blob: fce0ff8bdf010d9de6d7058cd36c6e42a76501e3 [file] [log] [blame]
Kyungmin Park961df832008-11-19 16:25:44 +01001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02004 * SPDX-License-Identifier: GPL-2.0+
Kyungmin Park961df832008-11-19 16:25:44 +01005 *
6 * Author: Artem Bityutskiy (Битюцкий Артём)
7 */
8
9/*
Heiko Schocherff94bc42014-06-24 10:10:04 +020010 * The UBI Eraseblock Association (EBA) sub-system.
Kyungmin Park961df832008-11-19 16:25:44 +010011 *
Heiko Schocherff94bc42014-06-24 10:10:04 +020012 * This sub-system is responsible for I/O to/from logical eraseblock.
Kyungmin Park961df832008-11-19 16:25:44 +010013 *
14 * Although in this implementation the EBA table is fully kept and managed in
15 * RAM, which assumes poor scalability, it might be (partially) maintained on
16 * flash in future implementations.
17 *
Heiko Schocherff94bc42014-06-24 10:10:04 +020018 * The EBA sub-system implements per-logical eraseblock locking. Before
19 * accessing a logical eraseblock it is locked for reading or writing. The
20 * per-logical eraseblock locking is implemented by means of the lock tree. The
21 * lock tree is an RB-tree which refers all the currently locked logical
22 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
23 * They are indexed by (@vol_id, @lnum) pairs.
Kyungmin Park961df832008-11-19 16:25:44 +010024 *
25 * EBA also maintains the global sequence counter which is incremented each
26 * time a logical eraseblock is mapped to a physical eraseblock and it is
27 * stored in the volume identifier header. This means that each VID header has
28 * a unique sequence number. The sequence number is only increased an we assume
29 * 64 bits is enough to never overflow.
30 */
31
Heiko Schocherff94bc42014-06-24 10:10:04 +020032#ifndef __UBOOT__
Kyungmin Park961df832008-11-19 16:25:44 +010033#include <linux/slab.h>
34#include <linux/crc32.h>
Heiko Schocherff94bc42014-06-24 10:10:04 +020035#else
36#include <ubi_uboot.h>
Kyungmin Park961df832008-11-19 16:25:44 +010037#endif
38
Heiko Schocherff94bc42014-06-24 10:10:04 +020039#include <linux/err.h>
Kyungmin Park961df832008-11-19 16:25:44 +010040#include "ubi.h"
41
42/* Number of physical eraseblocks reserved for atomic LEB change operation */
43#define EBA_RESERVED_PEBS 1
44
45/**
46 * next_sqnum - get next sequence number.
47 * @ubi: UBI device description object
48 *
49 * This function returns next sequence number to use, which is just the current
50 * global sequence counter value. It also increases the global sequence
51 * counter.
52 */
Heiko Schocherff94bc42014-06-24 10:10:04 +020053unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
Kyungmin Park961df832008-11-19 16:25:44 +010054{
55 unsigned long long sqnum;
56
57 spin_lock(&ubi->ltree_lock);
58 sqnum = ubi->global_sqnum++;
59 spin_unlock(&ubi->ltree_lock);
60
61 return sqnum;
62}
63
64/**
65 * ubi_get_compat - get compatibility flags of a volume.
66 * @ubi: UBI device description object
67 * @vol_id: volume ID
68 *
69 * This function returns compatibility flags for an internal volume. User
70 * volumes have no compatibility flags, so %0 is returned.
71 */
72static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
73{
74 if (vol_id == UBI_LAYOUT_VOLUME_ID)
75 return UBI_LAYOUT_VOLUME_COMPAT;
76 return 0;
77}
78
79/**
80 * ltree_lookup - look up the lock tree.
81 * @ubi: UBI device description object
82 * @vol_id: volume ID
83 * @lnum: logical eraseblock number
84 *
85 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
86 * object if the logical eraseblock is locked and %NULL if it is not.
87 * @ubi->ltree_lock has to be locked.
88 */
89static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
90 int lnum)
91{
92 struct rb_node *p;
93
94 p = ubi->ltree.rb_node;
95 while (p) {
96 struct ubi_ltree_entry *le;
97
98 le = rb_entry(p, struct ubi_ltree_entry, rb);
99
100 if (vol_id < le->vol_id)
101 p = p->rb_left;
102 else if (vol_id > le->vol_id)
103 p = p->rb_right;
104 else {
105 if (lnum < le->lnum)
106 p = p->rb_left;
107 else if (lnum > le->lnum)
108 p = p->rb_right;
109 else
110 return le;
111 }
112 }
113
114 return NULL;
115}
116
117/**
118 * ltree_add_entry - add new entry to the lock tree.
119 * @ubi: UBI device description object
120 * @vol_id: volume ID
121 * @lnum: logical eraseblock number
122 *
123 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
124 * lock tree. If such entry is already there, its usage counter is increased.
125 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
126 * failed.
127 */
128static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
129 int vol_id, int lnum)
130{
131 struct ubi_ltree_entry *le, *le1, *le_free;
132
133 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
134 if (!le)
135 return ERR_PTR(-ENOMEM);
136
137 le->users = 0;
138 init_rwsem(&le->mutex);
139 le->vol_id = vol_id;
140 le->lnum = lnum;
141
142 spin_lock(&ubi->ltree_lock);
143 le1 = ltree_lookup(ubi, vol_id, lnum);
144
145 if (le1) {
146 /*
147 * This logical eraseblock is already locked. The newly
148 * allocated lock entry is not needed.
149 */
150 le_free = le;
151 le = le1;
152 } else {
153 struct rb_node **p, *parent = NULL;
154
155 /*
156 * No lock entry, add the newly allocated one to the
157 * @ubi->ltree RB-tree.
