blob: 18b90ba5ac630b14a35f1ef7ab05f0b0535b9cc6 [file] [log] [blame]
Stefan Roese4037ed32007-02-20 10:43:34 +01001/*
2 * cpu/ppc4xx/44x_spd_ddr2.c
3 * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4 * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5 *
6 * (C) Copyright 2007
7 * Stefan Roese, DENX Software Engineering, sr@denx.de.
8 *
9 * COPYRIGHT AMCC CORPORATION 2004
10 *
11 * See file CREDITS for list of people who contributed to this
12 * project.
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License as
16 * published by the Free Software Foundation; either version 2 of
17 * the License, or (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27 * MA 02111-1307 USA
28 *
29 */
30
31/* define DEBUG for debugging output (obviously ;-)) */
32#if 0
33#define DEBUG
34#endif
35
36#include <common.h>
Stefan Roeseba58e4c2007-03-01 21:11:36 +010037#include <command.h>
Stefan Roese4037ed32007-02-20 10:43:34 +010038#include <ppc4xx.h>
39#include <i2c.h>
40#include <asm/io.h>
41#include <asm/processor.h>
42#include <asm/mmu.h>
43
44#if defined(CONFIG_SPD_EEPROM) && \
45 (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
Stefan Roeseba58e4c2007-03-01 21:11:36 +010047/*-----------------------------------------------------------------------------+
48 * Defines
49 *-----------------------------------------------------------------------------*/
Stefan Roese4037ed32007-02-20 10:43:34 +010050#ifndef TRUE
Wolfgang Denk74357112007-02-27 14:26:04 +010051#define TRUE 1
Stefan Roese4037ed32007-02-20 10:43:34 +010052#endif
53#ifndef FALSE
Wolfgang Denk74357112007-02-27 14:26:04 +010054#define FALSE 0
Stefan Roese4037ed32007-02-20 10:43:34 +010055#endif
56
57#define SDRAM_DDR1 1
58#define SDRAM_DDR2 2
59#define SDRAM_NONE 0
60
Wolfgang Denk1636d1c2007-06-22 23:59:00 +020061#define MAXDIMMS 2
62#define MAXRANKS 4
Stefan Roese4037ed32007-02-20 10:43:34 +010063#define MAXBXCF 4
64#define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
65
66#define ONE_BILLION 1000000000
67
68#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
Stefan Roeseba58e4c2007-03-01 21:11:36 +010070#define CMD_NOP (7 << 19)
71#define CMD_PRECHARGE (2 << 19)
72#define CMD_REFRESH (1 << 19)
73#define CMD_EMR (0 << 19)
74#define CMD_READ (5 << 19)
75#define CMD_WRITE (4 << 19)
Stefan Roese4037ed32007-02-20 10:43:34 +010076
Stefan Roeseba58e4c2007-03-01 21:11:36 +010077#define SELECT_MR (0 << 16)
78#define SELECT_EMR (1 << 16)
79#define SELECT_EMR2 (2 << 16)
80#define SELECT_EMR3 (3 << 16)
81
82/* MR */
83#define DLL_RESET 0x00000100
84
85#define WRITE_RECOV_2 (1 << 9)
86#define WRITE_RECOV_3 (2 << 9)
87#define WRITE_RECOV_4 (3 << 9)
88#define WRITE_RECOV_5 (4 << 9)
89#define WRITE_RECOV_6 (5 << 9)
90
91#define BURST_LEN_4 0x00000002
92
93/* EMR */
94#define ODT_0_OHM 0x00000000
95#define ODT_50_OHM 0x00000044
96#define ODT_75_OHM 0x00000004
97#define ODT_150_OHM 0x00000040
98
99#define ODS_FULL 0x00000000
100#define ODS_REDUCED 0x00000002
101
102/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103#define ODT_EB0R (0x80000000 >> 8)
104#define ODT_EB0W (0x80000000 >> 7)
105#define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
106#define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
107#define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
108
Stefan Roese4037ed32007-02-20 10:43:34 +0100109/* Defines for the Read Cycle Delay test */
Stefan Roese94f54702007-03-31 08:46:08 +0200110#define NUMMEMTESTS 8
111#define NUMMEMWORDS 8
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200112#define NUMLOOPS 64 /* memory test loops */
Stefan Roese4037ed32007-02-20 10:43:34 +0100113
Stefan Roese94f54702007-03-31 08:46:08 +0200114#undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100115
116/*
117 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
118 * region. Right now the cache should still be disabled in U-Boot because of the
119 * EMAC driver, that need it's buffer descriptor to be located in non cached
120 * memory.
121 *
122 * If at some time this restriction doesn't apply anymore, just define
123 * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
124 * everything correctly.
125 */
126#ifdef CFG_ENABLE_SDRAM_CACHE
127#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
128#else
129#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
130#endif
131
Heiko Schochera5d71e22007-06-25 19:11:37 +0200132/*
133 * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
134 */
135void __spd_ddr_init_hang (void)
136{
137 hang ();
138}
139void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
140
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200141/*
142 * To provide an interface for board specific config values in this common
143 * DDR setup code, we implement he "weak" default functions here. They return
144 * the default value back to the caller.
145 *
146 * Please see include/configs/yucca.h for an example fora board specific
147 * implementation.
148 */
149u32 __ddr_wrdtr(u32 default_val)
150{
151 return default_val;
152}
153u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
154
155u32 __ddr_clktr(u32 default_val)
156{
157 return default_val;
158}
159u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
160
Heiko Schocher566a4942007-06-22 19:11:54 +0200161
Stefan Roese4037ed32007-02-20 10:43:34 +0100162/* Private Structure Definitions */
163
164/* enum only to ease code for cas latency setting */
165typedef enum ddr_cas_id {
166 DDR_CAS_2 = 20,
167 DDR_CAS_2_5 = 25,
168 DDR_CAS_3 = 30,
169 DDR_CAS_4 = 40,
170 DDR_CAS_5 = 50
171} ddr_cas_id_t;
172
173/*-----------------------------------------------------------------------------+
174 * Prototypes
175 *-----------------------------------------------------------------------------*/
176static unsigned long sdram_memsize(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100177static void get_spd_info(unsigned long *dimm_populated,
178 unsigned char *iic0_dimm_addr,
179 unsigned long num_dimm_banks);
180static void check_mem_type(unsigned long *dimm_populated,
181 unsigned char *iic0_dimm_addr,
182 unsigned long num_dimm_banks);
183static void check_frequency(unsigned long *dimm_populated,
184 unsigned char *iic0_dimm_addr,
185 unsigned long num_dimm_banks);
186static void check_rank_number(unsigned long *dimm_populated,
187 unsigned char *iic0_dimm_addr,
188 unsigned long num_dimm_banks);
189static void check_voltage_type(unsigned long *dimm_populated,
190 unsigned char *iic0_dimm_addr,
191 unsigned long num_dimm_banks);
192static void program_memory_queue(unsigned long *dimm_populated,
193 unsigned char *iic0_dimm_addr,
194 unsigned long num_dimm_banks);
195static void program_codt(unsigned long *dimm_populated,
196 unsigned char *iic0_dimm_addr,
197 unsigned long num_dimm_banks);
198static void program_mode(unsigned long *dimm_populated,
199 unsigned char *iic0_dimm_addr,
200 unsigned long num_dimm_banks,
Wolfgang Denkad5bb452007-03-06 18:08:43 +0100201 ddr_cas_id_t *selected_cas,
202 int *write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100203static void program_tr(unsigned long *dimm_populated,
204 unsigned char *iic0_dimm_addr,
205 unsigned long num_dimm_banks);
206static void program_rtr(unsigned long *dimm_populated,
207 unsigned char *iic0_dimm_addr,
208 unsigned long num_dimm_banks);
209static void program_bxcf(unsigned long *dimm_populated,
210 unsigned char *iic0_dimm_addr,
211 unsigned long num_dimm_banks);
212static void program_copt1(unsigned long *dimm_populated,
213 unsigned char *iic0_dimm_addr,
214 unsigned long num_dimm_banks);
215static void program_initplr(unsigned long *dimm_populated,
216 unsigned char *iic0_dimm_addr,
217 unsigned long num_dimm_banks,
Wolfgang Denkad5bb452007-03-06 18:08:43 +0100218 ddr_cas_id_t selected_cas,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100219 int write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100220static unsigned long is_ecc_enabled(void);
Stefan Roesedf294492007-03-08 10:06:09 +0100221#ifdef CONFIG_DDR_ECC
Stefan Roese4037ed32007-02-20 10:43:34 +0100222static void program_ecc(unsigned long *dimm_populated,
223 unsigned char *iic0_dimm_addr,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100224 unsigned long num_dimm_banks,
225 unsigned long tlb_word2_i_value);
Stefan Roese4037ed32007-02-20 10:43:34 +0100226static void program_ecc_addr(unsigned long start_address,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100227 unsigned long num_bytes,
228 unsigned long tlb_word2_i_value);
Stefan Roesedf294492007-03-08 10:06:09 +0100229#endif
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100230static void program_DQS_calibration(unsigned long *dimm_populated,
231 unsigned char *iic0_dimm_addr,
232 unsigned long num_dimm_banks);
Stefan Roese4037ed32007-02-20 10:43:34 +0100233#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
Wolfgang Denk74357112007-02-27 14:26:04 +0100234static void test(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100235#else
Wolfgang Denk74357112007-02-27 14:26:04 +0100236static void DQS_calibration_process(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100237#endif
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100238static void ppc440sp_sdram_register_dump(void);
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100239int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
240void dcbz_area(u32 start_address, u32 num_bytes);
241void dflush(void);
Stefan Roese4037ed32007-02-20 10:43:34 +0100242
243static u32 mfdcr_any(u32 dcr)
244{
245 u32 val;
246
247 switch (dcr) {
248 case SDRAM_R0BAS + 0:
249 val = mfdcr(SDRAM_R0BAS + 0);
250 break;
251 case SDRAM_R0BAS + 1:
252 val = mfdcr(SDRAM_R0BAS + 1);
253 break;
254 case SDRAM_R0BAS + 2:
255 val = mfdcr(SDRAM_R0BAS + 2);
256 break;
257 case SDRAM_R0BAS + 3:
258 val = mfdcr(SDRAM_R0BAS + 3);
259 break;
260 default:
261 printf("DCR %d not defined in case statement!!!\n", dcr);
262 val = 0; /* just to satisfy the compiler */
263 }
264
265 return val;
266}
267
268static void mtdcr_any(u32 dcr, u32 val)
269{
270 switch (dcr) {
271 case SDRAM_R0BAS + 0:
272 mtdcr(SDRAM_R0BAS + 0, val);
273 break;
274 case SDRAM_R0BAS + 1:
275 mtdcr(SDRAM_R0BAS + 1, val);
276 break;
277 case SDRAM_R0BAS + 2:
278 mtdcr(SDRAM_R0BAS + 2, val);
279 break;
280 case SDRAM_R0BAS + 3:
281 mtdcr(SDRAM_R0BAS + 3, val);
282 break;
283 default:
284 printf("DCR %d not defined in case statement!!!\n", dcr);
285 }
286}
287
Stefan Roese4037ed32007-02-20 10:43:34 +0100288static unsigned char spd_read(uchar chip, uint addr)
289{
290 unsigned char data[2];
291
292 if (i2c_probe(chip) == 0)
293 if (i2c_read(chip, addr, 1, data, 1) == 0)
294 return data[0];
295
296 return 0;
297}
298
299/*-----------------------------------------------------------------------------+
300 * sdram_memsize
301 *-----------------------------------------------------------------------------*/
302static unsigned long sdram_memsize(void)
303{
304 unsigned long mem_size;
305 unsigned long mcopt2;
306 unsigned long mcstat;
307 unsigned long mb0cf;
308 unsigned long sdsz;
309 unsigned long i;
310
311 mem_size = 0;
312
313 mfsdram(SDRAM_MCOPT2, mcopt2);
314 mfsdram(SDRAM_MCSTAT, mcstat);
315
316 /* DDR controller must be enabled and not in self-refresh. */
317 /* Otherwise memsize is zero. */
318 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
319 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
320 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
321 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100322 for (i = 0; i < MAXBXCF; i++) {
Stefan Roese4037ed32007-02-20 10:43:34 +0100323 mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
324 /* Banks enabled */
325 if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
326 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
327
328 switch(sdsz) {
329 case SDRAM_RXBAS_SDSZ_8:
330 mem_size+=8;
331 break;
332 case SDRAM_RXBAS_SDSZ_16:
333 mem_size+=16;
334 break;
335 case SDRAM_RXBAS_SDSZ_32:
336 mem_size+=32;
337 break;
338 case SDRAM_RXBAS_SDSZ_64:
339 mem_size+=64;
340 break;
341 case SDRAM_RXBAS_SDSZ_128:
342 mem_size+=128;
343 break;
344 case SDRAM_RXBAS_SDSZ_256:
345 mem_size+=256;
346 break;
347 case SDRAM_RXBAS_SDSZ_512:
348 mem_size+=512;
349 break;
350 case SDRAM_RXBAS_SDSZ_1024:
351 mem_size+=1024;
352 break;
353 case SDRAM_RXBAS_SDSZ_2048:
354 mem_size+=2048;
355 break;
356 case SDRAM_RXBAS_SDSZ_4096:
357 mem_size+=4096;
358 break;
359 default:
360 mem_size=0;
361 break;
362 }
363 }
364 }
365 }
366
367 mem_size *= 1024 * 1024;
368 return(mem_size);
369}
370
371/*-----------------------------------------------------------------------------+
372 * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
373 * Note: This routine runs from flash with a stack set up in the chip's
374 * sram space. It is important that the routine does not require .sbss, .bss or
375 * .data sections. It also cannot call routines that require these sections.
