blob: 763770738b7c9eb7b91c001ca9b6349691f4481b [file] [log] [blame]
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
Heiko Schocherff94bc42014-06-24 10:10:04 +02006 * SPDX-License-Identifier: GPL-2.0+
Stefan Roese9eefe2a2009-03-19 15:35:05 +01007 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12/*
13 * This file implements functions needed to recover from unclean un-mounts.
14 * When UBIFS is mounted, it checks a flag on the master node to determine if
Heiko Schocherff94bc42014-06-24 10:10:04 +020015 * an un-mount was completed successfully. If not, the process of mounting
16 * incorporates additional checking and fixing of on-flash data structures.
Stefan Roese9eefe2a2009-03-19 15:35:05 +010017 * UBIFS always cleans away all remnants of an unclean un-mount, so that
18 * errors do not accumulate. However UBIFS defers recovery if it is mounted
19 * read-only, and the flash is not modified in that case.
Heiko Schocherff94bc42014-06-24 10:10:04 +020020 *
21 * The general UBIFS approach to the recovery is that it recovers from
22 * corruptions which could be caused by power cuts, but it refuses to recover
23 * from corruption caused by other reasons. And UBIFS tries to distinguish
24 * between these 2 reasons of corruptions and silently recover in the former
25 * case and loudly complain in the latter case.
26 *
27 * UBIFS writes only to erased LEBs, so it writes only to the flash space
28 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
29 * of the LEB to the end. And UBIFS assumes that the underlying flash media
30 * writes in @c->max_write_size bytes at a time.
31 *
32 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
33 * I/O unit corresponding to offset X to contain corrupted data, all the
34 * following min. I/O units have to contain empty space (all 0xFFs). If this is
35 * not true, the corruption cannot be the result of a power cut, and UBIFS
36 * refuses to mount.
Stefan Roese9eefe2a2009-03-19 15:35:05 +010037 */
38
Heiko Schocherff94bc42014-06-24 10:10:04 +020039#ifndef __UBOOT__
40#include <linux/crc32.h>
41#include <linux/slab.h>
42#else
43#include <linux/err.h>
44#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +010045#include "ubifs.h"
46
47/**
48 * is_empty - determine whether a buffer is empty (contains all 0xff).
49 * @buf: buffer to clean
50 * @len: length of buffer
51 *
52 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
53 * %0 is returned.
54 */
55static int is_empty(void *buf, int len)
56{
57 uint8_t *p = buf;
58 int i;
59
60 for (i = 0; i < len; i++)
61 if (*p++ != 0xff)
62 return 0;
63 return 1;
64}
65
66/**
Heiko Schocherff94bc42014-06-24 10:10:04 +020067 * first_non_ff - find offset of the first non-0xff byte.
68 * @buf: buffer to search in
69 * @len: length of buffer
70 *
71 * This function returns offset of the first non-0xff byte in @buf or %-1 if
72 * the buffer contains only 0xff bytes.
73 */
74static int first_non_ff(void *buf, int len)
75{
76 uint8_t *p = buf;
77 int i;
78
79 for (i = 0; i < len; i++)
80 if (*p++ != 0xff)
81 return i;
82 return -1;
83}
84
85/**
Stefan Roese9eefe2a2009-03-19 15:35:05 +010086 * get_master_node - get the last valid master node allowing for corruption.
87 * @c: UBIFS file-system description object
88 * @lnum: LEB number
89 * @pbuf: buffer containing the LEB read, is returned here
90 * @mst: master node, if found, is returned here
91 * @cor: corruption, if found, is returned here
92 *
93 * This function allocates a buffer, reads the LEB into it, and finds and
94 * returns the last valid master node allowing for one area of corruption.
95 * The corrupt area, if there is one, must be consistent with the assumption
96 * that it is the result of an unclean unmount while the master node was being
97 * written. Under those circumstances, it is valid to use the previously written
98 * master node.
