Stephan Linz | df48265 | 2012-02-25 00:48:31 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Xilinx xps_ll_temac ethernet driver for u-boot |
| 3 | * |
| 4 | * SDMA sub-controller |
| 5 | * |
| 6 | * Copyright (C) 2011 - 2012 Stephan Linz <linz@li-pro.net> |
| 7 | * Copyright (C) 2008 - 2011 Michal Simek <monstr@monstr.eu> |
| 8 | * Copyright (C) 2008 - 2011 PetaLogix |
| 9 | * |
| 10 | * Based on Yoshio Kashiwagi kashiwagi@co-nss.co.jp driver |
| 11 | * Copyright (C) 2008 Nissin Systems Co.,Ltd. |
| 12 | * March 2008 created |
| 13 | * |
| 14 | * CREDITS: tsec driver |
| 15 | * |
Wolfgang Denk | 1a45966 | 2013-07-08 09:37:19 +0200 | [diff] [blame] | 16 | * SPDX-License-Identifier: GPL-2.0+ |
Stephan Linz | df48265 | 2012-02-25 00:48:31 +0000 | [diff] [blame] | 17 | * |
| 18 | * [0]: http://www.xilinx.com/support/documentation |
| 19 | * |
| 20 | * [M]: [0]/ip_documentation/mpmc.pdf |
| 21 | * [S]: [0]/ip_documentation/xps_ll_temac.pdf |
| 22 | * [A]: [0]/application_notes/xapp1041.pdf |
| 23 | */ |
| 24 | |
| 25 | #include <config.h> |
| 26 | #include <common.h> |
| 27 | #include <net.h> |
| 28 | |
| 29 | #include <asm/types.h> |
| 30 | #include <asm/io.h> |
| 31 | |
| 32 | #include "xilinx_ll_temac.h" |
| 33 | #include "xilinx_ll_temac_sdma.h" |
| 34 | |
| 35 | #define TX_BUF_CNT 2 |
| 36 | |
| 37 | static unsigned int rx_idx; /* index of the current RX buffer */ |
| 38 | static unsigned int tx_idx; /* index of the current TX buffer */ |
| 39 | |
| 40 | struct rtx_cdmac_bd { |
| 41 | struct cdmac_bd rx[PKTBUFSRX]; |
| 42 | struct cdmac_bd tx[TX_BUF_CNT]; |
| 43 | }; |
| 44 | |
| 45 | /* |
| 46 | * DMA Buffer Descriptor alignment |
| 47 | * |
| 48 | * If the address contained in the Next Descriptor Pointer register is not |
| 49 | * 8-word aligned or reaches beyond the range of available memory, the SDMA |
| 50 | * halts processing and sets the CDMAC_BD_STCTRL_ERROR bit in the respective |
| 51 | * status register (tx_chnl_sts or rx_chnl_sts). |
| 52 | * |
| 53 | * [1]: [0]/ip_documentation/mpmc.pdf |
| 54 | * page 161, Next Descriptor Pointer |
| 55 | */ |
| 56 | static struct rtx_cdmac_bd cdmac_bd __aligned(32); |
| 57 | |
| 58 | #if defined(CONFIG_XILINX_440) || defined(CONFIG_XILINX_405) |
| 59 | |
| 60 | /* |
| 61 | * Indirect DCR access operations mi{ft}dcr_xilinx() espacialy |
| 62 | * for Xilinx PowerPC implementations on FPGA. |
| 63 | * |
| 64 | * FIXME: This part should go up to arch/powerpc -- but where? |
| 65 | */ |
| 66 | #include <asm/processor.h> |
| 67 | #define XILINX_INDIRECT_DCR_ADDRESS_REG 0 |
| 68 | #define XILINX_INDIRECT_DCR_ACCESS_REG 1 |
| 69 | inline unsigned mifdcr_xilinx(const unsigned dcrn) |
| 70 | { |
| 71 | mtdcr(XILINX_INDIRECT_DCR_ADDRESS_REG, dcrn); |
| 72 | return mfdcr(XILINX_INDIRECT_DCR_ACCESS_REG); |
| 73 | } |
| 74 | inline void mitdcr_xilinx(const unsigned dcrn, int val) |
| 75 | { |