376 *-----------------------------------------------------------------------------*/
377/*-----------------------------------------------------------------------------
Wolfgang Denk74357112007-02-27 14:26:04 +0100378 * Function: initdram
Stefan Roese4037ed32007-02-20 10:43:34 +0100379 * Description: Configures SDRAM memory banks for DDR operation.
Wolfgang Denk74357112007-02-27 14:26:04 +0100380 * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
381 * via the IIC bus and then configures the DDR SDRAM memory
382 * banks appropriately. If Auto Memory Configuration is
383 * not used, it is assumed that no DIMM is plugged
Stefan Roese4037ed32007-02-20 10:43:34 +0100384 *-----------------------------------------------------------------------------*/
385long int initdram(int board_type)
386{
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100387 unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
Stefan Roese4037ed32007-02-20 10:43:34 +0100388 unsigned char spd0[MAX_SPD_BYTES];
389 unsigned char spd1[MAX_SPD_BYTES];
390 unsigned char *dimm_spd[MAXDIMMS];
391 unsigned long dimm_populated[MAXDIMMS];
Stefan Roese4037ed32007-02-20 10:43:34 +0100392 unsigned long num_dimm_banks; /* on board dimm banks */
393 unsigned long val;
394 ddr_cas_id_t selected_cas;
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100395 int write_recovery;
Stefan Roese4037ed32007-02-20 10:43:34 +0100396 unsigned long dram_size = 0;
397
398 num_dimm_banks = sizeof(iic0_dimm_addr);
399
400 /*------------------------------------------------------------------
401 * Set up an array of SPD matrixes.
402 *-----------------------------------------------------------------*/
403 dimm_spd[0] = spd0;
404 dimm_spd[1] = spd1;
405
406 /*------------------------------------------------------------------
Stefan Roese4037ed32007-02-20 10:43:34 +0100407 * Reset the DDR-SDRAM controller.
408 *-----------------------------------------------------------------*/
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100409 mtsdr(SDR0_SRST, (0x80000000 >> 10));
Stefan Roese4037ed32007-02-20 10:43:34 +0100410 mtsdr(SDR0_SRST, 0x00000000);
411
412 /*
413 * Make sure I2C controller is initialized
414 * before continuing.
415 */
416
417 /* switch to correct I2C bus */
418 I2C_SET_BUS(CFG_SPD_BUS_NUM);
419 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
420
421 /*------------------------------------------------------------------
422 * Clear out the serial presence detect buffers.
423 * Perform IIC reads from the dimm. Fill in the spds.
424 * Check to see if the dimm slots are populated
425 *-----------------------------------------------------------------*/
426 get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
427
428 /*------------------------------------------------------------------
429 * Check the memory type for the dimms plugged.
430 *-----------------------------------------------------------------*/
431 check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
432
433 /*------------------------------------------------------------------
434 * Check the frequency supported for the dimms plugged.
435 *-----------------------------------------------------------------*/
436 check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
437
438 /*------------------------------------------------------------------
439 * Check the total rank number.
440 *-----------------------------------------------------------------*/
441 check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
442
443 /*------------------------------------------------------------------
444 * Check the voltage type for the dimms plugged.
445 *-----------------------------------------------------------------*/
446 check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
447
448 /*------------------------------------------------------------------
449 * Program SDRAM controller options 2 register
450 * Except Enabling of the memory controller.
451 *-----------------------------------------------------------------*/
452 mfsdram(SDRAM_MCOPT2, val);
453 mtsdram(SDRAM_MCOPT2,
454 (val &
455 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
456 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
457 SDRAM_MCOPT2_ISIE_MASK))
458 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
459 SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
460 SDRAM_MCOPT2_ISIE_ENABLE));
461
462 /*------------------------------------------------------------------
463 * Program SDRAM controller options 1 register
464 * Note: Does not enable the memory controller.
465 *-----------------------------------------------------------------*/
466 program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
467
468 /*------------------------------------------------------------------
469 * Set the SDRAM Controller On Die Termination Register
470 *-----------------------------------------------------------------*/
471 program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
472
473 /*------------------------------------------------------------------
474 * Program SDRAM refresh register.
475 *-----------------------------------------------------------------*/
476 program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
477
478 /*------------------------------------------------------------------
479 * Program SDRAM mode register.
480 *-----------------------------------------------------------------*/
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100481 program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
482 &selected_cas, &write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100483
484 /*------------------------------------------------------------------
485 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
486 *-----------------------------------------------------------------*/
487 mfsdram(SDRAM_WRDTR, val);
488 mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200489 ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
Stefan Roese4037ed32007-02-20 10:43:34 +0100490
491 /*------------------------------------------------------------------
492 * Set the SDRAM Clock Timing Register
493 *-----------------------------------------------------------------*/
494 mfsdram(SDRAM_CLKTR, val);
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200495 mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
496 ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
Stefan Roese4037ed32007-02-20 10:43:34 +0100497
498 /*------------------------------------------------------------------
499 * Program the BxCF registers.
500 *-----------------------------------------------------------------*/
501 program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
502
503 /*------------------------------------------------------------------
504 * Program SDRAM timing registers.
505 *-----------------------------------------------------------------*/
506 program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
507
508 /*------------------------------------------------------------------
509 * Set the Extended Mode register
510 *-----------------------------------------------------------------*/
511 mfsdram(SDRAM_MEMODE, val);
512 mtsdram(SDRAM_MEMODE,
513 (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
514 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
515 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
Stefan Roesedf294492007-03-08 10:06:09 +0100516 | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
Stefan Roese4037ed32007-02-20 10:43:34 +0100517
518 /*------------------------------------------------------------------
519 * Program Initialization preload registers.
520 *-----------------------------------------------------------------*/
521 program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100522 selected_cas, write_recovery);
Stefan Roese4037ed32007-02-20 10:43:34 +0100523
524 /*------------------------------------------------------------------
525 * Delay to ensure 200usec have elapsed since reset.
526 *-----------------------------------------------------------------*/
527 udelay(400);
528
529 /*------------------------------------------------------------------
530 * Set the memory queue core base addr.
531 *-----------------------------------------------------------------*/
532 program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
533
534 /*------------------------------------------------------------------
535 * Program SDRAM controller options 2 register
536 * Enable the memory controller.
537 *-----------------------------------------------------------------*/
538 mfsdram(SDRAM_MCOPT2, val);
539 mtsdram(SDRAM_MCOPT2,
540 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
541 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
542 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
543
544 /*------------------------------------------------------------------
545 * Wait for SDRAM_CFG0_DC_EN to complete.
546 *-----------------------------------------------------------------*/
547 do {
548 mfsdram(SDRAM_MCSTAT, val);
549 } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
550
551 /* get installed memory size */
552 dram_size = sdram_memsize();
553
554 /* and program tlb entries for this size (dynamic) */
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200555
556 /*
557 * Program TLB entries with caches enabled, for best performace
558 * while auto-calibrating and ECC generation
559 */
560 program_tlb(0, 0, dram_size, 0);
Stefan Roese4037ed32007-02-20 10:43:34 +0100561
562 /*------------------------------------------------------------------
563 * DQS calibration.
564 *-----------------------------------------------------------------*/
565 program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
566
Stefan Roesedf294492007-03-08 10:06:09 +0100567#ifdef CONFIG_DDR_ECC
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100568 /*------------------------------------------------------------------
569 * If ecc is enabled, initialize the parity bits.
570 *-----------------------------------------------------------------*/
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200571 program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
Stefan Roesedf294492007-03-08 10:06:09 +0100572#endif
Stefan Roeseba58e4c2007-03-01 21:11:36 +0100573
Stefan Roese6ed14ad2007-07-16 09:57:00 +0200574 /*
575 * Now after initialization (auto-calibration and ECC generation)
576 * remove the TLB entries with caches enabled and program again with
577 * desired cache functionality
578 */
579 remove_tlb(0, dram_size);
580 program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
581
Stefan Roese4037ed32007-02-20 10:43:34 +0100582 ppc440sp_sdram_register_dump();
Stefan Roese4037ed32007-02-20 10:43:34 +0100583
584 return dram_size;
585}
586
587static void get_spd_info(unsigned long *dimm_populated,
588 unsigned char *iic0_dimm_addr,
589 unsigned long num_dimm_banks)
590{
591 unsigned long dimm_num;
592 unsigned long dimm_found;
593 unsigned char num_of_bytes;
594 unsigned char total_size;
595
596 dimm_found = FALSE;
597 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
598 num_of_bytes = 0;
599 total_size = 0;
600
601 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
602 debug("\nspd_read(0x%x) returned %d\n",
603 iic0_dimm_addr[dimm_num], num_of_bytes);
604 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
605 debug("spd_read(0x%x) returned %d\n",
606 iic0_dimm_addr[dimm_num], total_size);
607
608 if ((num_of_bytes != 0) && (total_size != 0)) {
609 dimm_populated[dimm_num] = TRUE;
610 dimm_found = TRUE;
611 debug("DIMM slot %lu: populated\n", dimm_num);
612 } else {
613 dimm_populated[dimm_num] = FALSE;
614 debug("DIMM slot %lu: Not populated\n", dimm_num);
615 }
616 }
617
618 if (dimm_found == FALSE) {
619 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200620 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100621 }
622}
623
624#ifdef CONFIG_ADD_RAM_INFO
625void board_add_ram_info(int use_default)
626{
Stefan Roesecabee752007-03-31 13:15:06 +0200627 PPC440_SYS_INFO board_cfg;
Stefan Roese94f54702007-03-31 08:46:08 +0200628 u32 val;
629
Wolfgang Denk74357112007-02-27 14:26:04 +0100630 if (is_ecc_enabled())
Stefan Roesecabee752007-03-31 13:15:06 +0200631 puts(" (ECC");
Wolfgang Denk74357112007-02-27 14:26:04 +0100632 else
Stefan Roesecabee752007-03-31 13:15:06 +0200633 puts(" (ECC not");
634
635 get_sys_info(&board_cfg);
636
637 mfsdr(SDR0_DDR0, val);
638 val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
639 printf(" enabled, %d MHz", (val * 2) / 1000000);
Stefan Roese94f54702007-03-31 08:46:08 +0200640
641 mfsdram(SDRAM_MMODE, val);
642 val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
Stefan Roesecabee752007-03-31 13:15:06 +0200643 printf(", CL%d)", val);
Stefan Roese4037ed32007-02-20 10:43:34 +0100644}
645#endif
646
647/*------------------------------------------------------------------
648 * For the memory DIMMs installed, this routine verifies that they
649 * really are DDR specific DIMMs.
650 *-----------------------------------------------------------------*/
651static void check_mem_type(unsigned long *dimm_populated,
652 unsigned char *iic0_dimm_addr,
653 unsigned long num_dimm_banks)
654{
655 unsigned long dimm_num;
656 unsigned long dimm_type;
657
658 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
659 if (dimm_populated[dimm_num] == TRUE) {
660 dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
661 switch (dimm_type) {
662 case 1:
663 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
664 "slot %d.\n", (unsigned int)dimm_num);
665 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
666 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200667 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100668 break;
669 case 2:
670 printf("ERROR: EDO DIMM detected in slot %d.\n",
671 (unsigned int)dimm_num);
672 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
673 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200674 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100675 break;
676 case 3:
677 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
678 (unsigned int)dimm_num);
679 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
680 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200681 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100682 break;
683 case 4:
684 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
685 (unsigned int)dimm_num);
686 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
687 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200688 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100689 break;
690 case 5:
691 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
692 (unsigned int)dimm_num);
693 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
694 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200695 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100696 break;
697 case 6:
698 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
699 (unsigned int)dimm_num);
700 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
701 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200702 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100703 break;
704 case 7:
705 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
706 dimm_populated[dimm_num] = SDRAM_DDR1;
707 break;
708 case 8:
709 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
710 dimm_populated[dimm_num] = SDRAM_DDR2;
711 break;
712 default:
713 printf("ERROR: Unknown DIMM detected in slot %d.\n",
714 (unsigned int)dimm_num);
715 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
716 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200717 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100718 break;
719 }
720 }
721 }
722 for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
723 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
724 && (dimm_populated[dimm_num] != SDRAM_NONE)
725 && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
726 printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200727 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100728 }
729 }
730}
731
732/*------------------------------------------------------------------
733 * For the memory DIMMs installed, this routine verifies that
734 * frequency previously calculated is supported.