158 */
159 le_free = NULL;
160
161 p = &ubi->ltree.rb_node;
162 while (*p) {
163 parent = *p;
164 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
165
166 if (vol_id < le1->vol_id)
167 p = &(*p)->rb_left;
168 else if (vol_id > le1->vol_id)
169 p = &(*p)->rb_right;
170 else {
171 ubi_assert(lnum != le1->lnum);
172 if (lnum < le1->lnum)
173 p = &(*p)->rb_left;
174 else
175 p = &(*p)->rb_right;
176 }
177 }
178
179 rb_link_node(&le->rb, parent, p);
180 rb_insert_color(&le->rb, &ubi->ltree);
181 }
182 le->users += 1;
183 spin_unlock(&ubi->ltree_lock);
184
Heiko Schocherff94bc42014-06-24 10:10:04 +0200185 kfree(le_free);
Kyungmin Park961df832008-11-19 16:25:44 +0100186 return le;
187}
188
189/**
190 * leb_read_lock - lock logical eraseblock for reading.
191 * @ubi: UBI device description object
192 * @vol_id: volume ID
193 * @lnum: logical eraseblock number
194 *
195 * This function locks a logical eraseblock for reading. Returns zero in case
196 * of success and a negative error code in case of failure.
197 */
198static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
199{
200 struct ubi_ltree_entry *le;
201
202 le = ltree_add_entry(ubi, vol_id, lnum);
203 if (IS_ERR(le))
204 return PTR_ERR(le);
205 down_read(&le->mutex);
206 return 0;
207}
208
209/**
210 * leb_read_unlock - unlock logical eraseblock.
211 * @ubi: UBI device description object
212 * @vol_id: volume ID
213 * @lnum: logical eraseblock number
214 */
215static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
216{
Kyungmin Park961df832008-11-19 16:25:44 +0100217 struct ubi_ltree_entry *le;
218
219 spin_lock(&ubi->ltree_lock);
220 le = ltree_lookup(ubi, vol_id, lnum);
221 le->users -= 1;
222 ubi_assert(le->users >= 0);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200223 up_read(&le->mutex);
Kyungmin Park961df832008-11-19 16:25:44 +0100224 if (le->users == 0) {
225 rb_erase(&le->rb, &ubi->ltree);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200226 kfree(le);
Kyungmin Park961df832008-11-19 16:25:44 +0100227 }
228 spin_unlock(&ubi->ltree_lock);
Kyungmin Park961df832008-11-19 16:25:44 +0100229}
230
231/**
232 * leb_write_lock - lock logical eraseblock for writing.
233 * @ubi: UBI device description object
234 * @vol_id: volume ID
235 * @lnum: logical eraseblock number
236 *
237 * This function locks a logical eraseblock for writing. Returns zero in case
238 * of success and a negative error code in case of failure.
239 */
240static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
241{
242 struct ubi_ltree_entry *le;
243
244 le = ltree_add_entry(ubi, vol_id, lnum);
245 if (IS_ERR(le))
246 return PTR_ERR(le);
247 down_write(&le->mutex);
248 return 0;
249}
250
251/**
252 * leb_write_lock - lock logical eraseblock for writing.
253 * @ubi: UBI device description object
254 * @vol_id: volume ID
255 * @lnum: logical eraseblock number
256 *
257 * This function locks a logical eraseblock for writing if there is no
258 * contention and does nothing if there is contention. Returns %0 in case of
259 * success, %1 in case of contention, and and a negative error code in case of
260 * failure.
261 */
262static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
263{
Kyungmin Park961df832008-11-19 16:25:44 +0100264 struct ubi_ltree_entry *le;
265
266 le = ltree_add_entry(ubi, vol_id, lnum);
267 if (IS_ERR(le))
268 return PTR_ERR(le);
269 if (down_write_trylock(&le->mutex))
270 return 0;
271
272 /* Contention, cancel */
273 spin_lock(&ubi->ltree_lock);
274 le->users -= 1;
275 ubi_assert(le->users >= 0);
276 if (le->users == 0) {
277 rb_erase(&le->rb, &ubi->ltree);
Kyungmin Park961df832008-11-19 16:25:44 +0100278 kfree(le);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200279 }
280 spin_unlock(&ubi->ltree_lock);
Kyungmin Park961df832008-11-19 16:25:44 +0100281
282 return 1;
283}
284
285/**
286 * leb_write_unlock - unlock logical eraseblock.
287 * @ubi: UBI device description object
288 * @vol_id: volume ID
289 * @lnum: logical eraseblock number
290 */
291static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
292{
Kyungmin Park961df832008-11-19 16:25:44 +0100293 struct ubi_ltree_entry *le;
294
295 spin_lock(&ubi->ltree_lock);
296 le = ltree_lookup(ubi, vol_id, lnum);
297 le->users -= 1;
298 ubi_assert(le->users >= 0);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200299 up_write(&le->mutex);
Kyungmin Park961df832008-11-19 16:25:44 +0100300 if (le->users == 0) {
301 rb_erase(&le->rb, &ubi->ltree);
Kyungmin Park961df832008-11-19 16:25:44 +0100302 kfree(le);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200303 }
304 spin_unlock(&ubi->ltree_lock);
Kyungmin Park961df832008-11-19 16:25:44 +0100305}
306
307/**
308 * ubi_eba_unmap_leb - un-map logical eraseblock.
309 * @ubi: UBI device description object
310 * @vol: volume description object
311 * @lnum: logical eraseblock number
312 *
313 * This function un-maps logical eraseblock @lnum and schedules corresponding
314 * physical eraseblock for erasure. Returns zero in case of success and a
315 * negative error code in case of failure.
316 */
317int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
318 int lnum)
319{
320 int err, pnum, vol_id = vol->vol_id;
321
322 if (ubi->ro_mode)
323 return -EROFS;
324
325 err = leb_write_lock(ubi, vol_id, lnum);
326 if (err)
327 return err;
328
329 pnum = vol->eba_tbl[lnum];
330 if (pnum < 0)
331 /* This logical eraseblock is already unmapped */
332 goto out_unlock;
333
334 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
335
Heiko Schocherff94bc42014-06-24 10:10:04 +0200336 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100337 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200338 up_read(&ubi->fm_sem);
339 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
Kyungmin Park961df832008-11-19 16:25:44 +0100340
341out_unlock:
342 leb_write_unlock(ubi, vol_id, lnum);
343 return err;
344}
345
346/**
347 * ubi_eba_read_leb - read data.
348 * @ubi: UBI device description object
349 * @vol: volume description object
350 * @lnum: logical eraseblock number
351 * @buf: buffer to store the read data
352 * @offset: offset from where to read
353 * @len: how many bytes to read
354 * @check: data CRC check flag
355 *
356 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
357 * bytes. The @check flag only makes sense for static volumes and forces
358 * eraseblock data CRC checking.
