 * get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ
202 * or (if it is not defined) measure_gclk() (which uses the ref clock)
203 * from above.
204 */
205int get_clocks (void)
206{
wdenk11142572004-06-06 21:35:06 +0000207 uint immr = get_immr (0); /* Return full IMMR contents */
208 volatile immap_t *immap = (immap_t *) (immr & 0xFFFF0000);
209 uint sccr = immap->im_clkrst.car_sccr;
wdenk4a9cbbe2002-08-27 09:48:53 +0000210 /*
wdenk8bde7f72003-06-27 21:31:46 +0000211 * If for some reason measuring the gclk frequency won't
212 * work, we return the hardwired value.
213 * (For example, the cogent CMA286-60 CPU module has no
214 * separate oscillator for PITRTCLK)
wdenk4a9cbbe2002-08-27 09:48:53 +0000215 */
wdenk11142572004-06-06 21:35:06 +0000216#if defined(CONFIG_8xx_GCLK_FREQ)
wdenk4a9cbbe2002-08-27 09:48:53 +0000217 gd->cpu_clk = CONFIG_8xx_GCLK_FREQ;
wdenk11142572004-06-06 21:35:06 +0000218#elif defined(CONFIG_8xx_OSCLK)
219#define PLPRCR_val(a) ((pll & PLPRCR_ ## a ## _MSK) >> PLPRCR_ ## a ## _SHIFT)
220 uint pll = immap->im_clkrst.car_plprcr;
221 uint clk;
wdenk4a9cbbe2002-08-27 09:48:53 +0000222
wdenk11142572004-06-06 21:35:06 +0000223 if ((immr & 0x0FFF) >= MPC8xx_NEW_CLK) { /* MPC866/87x/88x series */
224 clk = ((CONFIG_8xx_OSCLK / (PLPRCR_val(PDF)+1)) *
225 (PLPRCR_val(MFI) + PLPRCR_val(MFN) / (PLPRCR_val(MFD)+1))) /
226 (1<<PLPRCR_val(S));
227 } else {
228 clk = CONFIG_8xx_OSCLK * (PLPRCR_val(MF)+1);
229 }
230 if (pll & PLPRCR_CSRC) { /* Low frequency division factor is used */
231 gd->cpu_clk = clk / (2 << ((sccr >> 8) & 7));
232 } else { /* High frequency division factor is used */
233 gd->cpu_clk = clk / (1 << ((sccr >> 5) & 7));
234 }
235#else
236 gd->cpu_clk = measure_gclk();
wdenk4a9cbbe2002-08-27 09:48:53 +0000237#endif /* CONFIG_8xx_GCLK_FREQ */
238
wdenk11142572004-06-06 21:35:06 +0000239 if ((sccr & SCCR_EBDF11) == 0) {
wdenk4a9cbbe2002-08-27 09:48:53 +0000240 /* No Bus Divider active */
241 gd->bus_clk = gd->cpu_clk;
242 } else {
243 /* The MPC8xx has only one BDF: half clock speed */
244 gd->bus_clk = gd->cpu_clk / 2;
245 }
246
Bryan O'Donoghue77ff7b72008-02-17 22:57:47 +0000247 get_brgclk(sccr);
248
wdenk4a9cbbe2002-08-27 09:48:53 +0000249 return (0);
250}
251
wdenk66ca92a2004-09-28 17:59:53 +0000252#else /* CONFIG_8xx_CPUCLK_DEFAULT defined, use dynamic clock setting */
wdenkc178d3d2004-01-24 20:25:54 +0000253
254static long init_pll_866 (long clk);
255
256/* This function sets up PLL (init_pll_866() is called) and
257 * fills gd->cpu_clk and gd->bus_clk according to the environment
wdenk66ca92a2004-09-28 17:59:53 +0000258 * variable 'cpuclk' or to CONFIG_8xx_CPUCLK_DEFAULT (if 'cpuclk'
wdenkc178d3d2004-01-24 20:25:54 +0000259 * contains invalid value).
wdenk66ca92a2004-09-28 17:59:53 +0000260 * This functions requires an MPC866 or newer series CPU.