735 *-----------------------------------------------------------------*/
736static void check_frequency(unsigned long *dimm_populated,
737 unsigned char *iic0_dimm_addr,
738 unsigned long num_dimm_banks)
739{
740 unsigned long dimm_num;
741 unsigned long tcyc_reg;
742 unsigned long cycle_time;
743 unsigned long calc_cycle_time;
744 unsigned long sdram_freq;
745 unsigned long sdr_ddrpll;
746 PPC440_SYS_INFO board_cfg;
747
748 /*------------------------------------------------------------------
749 * Get the board configuration info.
750 *-----------------------------------------------------------------*/
751 get_sys_info(&board_cfg);
752
Stefan Roesedf294492007-03-08 10:06:09 +0100753 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +0100754 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
755
756 /*
757 * calc_cycle_time is calculated from DDR frequency set by board/chip
758 * and is expressed in multiple of 10 picoseconds
759 * to match the way DIMM cycle time is calculated below.
760 */
761 calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
762
763 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
764 if (dimm_populated[dimm_num] != SDRAM_NONE) {
765 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
766 /*
767 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
768 * the higher order nibble (bits 4-7) designates the cycle time
769 * to a granularity of 1ns;
770 * the value presented by the lower order nibble (bits 0-3)
771 * has a granularity of .1ns and is added to the value designated
772 * by the higher nibble. In addition, four lines of the lower order
773 * nibble are assigned to support +.25,+.33, +.66 and +.75.
774 */
775 /* Convert from hex to decimal */
776 if ((tcyc_reg & 0x0F) == 0x0D)
777 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
778 else if ((tcyc_reg & 0x0F) == 0x0C)
779 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
780 else if ((tcyc_reg & 0x0F) == 0x0B)
781 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
782 else if ((tcyc_reg & 0x0F) == 0x0A)
783 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
784 else
785 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
786 ((tcyc_reg & 0x0F)*10);
Stefan Roese94f54702007-03-31 08:46:08 +0200787 debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
Stefan Roese4037ed32007-02-20 10:43:34 +0100788
789 if (cycle_time > (calc_cycle_time + 10)) {
790 /*
791 * the provided sdram cycle_time is too small
792 * for the available DIMM cycle_time.
793 * The additionnal 100ps is here to accept a small incertainty.
794 */
795 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
796 "slot %d \n while calculated cycle time is %d ps.\n",
797 (unsigned int)(cycle_time*10),
798 (unsigned int)dimm_num,
799 (unsigned int)(calc_cycle_time*10));
800 printf("Replace the DIMM, or change DDR frequency via "
801 "strapping bits.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200802 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100803 }
804 }
805 }
806}
807
808/*------------------------------------------------------------------
809 * For the memory DIMMs installed, this routine verifies two
810 * ranks/banks maximum are availables.
811 *-----------------------------------------------------------------*/
812static void check_rank_number(unsigned long *dimm_populated,
813 unsigned char *iic0_dimm_addr,
814 unsigned long num_dimm_banks)
815{
816 unsigned long dimm_num;
817 unsigned long dimm_rank;
818 unsigned long total_rank = 0;
819
820 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
821 if (dimm_populated[dimm_num] != SDRAM_NONE) {
822 dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
823 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
824 dimm_rank = (dimm_rank & 0x0F) +1;
825 else
826 dimm_rank = dimm_rank & 0x0F;
827
828
829 if (dimm_rank > MAXRANKS) {
830 printf("ERROR: DRAM DIMM detected with %d ranks in "
831 "slot %d is not supported.\n", dimm_rank, dimm_num);
832 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
833 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200834 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100835 } else
836 total_rank += dimm_rank;
837 }
838 if (total_rank > MAXRANKS) {
839 printf("ERROR: DRAM DIMM detected with a total of %d ranks "
840 "for all slots.\n", (unsigned int)total_rank);
841 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
842 printf("Remove one of the DIMM modules.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +0200843 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100844 }
845 }
846}
847
848/*------------------------------------------------------------------
849 * only support 2.5V modules.
850 * This routine verifies this.
851 *-----------------------------------------------------------------*/
852static void check_voltage_type(unsigned long *dimm_populated,
853 unsigned char *iic0_dimm_addr,
854 unsigned long num_dimm_banks)
855{
856 unsigned long dimm_num;
857 unsigned long voltage_type;
858
859 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
860 if (dimm_populated[dimm_num] != SDRAM_NONE) {
861 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
862 switch (voltage_type) {
863 case 0x00:
864 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
865 printf("This DIMM is 5.0 Volt/TTL.\n");
866 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
867 (unsigned int)dimm_num);
Heiko Schochera5d71e22007-06-25 19:11:37 +0200868 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100869 break;
870 case 0x01:
871 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
872 printf("This DIMM is LVTTL.\n");
873 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
874 (unsigned int)dimm_num);
Heiko Schochera5d71e22007-06-25 19:11:37 +0200875 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100876 break;
877 case 0x02:
878 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
879 printf("This DIMM is 1.5 Volt.\n");
880 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
881 (unsigned int)dimm_num);
Heiko Schochera5d71e22007-06-25 19:11:37 +0200882 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100883 break;
884 case 0x03:
885 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
886 printf("This DIMM is 3.3 Volt/TTL.\n");
887 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
888 (unsigned int)dimm_num);
Heiko Schochera5d71e22007-06-25 19:11:37 +0200889 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100890 break;
891 case 0x04:
892 /* 2.5 Voltage only for DDR1 */
893 break;
894 case 0x05:
895 /* 1.8 Voltage only for DDR2 */
896 break;
897 default:
898 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
899 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
900 (unsigned int)dimm_num);
Heiko Schochera5d71e22007-06-25 19:11:37 +0200901 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +0100902 break;
903 }
904 }
905 }
906}
907
908/*-----------------------------------------------------------------------------+
909 * program_copt1.
910 *-----------------------------------------------------------------------------*/
911static void program_copt1(unsigned long *dimm_populated,
912 unsigned char *iic0_dimm_addr,
913 unsigned long num_dimm_banks)
914{
915 unsigned long dimm_num;
916 unsigned long mcopt1;
917 unsigned long ecc_enabled;
918 unsigned long ecc = 0;
919 unsigned long data_width = 0;
920 unsigned long dimm_32bit;
921 unsigned long dimm_64bit;
922 unsigned long registered = 0;
923 unsigned long attribute = 0;
924 unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
925 unsigned long bankcount;
926 unsigned long ddrtype;
927 unsigned long val;
928
Stefan Roesedf294492007-03-08 10:06:09 +0100929#ifdef CONFIG_DDR_ECC
Stefan Roese4037ed32007-02-20 10:43:34 +0100930 ecc_enabled = TRUE;
Stefan Roesedf294492007-03-08 10:06:09 +0100931#else
932 ecc_enabled = FALSE;
933#endif
Stefan Roese4037ed32007-02-20 10:43:34 +0100934 dimm_32bit = FALSE;
935 dimm_64bit = FALSE;
936 buf0 = FALSE;
937 buf1 = FALSE;
938
939 /*------------------------------------------------------------------
940 * Set memory controller options reg 1, SDRAM_MCOPT1.
941 *-----------------------------------------------------------------*/
942 mfsdram(SDRAM_MCOPT1, val);
943 mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
944 SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
945 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
946 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
947 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
948 SDRAM_MCOPT1_DREF_MASK);
949
950 mcopt1 |= SDRAM_MCOPT1_QDEP;
951 mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
952 mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
953 mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
954 mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
955 mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
956
957 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
958 if (dimm_populated[dimm_num] != SDRAM_NONE) {
959 /* test ecc support */
960 ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
961 if (ecc != 0x02) /* ecc not supported */
962 ecc_enabled = FALSE;
963
964 /* test bank count */
965 bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
966 if (bankcount == 0x04) /* bank count = 4 */
967 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
968 else /* bank count = 8 */
969 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
970
971 /* test DDR type */
972 ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
973 /* test for buffered/unbuffered, registered, differential clocks */
974 registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
975 attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
976
977 /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
978 if (dimm_num == 0) {
979 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
980 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
981 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
982 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
983 if (registered == 1) { /* DDR2 always buffered */
984 /* TODO: what about above comments ? */
985 mcopt1 |= SDRAM_MCOPT1_RDEN;
986 buf0 = TRUE;
987 } else {
988 /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
989 if ((attribute & 0x02) == 0x00) {
990 /* buffered not supported */
991 buf0 = FALSE;
992 } else {
993 mcopt1 |= SDRAM_MCOPT1_RDEN;
994 buf0 = TRUE;
995 }
996 }
997 }
998 else if (dimm_num == 1) {
999 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
1000 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
1001 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
1002 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
1003 if (registered == 1) {
1004 /* DDR2 always buffered */
1005 mcopt1 |= SDRAM_MCOPT1_RDEN;
1006 buf1 = TRUE;
1007 } else {
1008 if ((attribute & 0x02) == 0x00) {
1009 /* buffered not supported */
1010 buf1 = FALSE;
1011 } else {
1012 mcopt1 |= SDRAM_MCOPT1_RDEN;
1013 buf1 = TRUE;
1014 }
1015 }
1016 }
1017
1018 /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
1019 data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
1020 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
1021
1022 switch (data_width) {
1023 case 72:
1024 case 64:
1025 dimm_64bit = TRUE;
1026 break;
1027 case 40:
1028 case 32:
1029 dimm_32bit = TRUE;
1030 break;
1031 default:
1032 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
1033 data_width);
1034 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
1035 break;
1036 }
1037 }
1038 }
1039
1040 /* verify matching properties */
1041 if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1042 if (buf0 != buf1) {
1043 printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02001044 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001045 }
1046 }
1047
1048 if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1049 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02001050 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001051 }
1052 else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1053 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1054 } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1055 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1056 } else {
1057 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02001058 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001059 }
1060
1061 if (ecc_enabled == TRUE)
1062 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1063 else
1064 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1065
1066 mtsdram(SDRAM_MCOPT1, mcopt1);
1067}
1068
1069/*-----------------------------------------------------------------------------+
1070 * program_codt.
1071 *-----------------------------------------------------------------------------*/
1072static void program_codt(unsigned long *dimm_populated,
1073 unsigned char *iic0_dimm_addr,
1074 unsigned long num_dimm_banks)
1075{
1076 unsigned long codt;
1077 unsigned long modt0 = 0;
1078 unsigned long modt1 = 0;
1079 unsigned long modt2 = 0;
1080 unsigned long modt3 = 0;
1081 unsigned char dimm_num;
1082 unsigned char dimm_rank;
1083 unsigned char total_rank = 0;
1084 unsigned char total_dimm = 0;
1085 unsigned char dimm_type = 0;
1086 unsigned char firstSlot = 0;
1087
1088 /*------------------------------------------------------------------
1089 * Set the SDRAM Controller On Die Termination Register
1090 *-----------------------------------------------------------------*/
1091 mfsdram(SDRAM_CODT, codt);
1092 codt |= (SDRAM_CODT_IO_NMODE
1093 & (~SDRAM_CODT_DQS_SINGLE_END
1094 & ~SDRAM_CODT_CKSE_SINGLE_END
1095 & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1096 & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1097
1098 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1099 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1100 dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1101 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1102 dimm_rank = (dimm_rank & 0x0F) + 1;
1103 dimm_type = SDRAM_DDR2;
1104 } else {
1105 dimm_rank = dimm_rank & 0x0F;
1106 dimm_type = SDRAM_DDR1;
1107 }
1108
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001109 total_rank += dimm_rank;
1110 total_dimm++;
Stefan Roese4037ed32007-02-20 10:43:34 +01001111 if ((dimm_num == 0) && (total_dimm == 1))
1112 firstSlot = TRUE;
1113 else
1114 firstSlot = FALSE;
1115 }
1116 }
1117 if (dimm_type == SDRAM_DDR2) {
1118 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1119 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1120 if (total_rank == 1) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001121 codt |= CALC_ODT_R(0);
1122 modt0 = CALC_ODT_W(0);
Stefan Roese4037ed32007-02-20 10:43:34 +01001123 modt1 = 0x00000000;
1124 modt2 = 0x00000000;
1125 modt3 = 0x00000000;
1126 }
1127 if (total_rank == 2) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001128 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1129 modt0 = CALC_ODT_W(0);
1130 modt1 = CALC_ODT_W(0);
Stefan Roese4037ed32007-02-20 10:43:34 +01001131 modt2 = 0x00000000;
1132 modt3 = 0x00000000;
1133 }
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001134 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
Stefan Roese4037ed32007-02-20 10:43:34 +01001135 if (total_rank == 1) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001136 codt |= CALC_ODT_R(2);
1137 modt0 = 0x00000000;
Stefan Roese4037ed32007-02-20 10:43:34 +01001138 modt1 = 0x00000000;
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001139 modt2 = CALC_ODT_W(2);
Stefan Roese4037ed32007-02-20 10:43:34 +01001140 modt3 = 0x00000000;
1141 }
1142 if (total_rank == 2) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001143 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1144 modt0 = 0x00000000;
1145 modt1 = 0x00000000;
1146 modt2 = CALC_ODT_W(2);
1147 modt3 = CALC_ODT_W(2);
Stefan Roese4037ed32007-02-20 10:43:34 +01001148 }
1149 }
1150 if (total_dimm == 2) {
1151 if (total_rank == 2) {
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001152 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1153 modt0 = CALC_ODT_RW(2);
Stefan Roese4037ed32007-02-20 10:43:34 +01001154 modt1 = 0x00000000;
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001155 modt2 = CALC_ODT_RW(0);
Stefan Roese4037ed32007-02-20 10:43:34 +01001156 modt3 = 0x00000000;
1157 }
1158 if (total_rank == 4) {
Stefan Roese7187db72007-06-01 13:45:00 +02001159 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
1160 CALC_ODT_R(2) | CALC_ODT_R(3);
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001161 modt0 = CALC_ODT_RW(2);
1162 modt1 = 0x00000000;
1163 modt2 = CALC_ODT_RW(0);
1164 modt3 = 0x00000000;
Stefan Roese4037ed32007-02-20 10:43:34 +01001165 }
1166 }
Wolfgang Denk647d3c32007-03-04 01:36:05 +01001167 } else {
Stefan Roese4037ed32007-02-20 10:43:34 +01001168 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1169 modt0 = 0x00000000;
1170 modt1 = 0x00000000;
1171 modt2 = 0x00000000;
1172 modt3 = 0x00000000;
1173
1174 if (total_dimm == 1) {
1175 if (total_rank == 1)
1176 codt |= 0x00800000;
1177 if (total_rank == 2)
1178 codt |= 0x02800000;
1179 }
1180 if (total_dimm == 2) {
1181 if (total_rank == 2)
1182 codt |= 0x08800000;
1183 if (total_rank == 4)
1184 codt |= 0x2a800000;
1185 }
1186 }
1187
1188 debug("nb of dimm %d\n", total_dimm);
1189 debug("nb of rank %d\n", total_rank);
1190 if (total_dimm == 1)
1191 debug("dimm in slot %d\n", firstSlot);
1192
1193 mtsdram(SDRAM_CODT, codt);
1194 mtsdram(SDRAM_MODT0, modt0);
1195 mtsdram(SDRAM_MODT1, modt1);
1196 mtsdram(SDRAM_MODT2, modt2);
1197 mtsdram(SDRAM_MODT3, modt3);
1198}
1199
1200/*-----------------------------------------------------------------------------+
1201 * program_initplr.