| 76 | mtdcr(XILINX_INDIRECT_DCR_ADDRESS_REG, dcrn); |
| 77 | mtdcr(XILINX_INDIRECT_DCR_ACCESS_REG, val); |
| 78 | } |
| 79 | |
| 80 | /* Xilinx Device Control Register (DCR) in/out accessors */ |
| 81 | inline unsigned ll_temac_xldcr_in32(phys_addr_t addr) |
| 82 | { |
| 83 | return mifdcr_xilinx((const unsigned)addr); |
| 84 | } |
| 85 | inline void ll_temac_xldcr_out32(phys_addr_t addr, unsigned value) |
| 86 | { |
| 87 | mitdcr_xilinx((const unsigned)addr, value); |
| 88 | } |
| 89 | |
| 90 | void ll_temac_collect_xldcr_sdma_reg_addr(struct eth_device *dev) |
| 91 | { |
| 92 | struct ll_temac *ll_temac = dev->priv; |
| 93 | phys_addr_t dmac_ctrl = ll_temac->ctrladdr; |
| 94 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 95 | |
| 96 | ra[TX_NXTDESC_PTR] = dmac_ctrl + TX_NXTDESC_PTR; |
| 97 | ra[TX_CURBUF_ADDR] = dmac_ctrl + TX_CURBUF_ADDR; |
| 98 | ra[TX_CURBUF_LENGTH] = dmac_ctrl + TX_CURBUF_LENGTH; |
| 99 | ra[TX_CURDESC_PTR] = dmac_ctrl + TX_CURDESC_PTR; |
| 100 | ra[TX_TAILDESC_PTR] = dmac_ctrl + TX_TAILDESC_PTR; |
| 101 | ra[TX_CHNL_CTRL] = dmac_ctrl + TX_CHNL_CTRL; |
| 102 | ra[TX_IRQ_REG] = dmac_ctrl + TX_IRQ_REG; |
| 103 | ra[TX_CHNL_STS] = dmac_ctrl + TX_CHNL_STS; |
| 104 | ra[RX_NXTDESC_PTR] = dmac_ctrl + RX_NXTDESC_PTR; |
| 105 | ra[RX_CURBUF_ADDR] = dmac_ctrl + RX_CURBUF_ADDR; |
| 106 | ra[RX_CURBUF_LENGTH] = dmac_ctrl + RX_CURBUF_LENGTH; |
| 107 | ra[RX_CURDESC_PTR] = dmac_ctrl + RX_CURDESC_PTR; |
| 108 | ra[RX_TAILDESC_PTR] = dmac_ctrl + RX_TAILDESC_PTR; |
| 109 | ra[RX_CHNL_CTRL] = dmac_ctrl + RX_CHNL_CTRL; |
| 110 | ra[RX_IRQ_REG] = dmac_ctrl + RX_IRQ_REG; |
| 111 | ra[RX_CHNL_STS] = dmac_ctrl + RX_CHNL_STS; |
| 112 | ra[DMA_CONTROL_REG] = dmac_ctrl + DMA_CONTROL_REG; |
| 113 | } |
| 114 | |
| 115 | #endif /* CONFIG_XILINX_440 || ONFIG_XILINX_405 */ |
| 116 | |
| 117 | /* Xilinx Processor Local Bus (PLB) in/out accessors */ |
| 118 | inline unsigned ll_temac_xlplb_in32(phys_addr_t addr) |
| 119 | { |
| 120 | return in_be32((void *)addr); |
| 121 | } |
| 122 | inline void ll_temac_xlplb_out32(phys_addr_t addr, unsigned value) |
| 123 | { |
| 124 | out_be32((void *)addr, value); |
| 125 | } |
| 126 | |
| 127 | /* collect all register addresses for Xilinx PLB in/out accessors */ |
| 128 | void ll_temac_collect_xlplb_sdma_reg_addr(struct eth_device *dev) |
| 129 | { |
| 130 | struct ll_temac *ll_temac = dev->priv; |
| 131 | struct sdma_ctrl *sdma_ctrl = (void *)ll_temac->ctrladdr; |
| 132 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 133 | |
| 134 | ra[TX_NXTDESC_PTR] = (phys_addr_t)&sdma_ctrl->tx_nxtdesc_ptr; |
| 135 | ra[TX_CURBUF_ADDR] = (phys_addr_t)&sdma_ctrl->tx_curbuf_addr; |
| 136 | ra[TX_CURBUF_LENGTH] = (phys_addr_t)&sdma_ctrl->tx_curbuf_length; |
| 137 | ra[TX_CURDESC_PTR] = (phys_addr_t)&sdma_ctrl->tx_curdesc_ptr; |
| 138 | ra[TX_TAILDESC_PTR] = (phys_addr_t)&sdma_ctrl->tx_taildesc_ptr; |