wdenkc178d3d2004-01-24 20:25:54 +0000261 */
262int get_clocks_866 (void)
263{
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200264 volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
wdenka2d18bb2004-02-11 21:35:18 +0000265 char tmp[64];
266 long cpuclk = 0;
267 long sccr_reg;
wdenkc178d3d2004-01-24 20:25:54 +0000268
269 if (getenv_r ("cpuclk", tmp, sizeof (tmp)) > 0)
270 cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000;
271
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200272 if ((CONFIG_SYS_8xx_CPUCLK_MIN > cpuclk) || (CONFIG_SYS_8xx_CPUCLK_MAX < cpuclk))
wdenk66ca92a2004-09-28 17:59:53 +0000273 cpuclk = CONFIG_8xx_CPUCLK_DEFAULT;
wdenkc178d3d2004-01-24 20:25:54 +0000274
275 gd->cpu_clk = init_pll_866 (cpuclk);
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200276#if defined(CONFIG_SYS_MEASURE_CPUCLK)
wdenk75d1ea72004-01-31 20:06:54 +0000277 gd->cpu_clk = measure_gclk ();
278#endif
wdenkc178d3d2004-01-24 20:25:54 +0000279
Bryan O'Donoghue77ff7b72008-02-17 22:57:47 +0000280 get_brgclk(immr->im_clkrst.car_sccr);
281
wdenka2d18bb2004-02-11 21:35:18 +0000282 /* if cpu clock <= 66 MHz then set bus division factor to 1,
283 * otherwise set it to 2
284 */
285 sccr_reg = immr->im_clkrst.car_sccr;
286 sccr_reg &= ~SCCR_EBDF11;
Jens Gehrlein22d1a562007-09-26 17:55:54 +0200287
wdenka2d18bb2004-02-11 21:35:18 +0000288 if (gd->cpu_clk <= 66000000) {
289 sccr_reg |= SCCR_EBDF00; /* bus division factor = 1 */
wdenkc178d3d2004-01-24 20:25:54 +0000290 gd->bus_clk = gd->cpu_clk;
wdenka2d18bb2004-02-11 21:35:18 +0000291 } else {
292 sccr_reg |= SCCR_EBDF01; /* bus division factor = 2 */
wdenkc178d3d2004-01-24 20:25:54 +0000293 gd->bus_clk = gd->cpu_clk / 2;
wdenka2d18bb2004-02-11 21:35:18 +0000294 }
295 immr->im_clkrst.car_sccr = sccr_reg;
wdenkc178d3d2004-01-24 20:25:54 +0000296
297 return (0);
298}
299
300/* Adjust sdram refresh rate to actual CPU clock.
301 */
302int sdram_adjust_866 (void)
303{
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200304 volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
wdenka2d18bb2004-02-11 21:35:18 +0000305 long mamr;
wdenkc178d3d2004-01-24 20:25:54 +0000306
307 mamr = immr->im_memctl.memc_mamr;
308 mamr &= ~MAMR_PTA_MSK;
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200309 mamr |= ((gd->cpu_clk / CONFIG_SYS_PTA_PER_CLK) << MAMR_PTA_SHIFT);
wdenkc178d3d2004-01-24 20:25:54 +0000310 immr->im_memctl.memc_mamr = mamr;
311
312 return (0);
313}
314
wdenk66ca92a2004-09-28 17:59:53 +0000315/* Configure PLL for MPC866/859/885 CPU series
wdenkc178d3d2004-01-24 20:25:54 +0000316 * PLL multiplication factor is set to the value nearest to the desired clk,
317 * assuming a oscclk of 10 MHz.