359 *
360 * In case of success this function returns zero. In case of a static volume,
361 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
362 * returned for any volume type if an ECC error was detected by the MTD device
363 * driver. Other negative error cored may be returned in case of other errors.
364 */
365int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
366 void *buf, int offset, int len, int check)
367{
368 int err, pnum, scrub = 0, vol_id = vol->vol_id;
369 struct ubi_vid_hdr *vid_hdr;
370 uint32_t uninitialized_var(crc);
371
372 err = leb_read_lock(ubi, vol_id, lnum);
373 if (err)
374 return err;
375
376 pnum = vol->eba_tbl[lnum];
377 if (pnum < 0) {
378 /*
379 * The logical eraseblock is not mapped, fill the whole buffer
380 * with 0xFF bytes. The exception is static volumes for which
381 * it is an error to read unmapped logical eraseblocks.
382 */
383 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
384 len, offset, vol_id, lnum);
385 leb_read_unlock(ubi, vol_id, lnum);
386 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
387 memset(buf, 0xFF, len);
388 return 0;
389 }
390
391 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
392 len, offset, vol_id, lnum, pnum);
393
394 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
395 check = 0;
396
397retry:
398 if (check) {
399 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
400 if (!vid_hdr) {
401 err = -ENOMEM;
402 goto out_unlock;
403 }
404
405 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
406 if (err && err != UBI_IO_BITFLIPS) {
407 if (err > 0) {
408 /*
409 * The header is either absent or corrupted.
410 * The former case means there is a bug -
411 * switch to read-only mode just in case.
412 * The latter case means a real corruption - we
413 * may try to recover data. FIXME: but this is
414 * not implemented.
415 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200416 if (err == UBI_IO_BAD_HDR_EBADMSG ||
417 err == UBI_IO_BAD_HDR) {
418 ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
419 pnum, vol_id, lnum);
Kyungmin Park961df832008-11-19 16:25:44 +0100420 err = -EBADMSG;
421 } else
422 ubi_ro_mode(ubi);
423 }
424 goto out_free;
425 } else if (err == UBI_IO_BITFLIPS)
426 scrub = 1;
427
428 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
429 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
430
431 crc = be32_to_cpu(vid_hdr->data_crc);
432 ubi_free_vid_hdr(ubi, vid_hdr);
433 }
434
435 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
436 if (err) {
437 if (err == UBI_IO_BITFLIPS) {
438 scrub = 1;
439 err = 0;
Sergey Lapindfe64e22013-01-14 03:46:50 +0000440 } else if (mtd_is_eccerr(err)) {
Kyungmin Park961df832008-11-19 16:25:44 +0100441 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
442 goto out_unlock;
443 scrub = 1;
444 if (!check) {
445 ubi_msg("force data checking");
446 check = 1;
447 goto retry;
448 }
449 } else
450 goto out_unlock;
451 }
452
453 if (check) {
454 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
455 if (crc1 != crc) {
456 ubi_warn("CRC error: calculated %#08x, must be %#08x",
457 crc1, crc);
458 err = -EBADMSG;
459 goto out_unlock;
460 }
461 }
462
463 if (scrub)
464 err = ubi_wl_scrub_peb(ubi, pnum);
465
466 leb_read_unlock(ubi, vol_id, lnum);
467 return err;
468
469out_free:
470 ubi_free_vid_hdr(ubi, vid_hdr);
471out_unlock:
472 leb_read_unlock(ubi, vol_id, lnum);
473 return err;
474}
475
476/**
477 * recover_peb - recover from write failure.
478 * @ubi: UBI device description object
479 * @pnum: the physical eraseblock to recover
480 * @vol_id: volume ID
481 * @lnum: logical eraseblock number
482 * @buf: data which was not written because of the write failure
483 * @offset: offset of the failed write
484 * @len: how many bytes should have been written
485 *
486 * This function is called in case of a write failure and moves all good data
487 * from the potentially bad physical eraseblock to a good physical eraseblock.
488 * This function also writes the data which was not written due to the failure.
489 * Returns new physical eraseblock number in case of success, and a negative
490 * error code in case of failure.
491 */
492static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
493 const void *buf, int offset, int len)
494{
495 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
496 struct ubi_volume *vol = ubi->volumes[idx];
497 struct ubi_vid_hdr *vid_hdr;
498
499 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200500 if (!vid_hdr)
Kyungmin Park961df832008-11-19 16:25:44 +0100501 return -ENOMEM;
Kyungmin Park961df832008-11-19 16:25:44 +0100502
503retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200504 new_pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100505 if (new_pnum < 0) {
Kyungmin Park961df832008-11-19 16:25:44 +0100506 ubi_free_vid_hdr(ubi, vid_hdr);
507 return new_pnum;
508 }
509
510 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
511
512 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
513 if (err && err != UBI_IO_BITFLIPS) {
514 if (err > 0)
515 err = -EIO;
516 goto out_put;
517 }
518
Heiko Schocherff94bc42014-06-24 10:10:04 +0200519 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100520 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
521 if (err)
522 goto write_error;
523
524 data_size = offset + len;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200525 mutex_lock(&ubi->buf_mutex);
526 memset(ubi->peb_buf + offset, 0xFF, len);
Kyungmin Park961df832008-11-19 16:25:44 +0100527
528 /* Read everything before the area where the write failure happened */
529 if (offset > 0) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200530 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
Kyungmin Park961df832008-11-19 16:25:44 +0100531 if (err && err != UBI_IO_BITFLIPS)
Heiko Schocherff94bc42014-06-24 10:10:04 +0200532 goto out_unlock;
Kyungmin Park961df832008-11-19 16:25:44 +0100533 }
534
Heiko Schocherff94bc42014-06-24 10:10:04 +0200535 memcpy(ubi->peb_buf + offset, buf, len);
Kyungmin Park961df832008-11-19 16:25:44 +0100536
Heiko Schocherff94bc42014-06-24 10:10:04 +0200537 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
538 if (err) {
539 mutex_unlock(&ubi->buf_mutex);
Kyungmin Park961df832008-11-19 16:25:44 +0100540 goto write_error;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200541 }
Kyungmin Park961df832008-11-19 16:25:44 +0100542
543 mutex_unlock(&ubi->buf_mutex);
544 ubi_free_vid_hdr(ubi, vid_hdr);
545
Heiko Schocherff94bc42014-06-24 10:10:04 +0200546 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100547 vol->eba_tbl[lnum] = new_pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200548 up_read(&ubi->fm_sem);
549 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100550
551 ubi_msg("data was successfully recovered");
552 return 0;
553
Heiko Schocherff94bc42014-06-24 10:10:04 +0200554out_unlock:
Kyungmin Park961df832008-11-19 16:25:44 +0100555 mutex_unlock(&ubi->buf_mutex);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200556out_put:
557 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100558 ubi_free_vid_hdr(ubi, vid_hdr);
559 return err;
560
561write_error:
562 /*
563 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
564 * get another one.