| 139 | ra[TX_CHNL_CTRL] = (phys_addr_t)&sdma_ctrl->tx_chnl_ctrl; |
| 140 | ra[TX_IRQ_REG] = (phys_addr_t)&sdma_ctrl->tx_irq_reg; |
| 141 | ra[TX_CHNL_STS] = (phys_addr_t)&sdma_ctrl->tx_chnl_sts; |
| 142 | ra[RX_NXTDESC_PTR] = (phys_addr_t)&sdma_ctrl->rx_nxtdesc_ptr; |
| 143 | ra[RX_CURBUF_ADDR] = (phys_addr_t)&sdma_ctrl->rx_curbuf_addr; |
| 144 | ra[RX_CURBUF_LENGTH] = (phys_addr_t)&sdma_ctrl->rx_curbuf_length; |
| 145 | ra[RX_CURDESC_PTR] = (phys_addr_t)&sdma_ctrl->rx_curdesc_ptr; |
| 146 | ra[RX_TAILDESC_PTR] = (phys_addr_t)&sdma_ctrl->rx_taildesc_ptr; |
| 147 | ra[RX_CHNL_CTRL] = (phys_addr_t)&sdma_ctrl->rx_chnl_ctrl; |
| 148 | ra[RX_IRQ_REG] = (phys_addr_t)&sdma_ctrl->rx_irq_reg; |
| 149 | ra[RX_CHNL_STS] = (phys_addr_t)&sdma_ctrl->rx_chnl_sts; |
| 150 | ra[DMA_CONTROL_REG] = (phys_addr_t)&sdma_ctrl->dma_control_reg; |
| 151 | } |
| 152 | |
| 153 | /* Check for TX and RX channel errors. */ |
| 154 | static inline int ll_temac_sdma_error(struct eth_device *dev) |
| 155 | { |
| 156 | int err; |
| 157 | struct ll_temac *ll_temac = dev->priv; |
| 158 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 159 | |
| 160 | err = ll_temac->in32(ra[TX_CHNL_STS]) & CHNL_STS_ERROR; |
| 161 | err |= ll_temac->in32(ra[RX_CHNL_STS]) & CHNL_STS_ERROR; |
| 162 | |
| 163 | return err; |
| 164 | } |
| 165 | |
| 166 | int ll_temac_init_sdma(struct eth_device *dev) |
| 167 | { |
| 168 | struct ll_temac *ll_temac = dev->priv; |
| 169 | struct cdmac_bd *rx_dp; |
| 170 | struct cdmac_bd *tx_dp; |
| 171 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 172 | int i; |
| 173 | |
| 174 | printf("%s: SDMA: %d Rx buffers, %d Tx buffers\n", |
| 175 | dev->name, PKTBUFSRX, TX_BUF_CNT); |
| 176 | |
| 177 | /* Initialize the Rx Buffer descriptors */ |
| 178 | for (i = 0; i < PKTBUFSRX; i++) { |
| 179 | rx_dp = &cdmac_bd.rx[i]; |
| 180 | memset(rx_dp, 0, sizeof(*rx_dp)); |
| 181 | rx_dp->next_p = rx_dp; |
| 182 | rx_dp->buf_len = PKTSIZE_ALIGN; |
| 183 | rx_dp->phys_buf_p = (u8 *)NetRxPackets[i]; |
| 184 | flush_cache((u32)rx_dp->phys_buf_p, PKTSIZE_ALIGN); |
| 185 | } |
| 186 | flush_cache((u32)cdmac_bd.rx, sizeof(cdmac_bd.rx)); |
| 187 | |
| 188 | /* Initialize the TX Buffer Descriptors */ |
| 189 | for (i = 0; i < TX_BUF_CNT; i++) { |
| 190 | tx_dp = &cdmac_bd.tx[i]; |
| 191 | memset(tx_dp, 0, sizeof(*tx_dp)); |
| 192 | tx_dp->next_p = tx_dp; |
| 193 | } |
| 194 | flush_cache((u32)cdmac_bd.tx, sizeof(cdmac_bd.tx)); |
| 195 | |
| 196 | /* Reset index counter to the Rx and Tx Buffer descriptors */ |
| 197 | rx_idx = tx_idx = 0; |
| 198 | |
| 199 | /* initial Rx DMA start by writing to respective TAILDESC_PTR */ |
| 200 | ll_temac->out32(ra[RX_CURDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| 201 | ll_temac->out32(ra[RX_TAILDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| 202 | |
| 203 | return 0; |
| 204 | } |
| 205 | |
| 206 | int ll_temac_halt_sdma(struct eth_device *dev) |