1202 *-----------------------------------------------------------------------------*/
1203static void program_initplr(unsigned long *dimm_populated,
1204 unsigned char *iic0_dimm_addr,
1205 unsigned long num_dimm_banks,
Wolfgang Denkad5bb452007-03-06 18:08:43 +01001206 ddr_cas_id_t selected_cas,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001207 int write_recovery)
Stefan Roese4037ed32007-02-20 10:43:34 +01001208{
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001209 u32 cas = 0;
1210 u32 odt = 0;
1211 u32 ods = 0;
1212 u32 mr;
1213 u32 wr;
1214 u32 emr;
1215 u32 emr2;
1216 u32 emr3;
1217 int dimm_num;
1218 int total_dimm = 0;
Stefan Roese4037ed32007-02-20 10:43:34 +01001219
1220 /******************************************************
1221 ** Assumption: if more than one DIMM, all DIMMs are the same
Wolfgang Denk74357112007-02-27 14:26:04 +01001222 ** as already checked in check_memory_type
Stefan Roese4037ed32007-02-20 10:43:34 +01001223 ******************************************************/
1224
1225 if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1226 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1227 mtsdram(SDRAM_INITPLR1, 0x81900400);
1228 mtsdram(SDRAM_INITPLR2, 0x81810000);
1229 mtsdram(SDRAM_INITPLR3, 0xff800162);
1230 mtsdram(SDRAM_INITPLR4, 0x81900400);
1231 mtsdram(SDRAM_INITPLR5, 0x86080000);
1232 mtsdram(SDRAM_INITPLR6, 0x86080000);
1233 mtsdram(SDRAM_INITPLR7, 0x81000062);
1234 } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1235 switch (selected_cas) {
Stefan Roese4037ed32007-02-20 10:43:34 +01001236 case DDR_CAS_3:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001237 cas = 3 << 4;
Stefan Roese4037ed32007-02-20 10:43:34 +01001238 break;
1239 case DDR_CAS_4:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001240 cas = 4 << 4;
Stefan Roese4037ed32007-02-20 10:43:34 +01001241 break;
1242 case DDR_CAS_5:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001243 cas = 5 << 4;
Stefan Roese4037ed32007-02-20 10:43:34 +01001244 break;
1245 default:
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001246 printf("ERROR: ucode error on selected_cas value %d", selected_cas);
Heiko Schochera5d71e22007-06-25 19:11:37 +02001247 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001248 break;
1249 }
1250
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001251#if 0
1252 /*
1253 * ToDo - Still a problem with the write recovery:
1254 * On the Corsair CM2X512-5400C4 module, setting write recovery
1255 * in the INITPLR reg to the value calculated in program_mode()
1256 * results in not correctly working DDR2 memory (crash after
1257 * relocation).
1258 *
1259 * So for now, set the write recovery to 3. This seems to work
1260 * on the Corair module too.
1261 *
1262 * 2007-03-01, sr
1263 */
1264 switch (write_recovery) {
1265 case 3:
1266 wr = WRITE_RECOV_3;
1267 break;
1268 case 4:
1269 wr = WRITE_RECOV_4;
1270 break;
1271 case 5:
1272 wr = WRITE_RECOV_5;
1273 break;
1274 case 6:
1275 wr = WRITE_RECOV_6;
1276 break;
1277 default:
1278 printf("ERROR: write recovery not support (%d)", write_recovery);
Heiko Schochera5d71e22007-06-25 19:11:37 +02001279 spd_ddr_init_hang ();
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001280 break;
1281 }
1282#else
1283 wr = WRITE_RECOV_3; /* test-only, see description above */
1284#endif
1285
1286 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1287 if (dimm_populated[dimm_num] != SDRAM_NONE)
1288 total_dimm++;
1289 if (total_dimm == 1) {
1290 odt = ODT_150_OHM;
1291 ods = ODS_FULL;
1292 } else if (total_dimm == 2) {
1293 odt = ODT_75_OHM;
1294 ods = ODS_REDUCED;
1295 } else {
1296 printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
Heiko Schochera5d71e22007-06-25 19:11:37 +02001297 spd_ddr_init_hang ();
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001298 }
1299
1300 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1301 emr = CMD_EMR | SELECT_EMR | odt | ods;
1302 emr2 = CMD_EMR | SELECT_EMR2;
1303 emr3 = CMD_EMR | SELECT_EMR3;
1304 mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
1305 udelay(1000);
1306 mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1307 mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
1308 mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
1309 mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
1310 mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
1311 udelay(1000);
1312 mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1313 mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1314 mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1315 mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1316 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1317 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
1318 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
1319 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
Stefan Roese4037ed32007-02-20 10:43:34 +01001320 } else {
1321 printf("ERROR: ucode error as unknown DDR type in program_initplr");
Heiko Schochera5d71e22007-06-25 19:11:37 +02001322 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001323 }
1324}
1325
1326/*------------------------------------------------------------------
1327 * This routine programs the SDRAM_MMODE register.
1328 * the selected_cas is an output parameter, that will be passed
1329 * by caller to call the above program_initplr( )
1330 *-----------------------------------------------------------------*/
1331static void program_mode(unsigned long *dimm_populated,
1332 unsigned char *iic0_dimm_addr,
1333 unsigned long num_dimm_banks,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001334 ddr_cas_id_t *selected_cas,
1335 int *write_recovery)
Stefan Roese4037ed32007-02-20 10:43:34 +01001336{
1337 unsigned long dimm_num;
1338 unsigned long sdram_ddr1;
1339 unsigned long t_wr_ns;
1340 unsigned long t_wr_clk;
1341 unsigned long cas_bit;
1342 unsigned long cas_index;
1343 unsigned long sdram_freq;
1344 unsigned long ddr_check;
1345 unsigned long mmode;
1346 unsigned long tcyc_reg;
1347 unsigned long cycle_2_0_clk;
1348 unsigned long cycle_2_5_clk;
1349 unsigned long cycle_3_0_clk;
1350 unsigned long cycle_4_0_clk;
1351 unsigned long cycle_5_0_clk;
1352 unsigned long max_2_0_tcyc_ns_x_100;
1353 unsigned long max_2_5_tcyc_ns_x_100;
1354 unsigned long max_3_0_tcyc_ns_x_100;
1355 unsigned long max_4_0_tcyc_ns_x_100;
1356 unsigned long max_5_0_tcyc_ns_x_100;
1357 unsigned long cycle_time_ns_x_100[3];
1358 PPC440_SYS_INFO board_cfg;
1359 unsigned char cas_2_0_available;
1360 unsigned char cas_2_5_available;
1361 unsigned char cas_3_0_available;
1362 unsigned char cas_4_0_available;
1363 unsigned char cas_5_0_available;
1364 unsigned long sdr_ddrpll;
1365
1366 /*------------------------------------------------------------------
1367 * Get the board configuration info.
1368 *-----------------------------------------------------------------*/
1369 get_sys_info(&board_cfg);
1370
Stefan Roesedf294492007-03-08 10:06:09 +01001371 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +01001372 sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
Stefan Roesecabee752007-03-31 13:15:06 +02001373 debug("sdram_freq=%d\n", sdram_freq);
Stefan Roese4037ed32007-02-20 10:43:34 +01001374
1375 /*------------------------------------------------------------------
1376 * Handle the timing. We need to find the worst case timing of all
1377 * the dimm modules installed.