565 */
566 ubi_warn("failed to write to PEB %d", new_pnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200567 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100568 if (++tries > UBI_IO_RETRIES) {
Kyungmin Park961df832008-11-19 16:25:44 +0100569 ubi_free_vid_hdr(ubi, vid_hdr);
570 return err;
571 }
572 ubi_msg("try again");
573 goto retry;
574}
575
576/**
577 * ubi_eba_write_leb - write data to dynamic volume.
578 * @ubi: UBI device description object
579 * @vol: volume description object
580 * @lnum: logical eraseblock number
581 * @buf: the data to write
582 * @offset: offset within the logical eraseblock where to write
583 * @len: how many bytes to write
Kyungmin Park961df832008-11-19 16:25:44 +0100584 *
585 * This function writes data to logical eraseblock @lnum of a dynamic volume
586 * @vol. Returns zero in case of success and a negative error code in case
587 * of failure. In case of error, it is possible that something was still
588 * written to the flash media, but may be some garbage.
589 */
590int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200591 const void *buf, int offset, int len)
Kyungmin Park961df832008-11-19 16:25:44 +0100592{
593 int err, pnum, tries = 0, vol_id = vol->vol_id;
594 struct ubi_vid_hdr *vid_hdr;
595
596 if (ubi->ro_mode)
597 return -EROFS;
598
599 err = leb_write_lock(ubi, vol_id, lnum);
600 if (err)
601 return err;
602
603 pnum = vol->eba_tbl[lnum];
604 if (pnum >= 0) {
605 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
606 len, offset, vol_id, lnum, pnum);
607
608 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
609 if (err) {
610 ubi_warn("failed to write data to PEB %d", pnum);
611 if (err == -EIO && ubi->bad_allowed)
612 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
613 offset, len);
614 if (err)
615 ubi_ro_mode(ubi);
616 }
617 leb_write_unlock(ubi, vol_id, lnum);
618 return err;
619 }
620
621 /*
622 * The logical eraseblock is not mapped. We have to get a free physical
623 * eraseblock and write the volume identifier header there first.
624 */
625 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
626 if (!vid_hdr) {
627 leb_write_unlock(ubi, vol_id, lnum);
628 return -ENOMEM;
629 }
630
631 vid_hdr->vol_type = UBI_VID_DYNAMIC;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200632 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100633 vid_hdr->vol_id = cpu_to_be32(vol_id);
634 vid_hdr->lnum = cpu_to_be32(lnum);
635 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
636 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
637
638retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200639 pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100640 if (pnum < 0) {
641 ubi_free_vid_hdr(ubi, vid_hdr);
642 leb_write_unlock(ubi, vol_id, lnum);
643 return pnum;
644 }
645
646 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
647 len, offset, vol_id, lnum, pnum);
648
649 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
650 if (err) {
651 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
652 vol_id, lnum, pnum);
653 goto write_error;
654 }
655
656 if (len) {
657 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
658 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200659 ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
660 len, offset, vol_id, lnum, pnum);
Kyungmin Park961df832008-11-19 16:25:44 +0100661 goto write_error;
662 }
663 }
664
Heiko Schocherff94bc42014-06-24 10:10:04 +0200665 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100666 vol->eba_tbl[lnum] = pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200667 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100668
669 leb_write_unlock(ubi, vol_id, lnum);
670 ubi_free_vid_hdr(ubi, vid_hdr);
671 return 0;
672
673write_error:
674 if (err != -EIO || !ubi->bad_allowed) {
675 ubi_ro_mode(ubi);
676 leb_write_unlock(ubi, vol_id, lnum);
677 ubi_free_vid_hdr(ubi, vid_hdr);
678 return err;
679 }
680
681 /*
682 * Fortunately, this is the first write operation to this physical
683 * eraseblock, so just put it and request a new one. We assume that if
684 * this physical eraseblock went bad, the erase code will handle that.
685 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200686 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100687 if (err || ++tries > UBI_IO_RETRIES) {
688 ubi_ro_mode(ubi);
689 leb_write_unlock(ubi, vol_id, lnum);
690 ubi_free_vid_hdr(ubi, vid_hdr);
691 return err;
692 }
693
Heiko Schocherff94bc42014-06-24 10:10:04 +0200694 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100695 ubi_msg("try another PEB");
696 goto retry;
697}
698
699/**
700 * ubi_eba_write_leb_st - write data to static volume.
701 * @ubi: UBI device description object
702 * @vol: volume description object
703 * @lnum: logical eraseblock number
704 * @buf: data to write
705 * @len: how many bytes to write
Kyungmin Park961df832008-11-19 16:25:44 +0100706 * @used_ebs: how many logical eraseblocks will this volume contain
707 *
708 * This function writes data to logical eraseblock @lnum of static volume
709 * @vol. The @used_ebs argument should contain total number of logical
710 * eraseblock in this static volume.
711 *
712 * When writing to the last logical eraseblock, the @len argument doesn't have
713 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
714 * to the real data size, although the @buf buffer has to contain the
715 * alignment. In all other cases, @len has to be aligned.
716 *
Heiko Schocherff94bc42014-06-24 10:10:04 +0200717 * It is prohibited to write more than once to logical eraseblocks of static
Kyungmin Park961df832008-11-19 16:25:44 +0100718 * volumes. This function returns zero in case of success and a negative error
719 * code in case of failure.