| 207 | { |
| 208 | unsigned timeout = 50; /* 1usec * 50 = 50usec */ |
| 209 | struct ll_temac *ll_temac = dev->priv; |
| 210 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 211 | |
| 212 | /* |
| 213 | * Soft reset the DMA |
| 214 | * |
| 215 | * Quote from MPMC documentation: Writing a 1 to this field |
| 216 | * forces the DMA engine to shutdown and reset itself. After |
| 217 | * setting this bit, software must poll it until the bit is |
| 218 | * cleared by the DMA. This indicates that the reset process |
| 219 | * is done and the pipeline has been flushed. |
| 220 | */ |
| 221 | ll_temac->out32(ra[DMA_CONTROL_REG], DMA_CONTROL_RESET); |
| 222 | while (timeout && (ll_temac->in32(ra[DMA_CONTROL_REG]) |
| 223 | & DMA_CONTROL_RESET)) { |
| 224 | timeout--; |
| 225 | udelay(1); |
| 226 | } |
| 227 | |
| 228 | if (!timeout) { |
| 229 | printf("%s: Timeout\n", __func__); |
| 230 | return -1; |
| 231 | } |
| 232 | |
| 233 | return 0; |
| 234 | } |
| 235 | |
| 236 | int ll_temac_reset_sdma(struct eth_device *dev) |
| 237 | { |
| 238 | u32 r; |
| 239 | struct ll_temac *ll_temac = dev->priv; |
| 240 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 241 | |
| 242 | /* Soft reset the DMA. */ |
| 243 | if (ll_temac_halt_sdma(dev)) |
| 244 | return -1; |
| 245 | |
| 246 | /* Now clear the interrupts. */ |
| 247 | r = ll_temac->in32(ra[TX_CHNL_CTRL]); |
| 248 | r &= ~CHNL_CTRL_IRQ_MASK; |
| 249 | ll_temac->out32(ra[TX_CHNL_CTRL], r); |
| 250 | |
| 251 | r = ll_temac->in32(ra[RX_CHNL_CTRL]); |
| 252 | r &= ~CHNL_CTRL_IRQ_MASK; |
| 253 | ll_temac->out32(ra[RX_CHNL_CTRL], r); |
| 254 | |
| 255 | /* Now ACK pending IRQs. */ |
| 256 | ll_temac->out32(ra[TX_IRQ_REG], IRQ_REG_IRQ_MASK); |
| 257 | ll_temac->out32(ra[RX_IRQ_REG], IRQ_REG_IRQ_MASK); |
| 258 | |
| 259 | /* Set tail-ptr mode, disable errors for both channels. */ |
| 260 | ll_temac->out32(ra[DMA_CONTROL_REG], |
| 261 | /* Enable use of tail pointer register */ |
| 262 | DMA_CONTROL_TPE | |
| 263 | /* Disable error when 2 or 4 bit coalesce cnt overfl */ |
| 264 | DMA_CONTROL_RXOCEID | |
| 265 | /* Disable error when 2 or 4 bit coalesce cnt overfl */ |
| 266 | DMA_CONTROL_TXOCEID); |
| 267 | |
| 268 | return 0; |
| 269 | } |
| 270 | |
| 271 | int ll_temac_recv_sdma(struct eth_device *dev) |
| 272 | { |
| 273 | int length, pb_idx; |
| 274 | struct cdmac_bd *rx_dp = &cdmac_bd.rx[rx_idx]; |
| 275 | struct ll_temac *ll_temac = dev->priv; |
| 276 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 277 | |
| 278 | if (ll_temac_sdma_error(dev)) { |
| 279 | |
| 280 | if (ll_temac_reset_sdma(dev)) |
| 281 | return -1; |
| 282 | |
| 283 | ll_temac_init_sdma(dev); |
| 284 | } |
| 285 | |
| 286 | flush_cache((u32)rx_dp, sizeof(*rx_dp)); |
| 287 | |
| 288 | if (!(rx_dp->sca.stctrl & CDMAC_BD_STCTRL_COMPLETED)) |
| 289 | return 0; |
| 290 | |