1378 *-----------------------------------------------------------------*/
1379 t_wr_ns = 0;
1380 cas_2_0_available = TRUE;
1381 cas_2_5_available = TRUE;
1382 cas_3_0_available = TRUE;
1383 cas_4_0_available = TRUE;
1384 cas_5_0_available = TRUE;
1385 max_2_0_tcyc_ns_x_100 = 10;
1386 max_2_5_tcyc_ns_x_100 = 10;
1387 max_3_0_tcyc_ns_x_100 = 10;
1388 max_4_0_tcyc_ns_x_100 = 10;
1389 max_5_0_tcyc_ns_x_100 = 10;
1390 sdram_ddr1 = TRUE;
1391
1392 /* loop through all the DIMM slots on the board */
1393 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1394 /* If a dimm is installed in a particular slot ... */
1395 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1396 if (dimm_populated[dimm_num] == SDRAM_DDR1)
1397 sdram_ddr1 = TRUE;
1398 else
1399 sdram_ddr1 = FALSE;
1400
1401 /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
1402 cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
Stefan Roesecabee752007-03-31 13:15:06 +02001403 debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
Stefan Roese4037ed32007-02-20 10:43:34 +01001404
1405 /* For a particular DIMM, grab the three CAS values it supports */
1406 for (cas_index = 0; cas_index < 3; cas_index++) {
1407 switch (cas_index) {
1408 case 0:
1409 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1410 break;
1411 case 1:
1412 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1413 break;
1414 default:
1415 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1416 break;
1417 }
1418
1419 if ((tcyc_reg & 0x0F) >= 10) {
1420 if ((tcyc_reg & 0x0F) == 0x0D) {
1421 /* Convert from hex to decimal */
Stefan Roesecabee752007-03-31 13:15:06 +02001422 cycle_time_ns_x_100[cas_index] =
1423 (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
Stefan Roese4037ed32007-02-20 10:43:34 +01001424 } else {
1425 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1426 "in slot %d\n", (unsigned int)dimm_num);
Heiko Schochera5d71e22007-06-25 19:11:37 +02001427 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001428 }
1429 } else {
1430 /* Convert from hex to decimal */
Stefan Roesecabee752007-03-31 13:15:06 +02001431 cycle_time_ns_x_100[cas_index] =
1432 (((tcyc_reg & 0xF0) >> 4) * 100) +
Stefan Roese4037ed32007-02-20 10:43:34 +01001433 ((tcyc_reg & 0x0F)*10);
1434 }
Stefan Roesecabee752007-03-31 13:15:06 +02001435 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1436 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001437 }
1438
1439 /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1440 /* supported for a particular DIMM. */
1441 cas_index = 0;
1442
1443 if (sdram_ddr1) {
1444 /*
1445 * DDR devices use the following bitmask for CAS latency:
1446 * Bit 7 6 5 4 3 2 1 0
1447 * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
1448 */
Stefan Roesecabee752007-03-31 13:15:06 +02001449 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1450 (cycle_time_ns_x_100[cas_index] != 0)) {
1451 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1452 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001453 cas_index++;
1454 } else {
1455 if (cas_index != 0)
1456 cas_index++;
1457 cas_4_0_available = FALSE;
1458 }
1459
Stefan Roesecabee752007-03-31 13:15:06 +02001460 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1461 (cycle_time_ns_x_100[cas_index] != 0)) {
1462 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1463 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001464 cas_index++;
1465 } else {
1466 if (cas_index != 0)
1467 cas_index++;
1468 cas_3_0_available = FALSE;
1469 }
1470
Stefan Roesecabee752007-03-31 13:15:06 +02001471 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1472 (cycle_time_ns_x_100[cas_index] != 0)) {
1473 max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1474 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001475 cas_index++;
1476 } else {
1477 if (cas_index != 0)
1478 cas_index++;
1479 cas_2_5_available = FALSE;
1480 }
1481
Stefan Roesecabee752007-03-31 13:15:06 +02001482 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1483 (cycle_time_ns_x_100[cas_index] != 0)) {
1484 max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1485 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001486 cas_index++;
1487 } else {
1488 if (cas_index != 0)
1489 cas_index++;
1490 cas_2_0_available = FALSE;
1491 }
1492 } else {
1493 /*
1494 * DDR2 devices use the following bitmask for CAS latency:
1495 * Bit 7 6 5 4 3 2 1 0
1496 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
1497 */
Stefan Roesecabee752007-03-31 13:15:06 +02001498 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1499 (cycle_time_ns_x_100[cas_index] != 0)) {
1500 max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1501 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001502 cas_index++;
1503 } else {
1504 if (cas_index != 0)
1505 cas_index++;
1506 cas_5_0_available = FALSE;
1507 }
1508
Stefan Roesecabee752007-03-31 13:15:06 +02001509 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1510 (cycle_time_ns_x_100[cas_index] != 0)) {
1511 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1512 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001513 cas_index++;
1514 } else {
1515 if (cas_index != 0)
1516 cas_index++;
1517 cas_4_0_available = FALSE;
1518 }
1519
Stefan Roesecabee752007-03-31 13:15:06 +02001520 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1521 (cycle_time_ns_x_100[cas_index] != 0)) {
1522 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1523 cycle_time_ns_x_100[cas_index]);
Stefan Roese4037ed32007-02-20 10:43:34 +01001524 cas_index++;
1525 } else {
1526 if (cas_index != 0)
1527 cas_index++;
1528 cas_3_0_available = FALSE;
1529 }
1530 }
1531 }
1532 }
1533
1534 /*------------------------------------------------------------------
1535 * Set the SDRAM mode, SDRAM_MMODE
1536 *-----------------------------------------------------------------*/
1537 mfsdram(SDRAM_MMODE, mmode);
1538 mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1539
Stefan Roesedf294492007-03-08 10:06:09 +01001540 /* add 10 here because of rounding problems */
1541 cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1542 cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1543 cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1544 cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1545 cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
Stefan Roesecabee752007-03-31 13:15:06 +02001546 debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1547 debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1548 debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
Stefan Roese4037ed32007-02-20 10:43:34 +01001549
1550 if (sdram_ddr1 == TRUE) { /* DDR1 */
1551 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1552 mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1553 *selected_cas = DDR_CAS_2;
1554 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1555 mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1556 *selected_cas = DDR_CAS_2_5;
1557 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1558 mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1559 *selected_cas = DDR_CAS_3;
1560 } else {
1561 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1562 printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1563 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02001564 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001565 }
1566 } else { /* DDR2 */
Stefan Roese94f54702007-03-31 08:46:08 +02001567 debug("cas_3_0_available=%d\n", cas_3_0_available);
1568 debug("cas_4_0_available=%d\n", cas_4_0_available);
1569 debug("cas_5_0_available=%d\n", cas_5_0_available);
Stefan Roese4037ed32007-02-20 10:43:34 +01001570 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1571 mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1572 *selected_cas = DDR_CAS_3;
1573 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1574 mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1575 *selected_cas = DDR_CAS_4;
1576 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1577 mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1578 *selected_cas = DDR_CAS_5;
1579 } else {
1580 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1581 printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
Stefan Roesedf294492007-03-08 10:06:09 +01001582 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1583 printf("cas3=%d cas4=%d cas5=%d\n",
1584 cas_3_0_available, cas_4_0_available, cas_5_0_available);
1585 printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1586 sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
Heiko Schochera5d71e22007-06-25 19:11:37 +02001587 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001588 }
1589 }
1590
1591 if (sdram_ddr1 == TRUE)
1592 mmode |= SDRAM_MMODE_WR_DDR1;
1593 else {
1594
1595 /* loop through all the DIMM slots on the board */
1596 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1597 /* If a dimm is installed in a particular slot ... */
1598 if (dimm_populated[dimm_num] != SDRAM_NONE)
1599 t_wr_ns = max(t_wr_ns,
1600 spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1601 }
1602
1603 /*
1604 * convert from nanoseconds to ddr clocks
1605 * round up if necessary
1606 */
1607 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1608 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1609 if (sdram_freq != ddr_check)
1610 t_wr_clk++;
1611
1612 switch (t_wr_clk) {
1613 case 0:
1614 case 1:
1615 case 2:
1616 case 3:
1617 mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1618 break;
1619 case 4:
1620 mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1621 break;
1622 case 5:
1623 mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1624 break;
1625 default:
1626 mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1627 break;
1628 }
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001629 *write_recovery = t_wr_clk;
Stefan Roese4037ed32007-02-20 10:43:34 +01001630 }
1631
Stefan Roeseba58e4c2007-03-01 21:11:36 +01001632 debug("CAS latency = %d\n", *selected_cas);
1633 debug("Write recovery = %d\n", *write_recovery);
1634
Stefan Roese4037ed32007-02-20 10:43:34 +01001635 mtsdram(SDRAM_MMODE, mmode);
1636}
1637
1638/*-----------------------------------------------------------------------------+
1639 * program_rtr.
1640 *-----------------------------------------------------------------------------*/
1641static void program_rtr(unsigned long *dimm_populated,
1642 unsigned char *iic0_dimm_addr,
1643 unsigned long num_dimm_banks)
1644{
1645 PPC440_SYS_INFO board_cfg;
1646 unsigned long max_refresh_rate;
1647 unsigned long dimm_num;
1648 unsigned long refresh_rate_type;
1649 unsigned long refresh_rate;
1650 unsigned long rint;
1651 unsigned long sdram_freq;
1652 unsigned long sdr_ddrpll;
1653 unsigned long val;
1654
1655 /*------------------------------------------------------------------
1656 * Get the board configuration info.
1657 *-----------------------------------------------------------------*/
1658 get_sys_info(&board_cfg);
1659
1660 /*------------------------------------------------------------------
1661 * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1662 *-----------------------------------------------------------------*/
Stefan Roesedf294492007-03-08 10:06:09 +01001663 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +01001664 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1665
1666 max_refresh_rate = 0;
1667 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1668 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1669
1670 refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1671 refresh_rate_type &= 0x7F;
1672 switch (refresh_rate_type) {
1673 case 0:
1674 refresh_rate = 15625;
1675 break;
1676 case 1:
1677 refresh_rate = 3906;
1678 break;
1679 case 2:
1680 refresh_rate = 7812;
1681 break;
1682 case 3:
1683 refresh_rate = 31250;
1684 break;
1685 case 4:
1686 refresh_rate = 62500;
1687 break;
1688 case 5:
1689 refresh_rate = 125000;
1690 break;
1691 default:
1692 refresh_rate = 0;
1693 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1694 (unsigned int)dimm_num);
1695 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02001696 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01001697 break;
1698 }
1699
1700 max_refresh_rate = max(max_refresh_rate, refresh_rate);
1701 }
1702 }
1703
1704 rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1705 mfsdram(SDRAM_RTR, val);
1706 mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1707 (SDRAM_RTR_RINT_ENCODE(rint)));
1708}
1709
1710/*------------------------------------------------------------------
1711 * This routine programs the SDRAM_TRx registers.
1712 *-----------------------------------------------------------------*/
1713static void program_tr(unsigned long *dimm_populated,
1714 unsigned char *iic0_dimm_addr,
1715 unsigned long num_dimm_banks)
1716{
1717 unsigned long dimm_num;
1718 unsigned long sdram_ddr1;
1719 unsigned long t_rp_ns;
1720 unsigned long t_rcd_ns;
1721 unsigned long t_rrd_ns;
1722 unsigned long t_ras_ns;
1723 unsigned long t_rc_ns;
1724 unsigned long t_rfc_ns;
1725 unsigned long t_wpc_ns;
1726 unsigned long t_wtr_ns;
1727 unsigned long t_rpc_ns;
1728 unsigned long t_rp_clk;
1729 unsigned long t_rcd_clk;
1730 unsigned long t_rrd_clk;
1731 unsigned long t_ras_clk;
1732 unsigned long t_rc_clk;
1733 unsigned long t_rfc_clk;
1734 unsigned long t_wpc_clk;
1735 unsigned long t_wtr_clk;
1736 unsigned long t_rpc_clk;
1737 unsigned long sdtr1, sdtr2, sdtr3;
1738 unsigned long ddr_check;
1739 unsigned long sdram_freq;
1740 unsigned long sdr_ddrpll;
1741
1742 PPC440_SYS_INFO board_cfg;
1743
1744 /*------------------------------------------------------------------
1745 * Get the board configuration info.
1746 *-----------------------------------------------------------------*/
1747 get_sys_info(&board_cfg);
1748
Stefan Roesedf294492007-03-08 10:06:09 +01001749 mfsdr(SDR0_DDR0, sdr_ddrpll);
Stefan Roese4037ed32007-02-20 10:43:34 +01001750 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1751
1752 /*------------------------------------------------------------------
1753 * Handle the timing. We need to find the worst case timing of all
1754 * the dimm modules installed.
1755 *-----------------------------------------------------------------*/
1756 t_rp_ns = 0;
1757 t_rrd_ns = 0;
1758 t_rcd_ns = 0;
1759 t_ras_ns = 0;
1760 t_rc_ns = 0;
1761 t_rfc_ns = 0;
1762 t_wpc_ns = 0;
1763 t_wtr_ns = 0;
1764 t_rpc_ns = 0;
1765 sdram_ddr1 = TRUE;
1766
1767 /* loop through all the DIMM slots on the board */
1768 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1769 /* If a dimm is installed in a particular slot ... */
1770 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1771 if (dimm_populated[dimm_num] == SDRAM_DDR2)
1772 sdram_ddr1 = TRUE;
1773 else
1774 sdram_ddr1 = FALSE;
1775
1776 t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1777 t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1778 t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1779 t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1780 t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
1781 t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1782 }
1783 }
1784
1785 /*------------------------------------------------------------------
1786 * Set the SDRAM Timing Reg 1, SDRAM_TR1
1787 *-----------------------------------------------------------------*/
1788 mfsdram(SDRAM_SDTR1, sdtr1);
1789 sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1790 SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1791
1792 /* default values */
1793 sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1794 sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1795
1796 /* normal operations */
1797 sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1798 sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1799
1800 mtsdram(SDRAM_SDTR1, sdtr1);
1801
1802 /*------------------------------------------------------------------
1803 * Set the SDRAM Timing Reg 2, SDRAM_TR2
1804 *-----------------------------------------------------------------*/
1805 mfsdram(SDRAM_SDTR2, sdtr2);
1806 sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
1807 SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1808 SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
1809 SDRAM_SDTR2_RRD_MASK);
1810
1811 /*
1812 * convert t_rcd from nanoseconds to ddr clocks
1813 * round up if necessary
1814 */
1815 t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1816 ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1817 if (sdram_freq != ddr_check)
1818 t_rcd_clk++;
1819
1820 switch (t_rcd_clk) {
1821 case 0:
1822 case 1:
1823 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1824 break;
1825 case 2:
1826 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1827 break;
1828 case 3:
1829 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1830 break;
1831 case 4:
1832 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1833 break;
1834 default:
1835 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1836 break;
1837 }
1838
1839 if (sdram_ddr1 == TRUE) { /* DDR1 */
1840 if (sdram_freq < 200000000) {
1841 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1842 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1843 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1844 } else {
1845 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1846 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1847 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1848 }
1849 } else { /* DDR2 */
1850 /* loop through all the DIMM slots on the board */
1851 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1852 /* If a dimm is installed in a particular slot ... */
1853 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1854 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1855 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1856 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1857 }
1858 }
1859
1860 /*
1861 * convert from nanoseconds to ddr clocks
1862 * round up if necessary
1863 */
1864 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1865 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1866 if (sdram_freq != ddr_check)
1867 t_wpc_clk++;
1868
1869 switch (t_wpc_clk) {
1870 case 0:
1871 case 1:
1872 case 2:
1873 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1874 break;
1875 case 3:
1876 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1877 break;
1878 case 4:
1879 sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1880 break;
1881 case 5:
1882 sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1883 break;
1884 default:
1885 sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1886 break;
1887 }
1888
1889 /*
1890 * convert from nanoseconds to ddr clocks
1891 * round up if necessary
1892 */
1893 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1894 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1895 if (sdram_freq != ddr_check)
1896 t_wtr_clk++;
1897
1898 switch (t_wtr_clk) {
1899 case 0:
1900 case 1:
1901 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1902 break;
1903 case 2:
1904 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1905 break;
1906 case 3:
1907 sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1908 break;
1909 default:
1910 sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1911 break;
1912 }
1913
1914 /*
1915 * convert from nanoseconds to ddr clocks
1916 * round up if necessary
1917 */
1918 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1919 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1920 if (sdram_freq != ddr_check)
1921 t_rpc_clk++;
1922
1923 switch (t_rpc_clk) {
1924 case 0:
1925 case 1:
1926 case 2:
1927 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1928 break;
1929 case 3:
1930 sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1931 break;
1932 default:
1933 sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1934 break;
1935 }
1936 }
1937
1938 /* default value */
1939 sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1940
1941 /*
1942 * convert t_rrd from nanoseconds to ddr clocks
1943 * round up if necessary
1944 */
1945 t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1946 ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1947 if (sdram_freq != ddr_check)
1948 t_rrd_clk++;
1949
1950 if (t_rrd_clk == 3)
1951 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1952 else
1953 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1954
1955 /*
1956 * convert t_rp from nanoseconds to ddr clocks
1957 * round up if necessary
1958 */
1959 t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1960 ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1961 if (sdram_freq != ddr_check)
1962 t_rp_clk++;
1963
1964 switch (t_rp_clk) {
1965 case 0:
1966 case 1:
1967 case 2:
1968 case 3:
1969 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1970 break;
1971 case 4:
1972 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1973 break;
1974 case 5:
1975 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1976 break;
1977 case 6:
1978 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1979 break;
1980 default:
1981 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1982 break;
1983 }
1984
1985 mtsdram(SDRAM_SDTR2, sdtr2);
1986
1987 /*------------------------------------------------------------------
1988 * Set the SDRAM Timing Reg 3, SDRAM_TR3
1989 *-----------------------------------------------------------------*/
1990 mfsdram(SDRAM_SDTR3, sdtr3);
1991 sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
1992 SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1993
1994 /*
1995 * convert t_ras from nanoseconds to ddr clocks
1996 * round up if necessary
1997 */
1998 t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1999 ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
2000 if (sdram_freq != ddr_check)
2001 t_ras_clk++;
2002
2003 sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
2004
2005 /*
2006 * convert t_rc from nanoseconds to ddr clocks
2007 * round up if necessary
2008 */
2009 t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
2010 ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
2011 if (sdram_freq != ddr_check)
2012 t_rc_clk++;
2013
2014 sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
2015
2016 /* default xcs value */
2017 sdtr3 |= SDRAM_SDTR3_XCS;
2018
2019 /*
2020 * convert t_rfc from nanoseconds to ddr clocks
2021 * round up if necessary
2022 */
2023 t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
2024 ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
2025 if (sdram_freq != ddr_check)
2026 t_rfc_clk++;
2027
2028 sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
2029
2030 mtsdram(SDRAM_SDTR3, sdtr3);
2031}
2032
2033/*-----------------------------------------------------------------------------+
2034 * program_bxcf.