720 */
721int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200722 int lnum, const void *buf, int len, int used_ebs)
Kyungmin Park961df832008-11-19 16:25:44 +0100723{
724 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
725 struct ubi_vid_hdr *vid_hdr;
726 uint32_t crc;
727
728 if (ubi->ro_mode)
729 return -EROFS;
730
731 if (lnum == used_ebs - 1)
732 /* If this is the last LEB @len may be unaligned */
733 len = ALIGN(data_size, ubi->min_io_size);
734 else
735 ubi_assert(!(len & (ubi->min_io_size - 1)));
736
737 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
738 if (!vid_hdr)
739 return -ENOMEM;
740
741 err = leb_write_lock(ubi, vol_id, lnum);
742 if (err) {
743 ubi_free_vid_hdr(ubi, vid_hdr);
744 return err;
745 }
746
Heiko Schocherff94bc42014-06-24 10:10:04 +0200747 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100748 vid_hdr->vol_id = cpu_to_be32(vol_id);
749 vid_hdr->lnum = cpu_to_be32(lnum);
750 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
751 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
752
753 crc = crc32(UBI_CRC32_INIT, buf, data_size);
754 vid_hdr->vol_type = UBI_VID_STATIC;
755 vid_hdr->data_size = cpu_to_be32(data_size);
756 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
757 vid_hdr->data_crc = cpu_to_be32(crc);
758
759retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200760 pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100761 if (pnum < 0) {
762 ubi_free_vid_hdr(ubi, vid_hdr);
763 leb_write_unlock(ubi, vol_id, lnum);
764 return pnum;
765 }
766
767 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
768 len, vol_id, lnum, pnum, used_ebs);
769
770 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
771 if (err) {
772 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
773 vol_id, lnum, pnum);
774 goto write_error;
775 }
776
777 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
778 if (err) {
779 ubi_warn("failed to write %d bytes of data to PEB %d",
780 len, pnum);
781 goto write_error;
782 }
783
784 ubi_assert(vol->eba_tbl[lnum] < 0);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200785 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100786 vol->eba_tbl[lnum] = pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200787 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100788
789 leb_write_unlock(ubi, vol_id, lnum);
790 ubi_free_vid_hdr(ubi, vid_hdr);
791 return 0;
792
793write_error:
794 if (err != -EIO || !ubi->bad_allowed) {
795 /*
796 * This flash device does not admit of bad eraseblocks or
797 * something nasty and unexpected happened. Switch to read-only
798 * mode just in case.
799 */
800 ubi_ro_mode(ubi);
801 leb_write_unlock(ubi, vol_id, lnum);
802 ubi_free_vid_hdr(ubi, vid_hdr);
803 return err;
804 }
805
Heiko Schocherff94bc42014-06-24 10:10:04 +0200806 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100807 if (err || ++tries > UBI_IO_RETRIES) {
808 ubi_ro_mode(ubi);
809 leb_write_unlock(ubi, vol_id, lnum);
810 ubi_free_vid_hdr(ubi, vid_hdr);
811 return err;
812 }
813
Heiko Schocherff94bc42014-06-24 10:10:04 +0200814 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100815 ubi_msg("try another PEB");
816 goto retry;
817}
818
819/*
820 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
821 * @ubi: UBI device description object
822 * @vol: volume description object
823 * @lnum: logical eraseblock number
824 * @buf: data to write
825 * @len: how many bytes to write
Kyungmin Park961df832008-11-19 16:25:44 +0100826 *
827 * This function changes the contents of a logical eraseblock atomically. @buf
828 * has to contain new logical eraseblock data, and @len - the length of the
829 * data, which has to be aligned. This function guarantees that in case of an
830 * unclean reboot the old contents is preserved. Returns zero in case of
831 * success and a negative error code in case of failure.
832 *
833 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
834 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
835 */
836int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200837 int lnum, const void *buf, int len)
Kyungmin Park961df832008-11-19 16:25:44 +0100838{
839 int err, pnum, tries = 0, vol_id = vol->vol_id;
840 struct ubi_vid_hdr *vid_hdr;
841 uint32_t crc;
842
843 if (ubi->ro_mode)
844 return -EROFS;
845
846 if (len == 0) {
847 /*
848 * Special case when data length is zero. In this case the LEB
849 * has to be unmapped and mapped somewhere else.
850 */
851 err = ubi_eba_unmap_leb(ubi, vol, lnum);
852 if (err)
853 return err;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200854 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
Kyungmin Park961df832008-11-19 16:25:44 +0100855 }
856
857 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
858 if (!vid_hdr)
859 return -ENOMEM;
860
861 mutex_lock(&ubi->alc_mutex);
862 err = leb_write_lock(ubi, vol_id, lnum);
863 if (err)
864 goto out_mutex;
865
Heiko Schocherff94bc42014-06-24 10:10:04 +0200866 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100867 vid_hdr->vol_id = cpu_to_be32(vol_id);
868 vid_hdr->lnum = cpu_to_be32(lnum);
869 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
870 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
871
872 crc = crc32(UBI_CRC32_INIT, buf, len);
873 vid_hdr->vol_type = UBI_VID_DYNAMIC;
874 vid_hdr->data_size = cpu_to_be32(len);
875 vid_hdr->copy_flag = 1;
876 vid_hdr->data_crc = cpu_to_be32(crc);
877
878retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200879 pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100880 if (pnum < 0) {
881 err = pnum;
882 goto out_leb_unlock;
883 }
884
885 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
886 vol_id, lnum, vol->eba_tbl[lnum], pnum);
887
888 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
889 if (err) {
890 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
891 vol_id, lnum, pnum);
892 goto write_error;
893 }
894
895 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
896 if (err) {
897 ubi_warn("failed to write %d bytes of data to PEB %d",
898 len, pnum);
899 goto write_error;
900 }
901
902 if (vol->eba_tbl[lnum] >= 0) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200903 err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
Kyungmin Park961df832008-11-19 16:25:44 +0100904 if (err)
905 goto out_leb_unlock;
906 }
907
Heiko Schocherff94bc42014-06-24 10:10:04 +0200908 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100909 vol->eba_tbl[lnum] = pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200910 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100911
912out_leb_unlock:
913 leb_write_unlock(ubi, vol_id, lnum);
914out_mutex:
915 mutex_unlock(&ubi->alc_mutex);
916 ubi_free_vid_hdr(ubi, vid_hdr);
917 return err;
918
919write_error:
920 if (err != -EIO || !ubi->bad_allowed) {
921 /*
922 * This flash device does not admit of bad eraseblocks or
923 * something nasty and unexpected happened. Switch to read-only
924 * mode just in case.