318 */
319static long init_pll_866 (long clk)
320{
321 extern void plprcr_write_866 (long);
322
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200323 volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
wdenka2d18bb2004-02-11 21:35:18 +0000324 long n, plprcr;
325 char mfi, mfn, mfd, s, pdf;
326 long step_mfi, step_mfn;
wdenkc178d3d2004-01-24 20:25:54 +0000327
wdenk75d1ea72004-01-31 20:06:54 +0000328 if (clk < 20000000) {
329 clk *= 2;
330 pdf = 1;
331 } else {
332 pdf = 0;
333 }
334
335 if (clk < 40000000) {
336 s = 2;
wdenk66ca92a2004-09-28 17:59:53 +0000337 step_mfi = CONFIG_8xx_OSCLK / 4;
wdenk75d1ea72004-01-31 20:06:54 +0000338 mfd = 7;
wdenk66ca92a2004-09-28 17:59:53 +0000339 step_mfn = CONFIG_8xx_OSCLK / 30;
wdenk75d1ea72004-01-31 20:06:54 +0000340 } else if (clk < 80000000) {
wdenkc178d3d2004-01-24 20:25:54 +0000341 s = 1;
wdenk66ca92a2004-09-28 17:59:53 +0000342 step_mfi = CONFIG_8xx_OSCLK / 2;
wdenkc178d3d2004-01-24 20:25:54 +0000343 mfd = 14;
wdenk66ca92a2004-09-28 17:59:53 +0000344 step_mfn = CONFIG_8xx_OSCLK / 30;
wdenkc178d3d2004-01-24 20:25:54 +0000345 } else {
346 s = 0;
wdenk66ca92a2004-09-28 17:59:53 +0000347 step_mfi = CONFIG_8xx_OSCLK;
wdenkc178d3d2004-01-24 20:25:54 +0000348 mfd = 29;
wdenk66ca92a2004-09-28 17:59:53 +0000349 step_mfn = CONFIG_8xx_OSCLK / 30;
wdenkc178d3d2004-01-24 20:25:54 +0000350 }
351
352 /* Calculate integer part of multiplication factor
353 */
354 n = clk / step_mfi;
355 mfi = (char)n;
356
357 /* Calculate numerator of fractional part of multiplication factor
358 */
359 n = clk - (n * step_mfi);
360 mfn = (char)(n / step_mfn);
361
362 /* Calculate effective clk
363 */
wdenk75d1ea72004-01-31 20:06:54 +0000364 n = ((mfi * step_mfi) + (mfn * step_mfn)) / (pdf + 1);
wdenkc178d3d2004-01-24 20:25:54 +0000365
366 immr->im_clkrstk.cark_plprcrk = KAPWR_KEY;
367
368 plprcr = (immr->im_clkrst.car_plprcr & ~(PLPRCR_MFN_MSK
369 | PLPRCR_MFD_MSK | PLPRCR_S_MSK
wdenk75d1ea72004-01-31 20:06:54 +0000370 | PLPRCR_MFI_MSK | PLPRCR_DBRMO
371 | PLPRCR_PDF_MSK))
wdenkc178d3d2004-01-24 20:25:54 +0000372 | (mfn << PLPRCR_MFN_SHIFT)
373 | (mfd << PLPRCR_MFD_SHIFT)
374 | (s << PLPRCR_S_SHIFT)
375 | (mfi << PLPRCR_MFI_SHIFT)
376 | (pdf << PLPRCR_PDF_SHIFT);
377
378 if( (mfn > 0) && ((mfd / mfn) > 10) )
379 plprcr |= PLPRCR_DBRMO;
380
381 plprcr_write_866 (plprcr); /* set value using SIU4/9 workaround */
382 immr->im_clkrstk.cark_plprcrk = 0x00000000;
383
384 return (n);
385}
386
wdenk66ca92a2004-09-28 17:59:53 +0000387#endif /* CONFIG_8xx_CPUCLK_DEFAULT */
wdenkc178d3d2004-01-24 20:25:54 +0000388
Markus Klotzbuecher090eb732006-07-12 15:26:01 +0200389#if defined(CONFIG_TQM8xxL) && !defined(CONFIG_TQM866M) \
390 && !defined(CONFIG_TQM885D)
wdenke9132ea2004-04-24 23:23:30 +0000391/*
392 * Adjust sdram refresh rate to actual CPU clock
393 * and set timebase source according to actual CPU clock
394 */
395int adjust_sdram_tbs_8xx (void)
396{
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200397 volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
wdenke9132ea2004-04-24 23:23:30 +0000398 long mamr;
399 long sccr;
400
401 mamr = immr->im_memctl.memc_mamr;
402 mamr &= ~MAMR_PTA_MSK;
Jean-Christophe PLAGNIOL-VILLARD6d0f6bc2008-10-16 15:01:15 +0200403 mamr |= ((gd->cpu_clk / CONFIG_SYS_PTA_PER_CLK) << MAMR_PTA_SHIFT);
wdenke9132ea2004-04-24 23:23:30 +0000404 immr->im_memctl.memc_mamr = mamr;
405
406 if (gd->cpu_clk < 67000000) {
407 sccr = immr->im_clkrst.car_sccr;
408 sccr |= SCCR_TBS;
409 immr->im_clkrst.car_sccr = sccr;
410 }
411
412 return (0);
413}
Markus Klotzbuecher090eb732006-07-12 15:26:01 +0200414#endif /* CONFIG_TQM8xxL/M, !TQM866M, !TQM885D */
wdenke9132ea2004-04-24 23:23:30 +0000415
wdenk4a9cbbe2002-08-27 09:48:53 +0000416/* ------------------------------------------------------------------------- */