2035 *-----------------------------------------------------------------------------*/
2036static void program_bxcf(unsigned long *dimm_populated,
2037 unsigned char *iic0_dimm_addr,
2038 unsigned long num_dimm_banks)
2039{
2040 unsigned long dimm_num;
2041 unsigned long num_col_addr;
2042 unsigned long num_ranks;
2043 unsigned long num_banks;
2044 unsigned long mode;
2045 unsigned long ind_rank;
2046 unsigned long ind;
2047 unsigned long ind_bank;
2048 unsigned long bank_0_populated;
2049
2050 /*------------------------------------------------------------------
2051 * Set the BxCF regs. First, wipe out the bank config registers.
2052 *-----------------------------------------------------------------*/
2053 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
2054 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2055 mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
2056 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2057 mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
2058 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2059 mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
2060 mtdcr(SDRAMC_CFGDATA, 0x00000000);
2061
2062 mode = SDRAM_BXCF_M_BE_ENABLE;
2063
2064 bank_0_populated = 0;
2065
2066 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2067 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2068 num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2069 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2070 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2071 num_ranks = (num_ranks & 0x0F) +1;
2072 else
2073 num_ranks = num_ranks & 0x0F;
2074
2075 num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2076
2077 for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2078 if (num_banks == 4)
2079 ind = 0;
2080 else
2081 ind = 5;
2082 switch (num_col_addr) {
2083 case 0x08:
2084 mode |= (SDRAM_BXCF_M_AM_0 + ind);
2085 break;
2086 case 0x09:
2087 mode |= (SDRAM_BXCF_M_AM_1 + ind);
2088 break;
2089 case 0x0A:
2090 mode |= (SDRAM_BXCF_M_AM_2 + ind);
2091 break;
2092 case 0x0B:
2093 mode |= (SDRAM_BXCF_M_AM_3 + ind);
2094 break;
2095 case 0x0C:
2096 mode |= (SDRAM_BXCF_M_AM_4 + ind);
2097 break;
2098 default:
2099 printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2100 (unsigned int)dimm_num);
2101 printf("ERROR: Unsupported value for number of "
2102 "column addresses: %d.\n", (unsigned int)num_col_addr);
2103 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02002104 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01002105 }
2106 }
2107
2108 if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2109 bank_0_populated = 1;
2110
2111 for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2112 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2113 mtdcr(SDRAMC_CFGDATA, mode);
2114 }
2115 }
2116 }
2117}
2118
2119/*------------------------------------------------------------------
2120 * program memory queue.
2121 *-----------------------------------------------------------------*/
2122static void program_memory_queue(unsigned long *dimm_populated,
2123 unsigned char *iic0_dimm_addr,
2124 unsigned long num_dimm_banks)
2125{
2126 unsigned long dimm_num;
2127 unsigned long rank_base_addr;
2128 unsigned long rank_reg;
2129 unsigned long rank_size_bytes;
2130 unsigned long rank_size_id;
2131 unsigned long num_ranks;
2132 unsigned long baseadd_size;
2133 unsigned long i;
2134 unsigned long bank_0_populated = 0;
2135
2136 /*------------------------------------------------------------------
2137 * Reset the rank_base_address.
2138 *-----------------------------------------------------------------*/
2139 rank_reg = SDRAM_R0BAS;
2140
2141 rank_base_addr = 0x00000000;
2142
2143 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2144 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2145 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2146 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2147 num_ranks = (num_ranks & 0x0F) + 1;
2148 else
2149 num_ranks = num_ranks & 0x0F;
2150
2151 rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2152
2153 /*------------------------------------------------------------------
2154 * Set the sizes
2155 *-----------------------------------------------------------------*/
2156 baseadd_size = 0;
Stefan Roesedf294492007-03-08 10:06:09 +01002157 rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
Stefan Roese4037ed32007-02-20 10:43:34 +01002158 switch (rank_size_id) {
2159 case 0x02:
2160 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2161 break;
2162 case 0x04:
2163 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2164 break;
2165 case 0x08:
2166 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2167 break;
2168 case 0x10:
2169 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2170 break;
2171 case 0x20:
2172 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2173 break;
2174 case 0x40:
2175 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2176 break;
2177 case 0x80:
2178 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2179 break;
2180 default:
2181 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2182 (unsigned int)dimm_num);
2183 printf("ERROR: Unsupported value for the banksize: %d.\n",
2184 (unsigned int)rank_size_id);
2185 printf("Replace the DIMM module with a supported DIMM.\n\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02002186 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01002187 }
2188
2189 if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2190 bank_0_populated = 1;
2191
2192 for (i = 0; i < num_ranks; i++) {
2193 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
Stefan Roesedf294492007-03-08 10:06:09 +01002194 (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2195 baseadd_size));
Stefan Roese4037ed32007-02-20 10:43:34 +01002196 rank_base_addr += rank_size_bytes;
2197 }
2198 }
2199 }
2200}
2201
2202/*-----------------------------------------------------------------------------+
2203 * is_ecc_enabled.
2204 *-----------------------------------------------------------------------------*/
2205static unsigned long is_ecc_enabled(void)
2206{
2207 unsigned long dimm_num;
2208 unsigned long ecc;
2209 unsigned long val;
2210
2211 ecc = 0;
2212 /* loop through all the DIMM slots on the board */
2213 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2214 mfsdram(SDRAM_MCOPT1, val);
2215 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2216 }
2217
Stefan Roesedf294492007-03-08 10:06:09 +01002218 return ecc;
Stefan Roese4037ed32007-02-20 10:43:34 +01002219}
2220
Stefan Roese94f54702007-03-31 08:46:08 +02002221static void blank_string(int size)
2222{
2223 int i;
2224
2225 for (i=0; i<size; i++)
2226 putc('\b');
2227 for (i=0; i<size; i++)
2228 putc(' ');
2229 for (i=0; i<size; i++)
2230 putc('\b');
2231}
2232
Stefan Roesedf294492007-03-08 10:06:09 +01002233#ifdef CONFIG_DDR_ECC
Stefan Roese4037ed32007-02-20 10:43:34 +01002234/*-----------------------------------------------------------------------------+
2235 * program_ecc.
2236 *-----------------------------------------------------------------------------*/
2237static void program_ecc(unsigned long *dimm_populated,
2238 unsigned char *iic0_dimm_addr,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002239 unsigned long num_dimm_banks,
2240 unsigned long tlb_word2_i_value)
Stefan Roese4037ed32007-02-20 10:43:34 +01002241{
2242 unsigned long mcopt1;
2243 unsigned long mcopt2;
2244 unsigned long mcstat;
2245 unsigned long dimm_num;
2246 unsigned long ecc;
2247
2248 ecc = 0;
2249 /* loop through all the DIMM slots on the board */
2250 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2251 /* If a dimm is installed in a particular slot ... */
2252 if (dimm_populated[dimm_num] != SDRAM_NONE)
2253 ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2254 }
2255 if (ecc == 0)
2256 return;
2257
2258 mfsdram(SDRAM_MCOPT1, mcopt1);
2259 mfsdram(SDRAM_MCOPT2, mcopt2);
2260
2261 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2262 /* DDR controller must be enabled and not in self-refresh. */
2263 mfsdram(SDRAM_MCSTAT, mcstat);
2264 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2265 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2266 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2267 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2268
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002269 program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
Stefan Roese4037ed32007-02-20 10:43:34 +01002270 }
2271 }
2272
2273 return;
2274}
2275
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002276#ifdef CONFIG_ECC_ERROR_RESET
2277/*
2278 * Check for ECC errors and reset board upon any error here
2279 *
2280 * On the Katmai 440SPe eval board, from time to time, the first
2281 * lword write access after DDR2 initializazion with ECC checking
2282 * enabled, leads to an ECC error. I couldn't find a configuration
2283 * without this happening. On my board with the current setup it
2284 * happens about 1 from 10 times.
2285 *
2286 * The ECC modules used for testing are:
2287 * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2288 *
2289 * This has to get fixed for the Katmai and tested for the other
2290 * board (440SP/440SPe) that will eventually use this code in the
2291 * future.
2292 *
2293 * 2007-03-01, sr
2294 */
2295static void check_ecc(void)
2296{
2297 u32 val;
2298
2299 mfsdram(SDRAM_ECCCR, val);
2300 if (val != 0) {
2301 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2302 val, mfdcr(0x4c), mfdcr(0x4e));
2303 printf("ECC error occured, resetting board...\n");
2304 do_reset(NULL, 0, 0, NULL);
2305 }
2306}
2307#endif
2308
Stefan Roesedf294492007-03-08 10:06:09 +01002309static void wait_ddr_idle(void)
2310{
2311 u32 val;
2312
2313 do {
2314 mfsdram(SDRAM_MCSTAT, val);
2315 } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2316}
2317
Stefan Roese4037ed32007-02-20 10:43:34 +01002318/*-----------------------------------------------------------------------------+
2319 * program_ecc_addr.
2320 *-----------------------------------------------------------------------------*/
2321static void program_ecc_addr(unsigned long start_address,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002322 unsigned long num_bytes,
2323 unsigned long tlb_word2_i_value)
Stefan Roese4037ed32007-02-20 10:43:34 +01002324{
2325 unsigned long current_address;
2326 unsigned long end_address;
2327 unsigned long address_increment;
2328 unsigned long mcopt1;
Stefan Roese94f54702007-03-31 08:46:08 +02002329 char str[] = "ECC generation -";
2330 char slash[] = "\\|/-\\|/-";
2331 int loop = 0;
2332 int loopi = 0;
Stefan Roese4037ed32007-02-20 10:43:34 +01002333
2334 current_address = start_address;
2335 mfsdram(SDRAM_MCOPT1, mcopt1);
2336 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2337 mtsdram(SDRAM_MCOPT1,
2338 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2339 sync();
2340 eieio();
2341 wait_ddr_idle();
2342
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002343 puts(str);
2344 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2345 /* ECC bit set method for non-cached memory */
2346 if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2347 address_increment = 4;
2348 else
2349 address_increment = 8;
2350 end_address = current_address + num_bytes;
Stefan Roese4037ed32007-02-20 10:43:34 +01002351
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002352 while (current_address < end_address) {
2353 *((unsigned long *)current_address) = 0x00000000;
2354 current_address += address_increment;
Stefan Roese94f54702007-03-31 08:46:08 +02002355
2356 if ((loop++ % (2 << 20)) == 0) {
2357 putc('\b');
2358 putc(slash[loopi++ % 8]);
2359 }
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002360 }
Stefan Roese94f54702007-03-31 08:46:08 +02002361
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002362 } else {
2363 /* ECC bit set method for cached memory */
2364 dcbz_area(start_address, num_bytes);
2365 dflush();
Stefan Roese4037ed32007-02-20 10:43:34 +01002366 }
Stefan Roese94f54702007-03-31 08:46:08 +02002367
2368 blank_string(strlen(str));
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002369
Stefan Roese4037ed32007-02-20 10:43:34 +01002370 sync();
2371 eieio();
2372 wait_ddr_idle();
2373
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002374 /* clear ECC error repoting registers */
2375 mtsdram(SDRAM_ECCCR, 0xffffffff);
2376 mtdcr(0x4c, 0xffffffff);
2377
Stefan Roese4037ed32007-02-20 10:43:34 +01002378 mtsdram(SDRAM_MCOPT1,
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002379 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
Stefan Roese4037ed32007-02-20 10:43:34 +01002380 sync();
2381 eieio();
2382 wait_ddr_idle();
Stefan Roeseba58e4c2007-03-01 21:11:36 +01002383
2384#ifdef CONFIG_ECC_ERROR_RESET
2385 /*
2386 * One write to 0 is enough to trigger this ECC error
2387 * (see description above)
2388 */
2389 out_be32(0, 0x12345678);
2390 check_ecc();
2391#endif
Stefan Roese4037ed32007-02-20 10:43:34 +01002392 }
2393}
Stefan Roesedf294492007-03-08 10:06:09 +01002394#endif
Stefan Roese4037ed32007-02-20 10:43:34 +01002395
2396/*-----------------------------------------------------------------------------+
2397 * program_DQS_calibration.