925 */
926 ubi_ro_mode(ubi);
927 goto out_leb_unlock;
928 }
929
Heiko Schocherff94bc42014-06-24 10:10:04 +0200930 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100931 if (err || ++tries > UBI_IO_RETRIES) {
932 ubi_ro_mode(ubi);
933 goto out_leb_unlock;
934 }
935
Heiko Schocherff94bc42014-06-24 10:10:04 +0200936 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100937 ubi_msg("try another PEB");
938 goto retry;
939}
940
941/**
Heiko Schocherff94bc42014-06-24 10:10:04 +0200942 * is_error_sane - check whether a read error is sane.
943 * @err: code of the error happened during reading
944 *
945 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
946 * cannot read data from the target PEB (an error @err happened). If the error
947 * code is sane, then we treat this error as non-fatal. Otherwise the error is
948 * fatal and UBI will be switched to R/O mode later.
949 *
950 * The idea is that we try not to switch to R/O mode if the read error is
951 * something which suggests there was a real read problem. E.g., %-EIO. Or a
952 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
953 * mode, simply because we do not know what happened at the MTD level, and we
954 * cannot handle this. E.g., the underlying driver may have become crazy, and
955 * it is safer to switch to R/O mode to preserve the data.
956 *
957 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
958 * which we have just written.
959 */
960static int is_error_sane(int err)
961{
962 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
963 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
964 return 0;
965 return 1;
966}
967
968/**
Kyungmin Park961df832008-11-19 16:25:44 +0100969 * ubi_eba_copy_leb - copy logical eraseblock.
970 * @ubi: UBI device description object
971 * @from: physical eraseblock number from where to copy
972 * @to: physical eraseblock number where to copy
973 * @vid_hdr: VID header of the @from physical eraseblock
974 *
975 * This function copies logical eraseblock from physical eraseblock @from to
976 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
977 * function. Returns:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200978 * o %0 in case of success;
979 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
980 * o a negative error code in case of failure.
Kyungmin Park961df832008-11-19 16:25:44 +0100981 */
982int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
983 struct ubi_vid_hdr *vid_hdr)
984{
985 int err, vol_id, lnum, data_size, aldata_size, idx;
986 struct ubi_volume *vol;
987 uint32_t crc;
988
989 vol_id = be32_to_cpu(vid_hdr->vol_id);
990 lnum = be32_to_cpu(vid_hdr->lnum);
991
Heiko Schocherff94bc42014-06-24 10:10:04 +0200992 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
Kyungmin Park961df832008-11-19 16:25:44 +0100993
994 if (vid_hdr->vol_type == UBI_VID_STATIC) {
995 data_size = be32_to_cpu(vid_hdr->data_size);
996 aldata_size = ALIGN(data_size, ubi->min_io_size);
997 } else
998 data_size = aldata_size =
999 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1000
1001 idx = vol_id2idx(ubi, vol_id);
1002 spin_lock(&ubi->volumes_lock);
1003 /*
1004 * Note, we may race with volume deletion, which means that the volume
1005 * this logical eraseblock belongs to might be being deleted. Since the
Heiko Schocherff94bc42014-06-24 10:10:04 +02001006 * volume deletion un-maps all the volume's logical eraseblocks, it will
Kyungmin Park961df832008-11-19 16:25:44 +01001007 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1008 */
1009 vol = ubi->volumes[idx];
Heiko Schocherff94bc42014-06-24 10:10:04 +02001010 spin_unlock(&ubi->volumes_lock);
Kyungmin Park961df832008-11-19 16:25:44 +01001011 if (!vol) {
1012 /* No need to do further work, cancel */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001013 dbg_wl("volume %d is being removed, cancel", vol_id);
1014 return MOVE_CANCEL_RACE;
Kyungmin Park961df832008-11-19 16:25:44 +01001015 }
Kyungmin Park961df832008-11-19 16:25:44 +01001016
1017 /*
1018 * We do not want anybody to write to this logical eraseblock while we
1019 * are moving it, so lock it.
1020 *
1021 * Note, we are using non-waiting locking here, because we cannot sleep
1022 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1023 * unmapping the LEB which is mapped to the PEB we are going to move
1024 * (@from). This task locks the LEB and goes sleep in the
1025 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1026 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
Heiko Schocherff94bc42014-06-24 10:10:04 +02001027 * LEB is already locked, we just do not move it and return
1028 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1029 * we do not know the reasons of the contention - it may be just a
1030 * normal I/O on this LEB, so we want to re-try.
Kyungmin Park961df832008-11-19 16:25:44 +01001031 */
1032 err = leb_write_trylock(ubi, vol_id, lnum);
1033 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001034 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1035 return MOVE_RETRY;
Kyungmin Park961df832008-11-19 16:25:44 +01001036 }
1037
1038 /*
1039 * The LEB might have been put meanwhile, and the task which put it is
1040 * probably waiting on @ubi->move_mutex. No need to continue the work,
1041 * cancel it.
1042 */
1043 if (vol->eba_tbl[lnum] != from) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001044 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1045 vol_id, lnum, from, vol->eba_tbl[lnum]);
1046 err = MOVE_CANCEL_RACE;
Kyungmin Park961df832008-11-19 16:25:44 +01001047 goto out_unlock_leb;
1048 }
1049
1050 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +02001051 * OK, now the LEB is locked and we can safely start moving it. Since
1052 * this function utilizes the @ubi->peb_buf buffer which is shared
1053 * with some other functions - we lock the buffer by taking the
Kyungmin Park961df832008-11-19 16:25:44 +01001054 * @ubi->buf_mutex.