| 291 | if (rx_dp->sca.stctrl & (CDMAC_BD_STCTRL_SOP | CDMAC_BD_STCTRL_EOP)) { |
| 292 | pb_idx = rx_idx; |
| 293 | length = rx_dp->sca.app[4] & CDMAC_BD_APP4_RXBYTECNT_MASK; |
| 294 | } else { |
| 295 | pb_idx = -1; |
| 296 | length = 0; |
| 297 | printf("%s: Got part of package, unsupported (%x)\n", |
| 298 | __func__, rx_dp->sca.stctrl); |
| 299 | } |
| 300 | |
| 301 | /* flip the buffer */ |
| 302 | flush_cache((u32)rx_dp->phys_buf_p, length); |
| 303 | |
| 304 | /* reset the current descriptor */ |
| 305 | rx_dp->sca.stctrl = 0; |
| 306 | rx_dp->sca.app[4] = 0; |
| 307 | flush_cache((u32)rx_dp, sizeof(*rx_dp)); |
| 308 | |
| 309 | /* Find next empty buffer descriptor, preparation for next iteration */ |
| 310 | rx_idx = (rx_idx + 1) % PKTBUFSRX; |
| 311 | rx_dp = &cdmac_bd.rx[rx_idx]; |
| 312 | flush_cache((u32)rx_dp, sizeof(*rx_dp)); |
| 313 | |
| 314 | /* DMA start by writing to respective TAILDESC_PTR */ |
| 315 | ll_temac->out32(ra[RX_CURDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| 316 | ll_temac->out32(ra[RX_TAILDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| 317 | |
| 318 | if (length > 0 && pb_idx != -1) |
| 319 | NetReceive(NetRxPackets[pb_idx], length); |
| 320 | |
| 321 | return 0; |
| 322 | } |
| 323 | |
Stephan Linz | f22ff1a | 2012-05-22 12:18:09 +0000 | [diff] [blame] | 324 | int ll_temac_send_sdma(struct eth_device *dev, void *packet, int length) |
Stephan Linz | df48265 | 2012-02-25 00:48:31 +0000 | [diff] [blame] | 325 | { |
| 326 | unsigned timeout = 50; /* 1usec * 50 = 50usec */ |
| 327 | struct cdmac_bd *tx_dp = &cdmac_bd.tx[tx_idx]; |
| 328 | struct ll_temac *ll_temac = dev->priv; |
| 329 | phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| 330 | |
| 331 | if (ll_temac_sdma_error(dev)) { |
| 332 | |
| 333 | if (ll_temac_reset_sdma(dev)) |
| 334 | return -1; |
| 335 | |
| 336 | ll_temac_init_sdma(dev); |
| 337 | } |
| 338 | |
| 339 | tx_dp->phys_buf_p = (u8 *)packet; |
| 340 | tx_dp->buf_len = length; |
| 341 | tx_dp->sca.stctrl = CDMAC_BD_STCTRL_SOP | CDMAC_BD_STCTRL_EOP | |
| 342 | CDMAC_BD_STCTRL_STOP_ON_END; |
| 343 | |
| 344 | flush_cache((u32)packet, length); |
| 345 | flush_cache((u32)tx_dp, sizeof(*tx_dp)); |
| 346 | |
| 347 | /* DMA start by writing to respective TAILDESC_PTR */ |
| 348 | ll_temac->out32(ra[TX_CURDESC_PTR], (int)tx_dp); |
| 349 | ll_temac->out32(ra[TX_TAILDESC_PTR], (int)tx_dp); |
| 350 | |
| 351 | /* Find next empty buffer descriptor, preparation for next iteration */ |
| 352 | tx_idx = (tx_idx + 1) % TX_BUF_CNT; |
| 353 | tx_dp = &cdmac_bd.tx[tx_idx]; |
| 354 | |
| 355 | do { |
| 356 | flush_cache((u32)tx_dp, sizeof(*tx_dp)); |
| 357 | udelay(1); |
| 358 | } while (timeout-- && !(tx_dp->sca.stctrl & CDMAC_BD_STCTRL_COMPLETED)); |
| 359 | |
| 360 | if (!timeout) { |
| 361 | printf("%s: Timeout\n", __func__); |
| 362 | return -1; |
| 363 | } |
| 364 | |
| 365 | return 0; |
| 366 | } |