2398 *-----------------------------------------------------------------------------*/
2399static void program_DQS_calibration(unsigned long *dimm_populated,
2400 unsigned char *iic0_dimm_addr,
2401 unsigned long num_dimm_banks)
2402{
2403 unsigned long val;
2404
2405#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2406 mtsdram(SDRAM_RQDC, 0x80000037);
2407 mtsdram(SDRAM_RDCC, 0x40000000);
2408 mtsdram(SDRAM_RFDC, 0x000001DF);
2409
2410 test();
2411#else
2412 /*------------------------------------------------------------------
2413 * Program RDCC register
2414 * Read sample cycle auto-update enable
2415 *-----------------------------------------------------------------*/
2416
2417 /*
2418 * Modified for the Katmai platform: with some DIMMs, the DDR2
2419 * controller automatically selects the T2 read cycle, but this
2420 * proves unreliable. Go ahead and force the DDR2 controller
2421 * to use the T4 sample and disable the automatic update of the
2422 * RDSS field.
2423 */
2424 mfsdram(SDRAM_RDCC, val);
2425 mtsdram(SDRAM_RDCC,
2426 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2427 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2428
2429 /*------------------------------------------------------------------
2430 * Program RQDC register
2431 * Internal DQS delay mechanism enable
2432 *-----------------------------------------------------------------*/
2433 mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2434
2435 /*------------------------------------------------------------------
2436 * Program RFDC register
2437 * Set Feedback Fractional Oversample
2438 * Auto-detect read sample cycle enable
2439 *-----------------------------------------------------------------*/
2440 mfsdram(SDRAM_RFDC, val);
2441 mtsdram(SDRAM_RFDC,
2442 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2443 SDRAM_RFDC_RFFD_MASK))
2444 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2445 SDRAM_RFDC_RFFD_ENCODE(0)));
2446
2447 DQS_calibration_process();
2448#endif
2449}
2450
Stefan Roese94f54702007-03-31 08:46:08 +02002451static int short_mem_test(void)
Stefan Roese4037ed32007-02-20 10:43:34 +01002452{
2453 u32 *membase;
2454 u32 bxcr_num;
2455 u32 bxcf;
2456 int i;
2457 int j;
2458 u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2459 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2460 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2461 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2462 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2463 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2464 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2465 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2466 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2467 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2468 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2469 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2470 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2471 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2472 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2473 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2474 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
Stefan Roese94f54702007-03-31 08:46:08 +02002475 int l;
Stefan Roese4037ed32007-02-20 10:43:34 +01002476
2477 for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2478 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2479
2480 /* Banks enabled */
2481 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
Stefan Roese4037ed32007-02-20 10:43:34 +01002482 /* Bank is enabled */
Stefan Roese4037ed32007-02-20 10:43:34 +01002483
2484 /*------------------------------------------------------------------
2485 * Run the short memory test.
2486 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002487 membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2488
Stefan Roese4037ed32007-02-20 10:43:34 +01002489 for (i = 0; i < NUMMEMTESTS; i++) {
2490 for (j = 0; j < NUMMEMWORDS; j++) {
2491 membase[j] = test[i][j];
2492 ppcDcbf((u32)&(membase[j]));
2493 }
2494 sync();
Stefan Roese94f54702007-03-31 08:46:08 +02002495 for (l=0; l<NUMLOOPS; l++) {
2496 for (j = 0; j < NUMMEMWORDS; j++) {
2497 if (membase[j] != test[i][j]) {
2498 ppcDcbf((u32)&(membase[j]));
2499 return 0;
2500 }
Stefan Roese4037ed32007-02-20 10:43:34 +01002501 ppcDcbf((u32)&(membase[j]));
Stefan Roese4037ed32007-02-20 10:43:34 +01002502 }
Stefan Roese94f54702007-03-31 08:46:08 +02002503 sync();
Stefan Roese4037ed32007-02-20 10:43:34 +01002504 }
Stefan Roese4037ed32007-02-20 10:43:34 +01002505 }
Stefan Roese4037ed32007-02-20 10:43:34 +01002506 } /* if bank enabled */
2507 } /* for bxcf_num */
2508
Stefan Roese94f54702007-03-31 08:46:08 +02002509 return 1;
Stefan Roese4037ed32007-02-20 10:43:34 +01002510}
2511
2512#ifndef HARD_CODED_DQS
2513/*-----------------------------------------------------------------------------+
2514 * DQS_calibration_process.
2515 *-----------------------------------------------------------------------------*/
2516static void DQS_calibration_process(void)
2517{
Stefan Roese4037ed32007-02-20 10:43:34 +01002518 unsigned long rfdc_reg;
2519 unsigned long rffd;
2520 unsigned long rqdc_reg;
2521 unsigned long rqfd;
Stefan Roese4037ed32007-02-20 10:43:34 +01002522 unsigned long val;
2523 long rqfd_average;
2524 long rffd_average;
2525 long max_start;
2526 long min_end;
2527 unsigned long begin_rqfd[MAXRANKS];
2528 unsigned long begin_rffd[MAXRANKS];
2529 unsigned long end_rqfd[MAXRANKS];
2530 unsigned long end_rffd[MAXRANKS];
2531 char window_found;
2532 unsigned long dlycal;
2533 unsigned long dly_val;
2534 unsigned long max_pass_length;
2535 unsigned long current_pass_length;
2536 unsigned long current_fail_length;
2537 unsigned long current_start;
2538 long max_end;
2539 unsigned char fail_found;
2540 unsigned char pass_found;
Stefan Roese94f54702007-03-31 08:46:08 +02002541 u32 rqfd_start;
2542 char str[] = "Auto calibration -";
2543 char slash[] = "\\|/-\\|/-";
2544 int loopi = 0;
Stefan Roese4037ed32007-02-20 10:43:34 +01002545
2546 /*------------------------------------------------------------------
2547 * Test to determine the best read clock delay tuning bits.
2548 *
2549 * Before the DDR controller can be used, the read clock delay needs to be
2550 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2551 * This value cannot be hardcoded into the program because it changes
2552 * depending on the board's setup and environment.
2553 * To do this, all delay values are tested to see if they
2554 * work or not. By doing this, you get groups of fails with groups of
2555 * passing values. The idea is to find the start and end of a passing
2556 * window and take the center of it to use as the read clock delay.
2557 *
2558 * A failure has to be seen first so that when we hit a pass, we know
2559 * that it is truely the start of the window. If we get passing values
2560 * to start off with, we don't know if we are at the start of the window.
2561 *
2562 * The code assumes that a failure will always be found.
2563 * If a failure is not found, there is no easy way to get the middle
2564 * of the passing window. I guess we can pretty much pick any value
2565 * but some values will be better than others. Since the lowest speed
2566 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2567 * from experimentation it is safe to say you will always have a failure.
2568 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002569
2570 /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2571 rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2572
2573 puts(str);
2574
2575calibration_loop:
2576 mfsdram(SDRAM_RQDC, rqdc_reg);
2577 mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2578 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
Stefan Roese4037ed32007-02-20 10:43:34 +01002579
2580 max_start = 0;
2581 min_end = 0;
2582 begin_rqfd[0] = 0;
2583 begin_rffd[0] = 0;
2584 begin_rqfd[1] = 0;
2585 begin_rffd[1] = 0;
2586 end_rqfd[0] = 0;
2587 end_rffd[0] = 0;
2588 end_rqfd[1] = 0;
2589 end_rffd[1] = 0;
2590 window_found = FALSE;
2591
2592 max_pass_length = 0;
2593 max_start = 0;
2594 max_end = 0;
2595 current_pass_length = 0;
2596 current_fail_length = 0;
2597 current_start = 0;
2598 window_found = FALSE;
2599 fail_found = FALSE;
2600 pass_found = FALSE;
2601
Stefan Roese4037ed32007-02-20 10:43:34 +01002602 /*
2603 * get the delay line calibration register value
2604 */
2605 mfsdram(SDRAM_DLCR, dlycal);
2606 dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2607
2608 for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2609 mfsdram(SDRAM_RFDC, rfdc_reg);
2610 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2611
2612 /*------------------------------------------------------------------
2613 * Set the timing reg for the test.
2614 *-----------------------------------------------------------------*/
2615 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2616
Stefan Roese4037ed32007-02-20 10:43:34 +01002617 /*------------------------------------------------------------------
2618 * See if the rffd value passed.
2619 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002620 if (short_mem_test()) {
Stefan Roese4037ed32007-02-20 10:43:34 +01002621 if (fail_found == TRUE) {
2622 pass_found = TRUE;
2623 if (current_pass_length == 0)
2624 current_start = rffd;
2625
2626 current_fail_length = 0;
2627 current_pass_length++;
2628
2629 if (current_pass_length > max_pass_length) {
2630 max_pass_length = current_pass_length;
2631 max_start = current_start;
2632 max_end = rffd;
2633 }
2634 }
2635 } else {
2636 current_pass_length = 0;
2637 current_fail_length++;
2638
2639 if (current_fail_length >= (dly_val >> 2)) {
2640 if (fail_found == FALSE) {
2641 fail_found = TRUE;
2642 } else if (pass_found == TRUE) {
2643 window_found = TRUE;
2644 break;
2645 }
2646 }
2647 }
2648 } /* for rffd */
2649
Stefan Roese4037ed32007-02-20 10:43:34 +01002650 /*------------------------------------------------------------------
2651 * Set the average RFFD value
2652 *-----------------------------------------------------------------*/
2653 rffd_average = ((max_start + max_end) >> 1);
2654
2655 if (rffd_average < 0)
2656 rffd_average = 0;
2657
2658 if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2659 rffd_average = SDRAM_RFDC_RFFD_MAX;
2660 /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2661 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2662
2663 max_pass_length = 0;
2664 max_start = 0;
2665 max_end = 0;
2666 current_pass_length = 0;
2667 current_fail_length = 0;
2668 current_start = 0;
2669 window_found = FALSE;
2670 fail_found = FALSE;
2671 pass_found = FALSE;
2672
2673 for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2674 mfsdram(SDRAM_RQDC, rqdc_reg);
2675 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2676
2677 /*------------------------------------------------------------------
2678 * Set the timing reg for the test.
2679 *-----------------------------------------------------------------*/
2680 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2681
Stefan Roese4037ed32007-02-20 10:43:34 +01002682 /*------------------------------------------------------------------
2683 * See if the rffd value passed.
2684 *-----------------------------------------------------------------*/
Stefan Roese94f54702007-03-31 08:46:08 +02002685 if (short_mem_test()) {
Stefan Roese4037ed32007-02-20 10:43:34 +01002686 if (fail_found == TRUE) {
2687 pass_found = TRUE;
2688 if (current_pass_length == 0)
2689 current_start = rqfd;
2690
2691 current_fail_length = 0;
2692 current_pass_length++;
2693
2694 if (current_pass_length > max_pass_length) {
2695 max_pass_length = current_pass_length;
2696 max_start = current_start;
2697 max_end = rqfd;
2698 }
2699 }
2700 } else {
2701 current_pass_length = 0;
2702 current_fail_length++;
2703
2704 if (fail_found == FALSE) {
2705 fail_found = TRUE;
2706 } else if (pass_found == TRUE) {
2707 window_found = TRUE;
2708 break;
2709 }
2710 }
2711 }
2712
Stefan Roese94f54702007-03-31 08:46:08 +02002713 rqfd_average = ((max_start + max_end) >> 1);
2714
Stefan Roese4037ed32007-02-20 10:43:34 +01002715 /*------------------------------------------------------------------
2716 * Make sure we found the valid read passing window. Halt if not
2717 *-----------------------------------------------------------------*/
2718 if (window_found == FALSE) {
Stefan Roese94f54702007-03-31 08:46:08 +02002719 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2720 putc('\b');
2721 putc(slash[loopi++ % 8]);
2722
2723 /* try again from with a different RQFD start value */
2724 rqfd_start++;
2725 goto calibration_loop;
2726 }
2727
2728 printf("\nERROR: Cannot determine a common read delay for the "
Stefan Roese4037ed32007-02-20 10:43:34 +01002729 "DIMM(s) installed.\n");
2730 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
Stefan Roese6ed14ad2007-07-16 09:57:00 +02002731 ppc440sp_sdram_register_dump();
Heiko Schochera5d71e22007-06-25 19:11:37 +02002732 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01002733 }
2734
Stefan Roese94f54702007-03-31 08:46:08 +02002735 blank_string(strlen(str));
Stefan Roese4037ed32007-02-20 10:43:34 +01002736
2737 if (rqfd_average < 0)
2738 rqfd_average = 0;
2739
2740 if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2741 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2742
Stefan Roese4037ed32007-02-20 10:43:34 +01002743 mtsdram(SDRAM_RQDC,
2744 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2745 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2746
2747 mfsdram(SDRAM_DLCR, val);
2748 debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2749 mfsdram(SDRAM_RQDC, val);
2750 debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2751 mfsdram(SDRAM_RFDC, val);
2752 debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2753}
2754#else /* calibration test with hardvalues */
2755/*-----------------------------------------------------------------------------+
2756 * DQS_calibration_process.