1055 */
1056 mutex_lock(&ubi->buf_mutex);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001057 dbg_wl("read %d bytes of data", aldata_size);
1058 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001059 if (err && err != UBI_IO_BITFLIPS) {
1060 ubi_warn("error %d while reading data from PEB %d",
1061 err, from);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001062 err = MOVE_SOURCE_RD_ERR;
Kyungmin Park961df832008-11-19 16:25:44 +01001063 goto out_unlock_buf;
1064 }
1065
1066 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +02001067 * Now we have got to calculate how much data we have to copy. In
Kyungmin Park961df832008-11-19 16:25:44 +01001068 * case of a static volume it is fairly easy - the VID header contains
1069 * the data size. In case of a dynamic volume it is more difficult - we
1070 * have to read the contents, cut 0xFF bytes from the end and copy only
1071 * the first part. We must do this to avoid writing 0xFF bytes as it
1072 * may have some side-effects. And not only this. It is important not
1073 * to include those 0xFFs to CRC because later the they may be filled
1074 * by data.
1075 */
1076 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1077 aldata_size = data_size =
Heiko Schocherff94bc42014-06-24 10:10:04 +02001078 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001079
1080 cond_resched();
Heiko Schocherff94bc42014-06-24 10:10:04 +02001081 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001082 cond_resched();
1083
1084 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +02001085 * It may turn out to be that the whole @from physical eraseblock
Kyungmin Park961df832008-11-19 16:25:44 +01001086 * contains only 0xFF bytes. Then we have to only write the VID header
1087 * and do not write any data. This also means we should not set
1088 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1089 */
1090 if (data_size > 0) {
1091 vid_hdr->copy_flag = 1;
1092 vid_hdr->data_size = cpu_to_be32(data_size);
1093 vid_hdr->data_crc = cpu_to_be32(crc);
1094 }
Heiko Schocherff94bc42014-06-24 10:10:04 +02001095 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +01001096
1097 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001098 if (err) {
1099 if (err == -EIO)
1100 err = MOVE_TARGET_WR_ERR;
Kyungmin Park961df832008-11-19 16:25:44 +01001101 goto out_unlock_buf;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001102 }
Kyungmin Park961df832008-11-19 16:25:44 +01001103
1104 cond_resched();
1105
1106 /* Read the VID header back and check if it was written correctly */
1107 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1108 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001109 if (err != UBI_IO_BITFLIPS) {
1110 ubi_warn("error %d while reading VID header back from PEB %d",
1111 err, to);
1112 if (is_error_sane(err))
1113 err = MOVE_TARGET_RD_ERR;
1114 } else
1115 err = MOVE_TARGET_BITFLIPS;
Kyungmin Park961df832008-11-19 16:25:44 +01001116 goto out_unlock_buf;
1117 }
1118
1119 if (data_size > 0) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001120 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1121 if (err) {
1122 if (err == -EIO)
1123 err = MOVE_TARGET_WR_ERR;
Kyungmin Park961df832008-11-19 16:25:44 +01001124 goto out_unlock_buf;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001125 }
Kyungmin Park961df832008-11-19 16:25:44 +01001126
1127 cond_resched();
1128
1129 /*
1130 * We've written the data and are going to read it back to make
1131 * sure it was written correctly.
1132 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001133 memset(ubi->peb_buf, 0xFF, aldata_size);
1134 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001135 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001136 if (err != UBI_IO_BITFLIPS) {
1137 ubi_warn("error %d while reading data back from PEB %d",
1138 err, to);
1139 if (is_error_sane(err))
1140 err = MOVE_TARGET_RD_ERR;
1141 } else
1142 err = MOVE_TARGET_BITFLIPS;
Kyungmin Park961df832008-11-19 16:25:44 +01001143 goto out_unlock_buf;
1144 }
1145
1146 cond_resched();
1147
Heiko Schocherff94bc42014-06-24 10:10:04 +02001148 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1149 ubi_warn("read data back from PEB %d and it is different",
Kyungmin Park961df832008-11-19 16:25:44 +01001150 to);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001151 err = -EINVAL;
Kyungmin Park961df832008-11-19 16:25:44 +01001152 goto out_unlock_buf;
1153 }
1154 }
1155
1156 ubi_assert(vol->eba_tbl[lnum] == from);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001157 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +01001158 vol->eba_tbl[lnum] = to;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001159 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +01001160
1161out_unlock_buf:
1162 mutex_unlock(&ubi->buf_mutex);
1163out_unlock_leb:
1164 leb_write_unlock(ubi, vol_id, lnum);
1165 return err;
1166}
1167
1168/**
Heiko Schocherff94bc42014-06-24 10:10:04 +02001169 * print_rsvd_warning - warn about not having enough reserved PEBs.
Kyungmin Park961df832008-11-19 16:25:44 +01001170 * @ubi: UBI device description object
Heiko Schocherff94bc42014-06-24 10:10:04 +02001171 *
1172 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1173 * cannot reserve enough PEBs for bad block handling. This function makes a
1174 * decision whether we have to print a warning or not. The algorithm is as
1175 * follows:
1176 * o if this is a new UBI image, then just print the warning
1177 * o if this is an UBI image which has already been used for some time, print
1178 * a warning only if we can reserve less than 10% of the expected amount of
1179 * the reserved PEB.
1180 *
1181 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1182 * of PEBs becomes smaller, which is normal and we do not want to scare users
1183 * with a warning every time they attach the MTD device. This was an issue
1184 * reported by real users.
1185 */
1186static void print_rsvd_warning(struct ubi_device *ubi,
1187 struct ubi_attach_info *ai)
1188{
1189 /*
1190 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1191 * large number to distinguish between newly flashed and used images.
1192 */
1193 if (ai->max_sqnum > (1 << 18)) {
1194 int min = ubi->beb_rsvd_level / 10;
1195
1196 if (!min)
1197 min = 1;
1198 if (ubi->beb_rsvd_pebs > min)
1199 return;
1200 }
1201
1202 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1203 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1204 if (ubi->corr_peb_count)
1205 ubi_warn("%d PEBs are corrupted and not used",
1206 ubi->corr_peb_count);
1207}
1208
1209/**
1210 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1211 * @ubi: UBI device description object
1212 * @ai_fastmap: UBI attach info object created by fastmap
1213 * @ai_scan: UBI attach info object created by scanning
1214 *
1215 * Returns < 0 in case of an internal error, 0 otherwise.