2757 *-----------------------------------------------------------------------------*/
2758static void test(void)
2759{
2760 unsigned long dimm_num;
2761 unsigned long ecc_temp;
2762 unsigned long i, j;
2763 unsigned long *membase;
2764 unsigned long bxcf[MAXRANKS];
2765 unsigned long val;
2766 char window_found;
2767 char begin_found[MAXDIMMS];
2768 char end_found[MAXDIMMS];
2769 char search_end[MAXDIMMS];
2770 unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2771 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2772 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2773 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2774 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2775 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2776 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2777 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2778 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2779 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2780 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2781 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2782 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2783 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2784 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2785 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2786 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2787
2788 /*------------------------------------------------------------------
2789 * Test to determine the best read clock delay tuning bits.
2790 *
2791 * Before the DDR controller can be used, the read clock delay needs to be
2792 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2793 * This value cannot be hardcoded into the program because it changes
2794 * depending on the board's setup and environment.
2795 * To do this, all delay values are tested to see if they
2796 * work or not. By doing this, you get groups of fails with groups of
2797 * passing values. The idea is to find the start and end of a passing
2798 * window and take the center of it to use as the read clock delay.
2799 *
2800 * A failure has to be seen first so that when we hit a pass, we know
2801 * that it is truely the start of the window. If we get passing values
2802 * to start off with, we don't know if we are at the start of the window.
2803 *
2804 * The code assumes that a failure will always be found.
2805 * If a failure is not found, there is no easy way to get the middle
2806 * of the passing window. I guess we can pretty much pick any value
2807 * but some values will be better than others. Since the lowest speed
2808 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2809 * from experimentation it is safe to say you will always have a failure.
2810 *-----------------------------------------------------------------*/
2811 mfsdram(SDRAM_MCOPT1, ecc_temp);
2812 ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2813 mfsdram(SDRAM_MCOPT1, val);
2814 mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2815 SDRAM_MCOPT1_MCHK_NON);
2816
2817 window_found = FALSE;
2818 begin_found[0] = FALSE;
2819 end_found[0] = FALSE;
2820 search_end[0] = FALSE;
2821 begin_found[1] = FALSE;
2822 end_found[1] = FALSE;
2823 search_end[1] = FALSE;
2824
2825 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2826 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2827
2828 /* Banks enabled */
2829 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2830
2831 /* Bank is enabled */
2832 membase =
2833 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2834
2835 /*------------------------------------------------------------------
2836 * Run the short memory test.
2837 *-----------------------------------------------------------------*/
2838 for (i = 0; i < NUMMEMTESTS; i++) {
2839 for (j = 0; j < NUMMEMWORDS; j++) {
2840 membase[j] = test[i][j];
2841 ppcDcbf((u32)&(membase[j]));
2842 }
2843 sync();
2844 for (j = 0; j < NUMMEMWORDS; j++) {
2845 if (membase[j] != test[i][j]) {
2846 ppcDcbf((u32)&(membase[j]));
2847 break;
2848 }
2849 ppcDcbf((u32)&(membase[j]));
2850 }
2851 sync();
2852 if (j < NUMMEMWORDS)
2853 break;
2854 }
2855
2856 /*------------------------------------------------------------------
2857 * See if the rffd value passed.
2858 *-----------------------------------------------------------------*/
2859 if (i < NUMMEMTESTS) {
2860 if ((end_found[dimm_num] == FALSE) &&
2861 (search_end[dimm_num] == TRUE)) {
2862 end_found[dimm_num] = TRUE;
2863 }
2864 if ((end_found[0] == TRUE) &&
2865 (end_found[1] == TRUE))
2866 break;
2867 } else {
2868 if (begin_found[dimm_num] == FALSE) {
2869 begin_found[dimm_num] = TRUE;
2870 search_end[dimm_num] = TRUE;
2871 }
2872 }
2873 } else {
2874 begin_found[dimm_num] = TRUE;
2875 end_found[dimm_num] = TRUE;
2876 }
2877 }
2878
2879 if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2880 window_found = TRUE;
2881
2882 /*------------------------------------------------------------------
2883 * Make sure we found the valid read passing window. Halt if not
2884 *-----------------------------------------------------------------*/
2885 if (window_found == FALSE) {
2886 printf("ERROR: Cannot determine a common read delay for the "
2887 "DIMM(s) installed.\n");
Heiko Schochera5d71e22007-06-25 19:11:37 +02002888 spd_ddr_init_hang ();
Stefan Roese4037ed32007-02-20 10:43:34 +01002889 }
2890
2891 /*------------------------------------------------------------------
2892 * Restore the ECC variable to what it originally was
2893 *-----------------------------------------------------------------*/
2894 mtsdram(SDRAM_MCOPT1,
2895 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2896 | ecc_temp);
2897}
2898#endif
2899
2900#if defined(DEBUG)
2901static void ppc440sp_sdram_register_dump(void)
2902{
2903 unsigned int sdram_reg;
2904 unsigned int sdram_data;
2905 unsigned int dcr_data;
2906
2907 printf("\n Register Dump:\n");
2908 sdram_reg = SDRAM_MCSTAT;
2909 mfsdram(sdram_reg, sdram_data);
2910 printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
2911 sdram_reg = SDRAM_MCOPT1;
2912 mfsdram(sdram_reg, sdram_data);
2913 printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
2914 sdram_reg = SDRAM_MCOPT2;
2915 mfsdram(sdram_reg, sdram_data);
2916 printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
2917 sdram_reg = SDRAM_MODT0;
2918 mfsdram(sdram_reg, sdram_data);
2919 printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
2920 sdram_reg = SDRAM_MODT1;
2921 mfsdram(sdram_reg, sdram_data);
2922 printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
2923 sdram_reg = SDRAM_MODT2;
2924 mfsdram(sdram_reg, sdram_data);
2925 printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
2926 sdram_reg = SDRAM_MODT3;
2927 mfsdram(sdram_reg, sdram_data);
2928 printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
2929 sdram_reg = SDRAM_CODT;
2930 mfsdram(sdram_reg, sdram_data);
2931 printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
2932 sdram_reg = SDRAM_VVPR;
2933 mfsdram(sdram_reg, sdram_data);
2934 printf(" SDRAM_VVPR = 0x%08X", sdram_data);
2935 sdram_reg = SDRAM_OPARS;
2936 mfsdram(sdram_reg, sdram_data);
2937 printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
2938 /*
2939 * OPAR2 is only used as a trigger register.
2940 * No data is contained in this register, and reading or writing
2941 * to is can cause bad things to happen (hangs). Just skip it
2942 * and report NA
2943 * sdram_reg = SDRAM_OPAR2;
2944 * mfsdram(sdram_reg, sdram_data);
2945 * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
2946 */
2947 printf(" SDRAM_OPART = N/A ");
2948 sdram_reg = SDRAM_RTR;
2949 mfsdram(sdram_reg, sdram_data);
2950 printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
2951 sdram_reg = SDRAM_MB0CF;
2952 mfsdram(sdram_reg, sdram_data);
2953 printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
2954 sdram_reg = SDRAM_MB1CF;
2955 mfsdram(sdram_reg, sdram_data);
2956 printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
2957 sdram_reg = SDRAM_MB2CF;
2958 mfsdram(sdram_reg, sdram_data);
2959 printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
2960 sdram_reg = SDRAM_MB3CF;
2961 mfsdram(sdram_reg, sdram_data);
2962 printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
2963 sdram_reg = SDRAM_INITPLR0;
2964 mfsdram(sdram_reg, sdram_data);
2965 printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
2966 sdram_reg = SDRAM_INITPLR1;
2967 mfsdram(sdram_reg, sdram_data);
2968 printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
2969 sdram_reg = SDRAM_INITPLR2;
2970 mfsdram(sdram_reg, sdram_data);
2971 printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
2972 sdram_reg = SDRAM_INITPLR3;
2973 mfsdram(sdram_reg, sdram_data);
2974 printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
2975 sdram_reg = SDRAM_INITPLR4;
2976 mfsdram(sdram_reg, sdram_data);
2977 printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
2978 sdram_reg = SDRAM_INITPLR5;
2979 mfsdram(sdram_reg, sdram_data);
2980 printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
2981 sdram_reg = SDRAM_INITPLR6;
2982 mfsdram(sdram_reg, sdram_data);
2983 printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
2984 sdram_reg = SDRAM_INITPLR7;
2985 mfsdram(sdram_reg, sdram_data);
2986 printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
2987 sdram_reg = SDRAM_INITPLR8;
2988 mfsdram(sdram_reg, sdram_data);
2989 printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
2990 sdram_reg = SDRAM_INITPLR9;
2991 mfsdram(sdram_reg, sdram_data);
2992 printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
2993 sdram_reg = SDRAM_INITPLR10;
2994 mfsdram(sdram_reg, sdram_data);
2995 printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
2996 sdram_reg = SDRAM_INITPLR11;
2997 mfsdram(sdram_reg, sdram_data);
2998 printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2999 sdram_reg = SDRAM_INITPLR12;
3000 mfsdram(sdram_reg, sdram_data);
3001 printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
3002 sdram_reg = SDRAM_INITPLR13;
3003 mfsdram(sdram_reg, sdram_data);
3004 printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
3005 sdram_reg = SDRAM_INITPLR14;
3006 mfsdram(sdram_reg, sdram_data);
3007 printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
3008 sdram_reg = SDRAM_INITPLR15;
3009 mfsdram(sdram_reg, sdram_data);
3010 printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
3011 sdram_reg = SDRAM_RQDC;
3012 mfsdram(sdram_reg, sdram_data);
3013 printf(" SDRAM_RQDC = 0x%08X", sdram_data);
3014 sdram_reg = SDRAM_RFDC;
3015 mfsdram(sdram_reg, sdram_data);
3016 printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
3017 sdram_reg = SDRAM_RDCC;
3018 mfsdram(sdram_reg, sdram_data);
3019 printf(" SDRAM_RDCC = 0x%08X", sdram_data);
3020 sdram_reg = SDRAM_DLCR;
3021 mfsdram(sdram_reg, sdram_data);
3022 printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
3023 sdram_reg = SDRAM_CLKTR;
3024 mfsdram(sdram_reg, sdram_data);
3025 printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
3026 sdram_reg = SDRAM_WRDTR;
3027 mfsdram(sdram_reg, sdram_data);
3028 printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
3029 sdram_reg = SDRAM_SDTR1;
3030 mfsdram(sdram_reg, sdram_data);
3031 printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
3032 sdram_reg = SDRAM_SDTR2;
3033 mfsdram(sdram_reg, sdram_data);
3034 printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
3035 sdram_reg = SDRAM_SDTR3;
3036 mfsdram(sdram_reg, sdram_data);
3037 printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
3038 sdram_reg = SDRAM_MMODE;
3039 mfsdram(sdram_reg, sdram_data);
3040 printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
3041 sdram_reg = SDRAM_MEMODE;
3042 mfsdram(sdram_reg, sdram_data);
3043 printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
3044 sdram_reg = SDRAM_ECCCR;
3045 mfsdram(sdram_reg, sdram_data);
3046 printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
3047
3048 dcr_data = mfdcr(SDRAM_R0BAS);
3049 printf(" MQ0_B0BAS = 0x%08X", dcr_data);
3050 dcr_data = mfdcr(SDRAM_R1BAS);
3051 printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
3052 dcr_data = mfdcr(SDRAM_R2BAS);
3053 printf(" MQ2_B0BAS = 0x%08X", dcr_data);
3054 dcr_data = mfdcr(SDRAM_R3BAS);
3055 printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
3056}
Stefan Roese6ed14ad2007-07-16 09:57:00 +02003057#else
3058static void ppc440sp_sdram_register_dump(void)
3059{
3060}
Stefan Roese4037ed32007-02-20 10:43:34 +01003061#endif
3062#endif /* CONFIG_SPD_EEPROM */