1216 * If a bad EBA table entry was found it will be printed out and
1217 * ubi_assert() triggers.
1218 */
1219int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1220 struct ubi_attach_info *ai_scan)
1221{
1222 int i, j, num_volumes, ret = 0;
1223 int **scan_eba, **fm_eba;
1224 struct ubi_ainf_volume *av;
1225 struct ubi_volume *vol;
1226 struct ubi_ainf_peb *aeb;
1227 struct rb_node *rb;
1228
1229 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1230
1231 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1232 if (!scan_eba)
1233 return -ENOMEM;
1234
1235 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1236 if (!fm_eba) {
1237 kfree(scan_eba);
1238 return -ENOMEM;
1239 }
1240
1241 for (i = 0; i < num_volumes; i++) {
1242 vol = ubi->volumes[i];
1243 if (!vol)
1244 continue;
1245
1246 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1247 GFP_KERNEL);
1248 if (!scan_eba[i]) {
1249 ret = -ENOMEM;
1250 goto out_free;
1251 }
1252
1253 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1254 GFP_KERNEL);
1255 if (!fm_eba[i]) {
1256 ret = -ENOMEM;
1257 goto out_free;
1258 }
1259
1260 for (j = 0; j < vol->reserved_pebs; j++)
1261 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1262
1263 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1264 if (!av)
1265 continue;
1266
1267 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1268 scan_eba[i][aeb->lnum] = aeb->pnum;
1269
1270 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1271 if (!av)
1272 continue;
1273
1274 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1275 fm_eba[i][aeb->lnum] = aeb->pnum;
1276
1277 for (j = 0; j < vol->reserved_pebs; j++) {
1278 if (scan_eba[i][j] != fm_eba[i][j]) {
1279 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1280 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1281 continue;
1282
1283 ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
1284 vol->vol_id, i, fm_eba[i][j],
1285 scan_eba[i][j]);
1286 ubi_assert(0);
1287 }
1288 }
1289 }
1290
1291out_free:
1292 for (i = 0; i < num_volumes; i++) {
1293 if (!ubi->volumes[i])
1294 continue;
1295
1296 kfree(scan_eba[i]);
1297 kfree(fm_eba[i]);
1298 }
1299
1300 kfree(scan_eba);
1301 kfree(fm_eba);
1302 return ret;
1303}
1304
1305/**
1306 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1307 * @ubi: UBI device description object
1308 * @ai: attaching information
Kyungmin Park961df832008-11-19 16:25:44 +01001309 *
1310 * This function returns zero in case of success and a negative error code in
1311 * case of failure.
1312 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001313int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
Kyungmin Park961df832008-11-19 16:25:44 +01001314{
1315 int i, j, err, num_volumes;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001316 struct ubi_ainf_volume *av;
Kyungmin Park961df832008-11-19 16:25:44 +01001317 struct ubi_volume *vol;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001318 struct ubi_ainf_peb *aeb;
Kyungmin Park961df832008-11-19 16:25:44 +01001319 struct rb_node *rb;
1320
Heiko Schocherff94bc42014-06-24 10:10:04 +02001321 dbg_eba("initialize EBA sub-system");
Kyungmin Park961df832008-11-19 16:25:44 +01001322
1323 spin_lock_init(&ubi->ltree_lock);
1324 mutex_init(&ubi->alc_mutex);
1325 ubi->ltree = RB_ROOT;
1326
Heiko Schocherff94bc42014-06-24 10:10:04 +02001327 ubi->global_sqnum = ai->max_sqnum + 1;
Kyungmin Park961df832008-11-19 16:25:44 +01001328 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1329
1330 for (i = 0; i < num_volumes; i++) {
1331 vol = ubi->volumes[i];
1332 if (!vol)
1333 continue;
1334
1335 cond_resched();
1336
1337 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1338 GFP_KERNEL);
1339 if (!vol->eba_tbl) {
1340 err = -ENOMEM;
1341 goto out_free;
1342 }
1343
1344 for (j = 0; j < vol->reserved_pebs; j++)
1345 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1346
Heiko Schocherff94bc42014-06-24 10:10:04 +02001347 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1348 if (!av)
Kyungmin Park961df832008-11-19 16:25:44 +01001349 continue;
1350
Heiko Schocherff94bc42014-06-24 10:10:04 +02001351 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1352 if (aeb->lnum >= vol->reserved_pebs)
Kyungmin Park961df832008-11-19 16:25:44 +01001353 /*
1354 * This may happen in case of an unclean reboot
1355 * during re-size.
1356 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001357 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1358 vol->eba_tbl[aeb->lnum] = aeb->pnum;
Kyungmin Park961df832008-11-19 16:25:44 +01001359 }
1360 }
1361
1362 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1363 ubi_err("no enough physical eraseblocks (%d, need %d)",
1364 ubi->avail_pebs, EBA_RESERVED_PEBS);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001365 if (ubi->corr_peb_count)
1366 ubi_err("%d PEBs are corrupted and not used",
1367 ubi->corr_peb_count);
Kyungmin Park961df832008-11-19 16:25:44 +01001368 err = -ENOSPC;
1369 goto out_free;
1370 }
1371 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1372 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1373
1374 if (ubi->bad_allowed) {
1375 ubi_calculate_reserved(ubi);
1376
1377 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1378 /* No enough free physical eraseblocks */
1379 ubi->beb_rsvd_pebs = ubi->avail_pebs;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001380 print_rsvd_warning(ubi, ai);
Kyungmin Park961df832008-11-19 16:25:44 +01001381 } else
1382 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1383
1384 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1385 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1386 }
1387
Heiko Schocherff94bc42014-06-24 10:10:04 +02001388 dbg_eba("EBA sub-system is initialized");
Kyungmin Park961df832008-11-19 16:25:44 +01001389 return 0;
1390
1391out_free:
1392 for (i = 0; i < num_volumes; i++) {
1393 if (!ubi->volumes[i])
1394 continue;
1395 kfree(ubi->volumes[i]->eba_tbl);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001396 ubi->volumes[i]->eba_tbl = NULL;
Kyungmin Park961df832008-11-19 16:25:44 +01001397 }
1398 return err;
1399}