99 *
100 * This function returns %0 on success and a negative error code on failure.
101 */
102static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
103 struct ubifs_mst_node **mst, void **cor)
104{
105 const int sz = c->mst_node_alsz;
106 int err, offs, len;
107 void *sbuf, *buf;
108
109 sbuf = vmalloc(c->leb_size);
110 if (!sbuf)
111 return -ENOMEM;
112
Heiko Schocherff94bc42014-06-24 10:10:04 +0200113 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100114 if (err && err != -EBADMSG)
115 goto out_free;
116
117 /* Find the first position that is definitely not a node */
118 offs = 0;
119 buf = sbuf;
120 len = c->leb_size;
121 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
122 struct ubifs_ch *ch = buf;
123
124 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
125 break;
126 offs += sz;
127 buf += sz;
128 len -= sz;
129 }
130 /* See if there was a valid master node before that */
131 if (offs) {
132 int ret;
133
134 offs -= sz;
135 buf -= sz;
136 len += sz;
137 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
138 if (ret != SCANNED_A_NODE && offs) {
139 /* Could have been corruption so check one place back */
140 offs -= sz;
141 buf -= sz;
142 len += sz;
143 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
144 if (ret != SCANNED_A_NODE)
145 /*
146 * We accept only one area of corruption because
147 * we are assuming that it was caused while
148 * trying to write a master node.
149 */
150 goto out_err;
151 }
152 if (ret == SCANNED_A_NODE) {
153 struct ubifs_ch *ch = buf;
154
155 if (ch->node_type != UBIFS_MST_NODE)
156 goto out_err;
157 dbg_rcvry("found a master node at %d:%d", lnum, offs);
158 *mst = buf;
159 offs += sz;
160 buf += sz;
161 len -= sz;
162 }
163 }
164 /* Check for corruption */
165 if (offs < c->leb_size) {
166 if (!is_empty(buf, min_t(int, len, sz))) {
167 *cor = buf;
168 dbg_rcvry("found corruption at %d:%d", lnum, offs);
169 }
170 offs += sz;
171 buf += sz;
172 len -= sz;
173 }
174 /* Check remaining empty space */
175 if (offs < c->leb_size)
176 if (!is_empty(buf, len))
177 goto out_err;
178 *pbuf = sbuf;
179 return 0;
180
181out_err:
182 err = -EINVAL;
183out_free:
184 vfree(sbuf);
185 *mst = NULL;
186 *cor = NULL;
187 return err;
188}
189
190/**
191 * write_rcvrd_mst_node - write recovered master node.
192 * @c: UBIFS file-system description object
193 * @mst: master node
194 *
195 * This function returns %0 on success and a negative error code on failure.
196 */
197static int write_rcvrd_mst_node(struct ubifs_info *c,
198 struct ubifs_mst_node *mst)
199{
200 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
201 __le32 save_flags;
202
203 dbg_rcvry("recovery");
204
205 save_flags = mst->flags;
206 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
207
208 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200209 err = ubifs_leb_change(c, lnum, mst, sz);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100210 if (err)
211 goto out;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200212 err = ubifs_leb_change(c, lnum + 1, mst, sz);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100213 if (err)
214 goto out;
215out:
216 mst->flags = save_flags;
217 return err;
218}
219
220/**
221 * ubifs_recover_master_node - recover the master node.
222 * @c: UBIFS file-system description object
223 *
224 * This function recovers the master node from corruption that may occur due to
225 * an unclean unmount.
226 *
227 * This function returns %0 on success and a negative error code on failure.
228 */
229int ubifs_recover_master_node(struct ubifs_info *c)
230{
231 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
232 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
233 const int sz = c->mst_node_alsz;
234 int err, offs1, offs2;
235
236 dbg_rcvry("recovery");
237
238 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
239 if (err)
240 goto out_free;
241
242 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
243 if (err)
244 goto out_free;
245
246 if (mst1) {
247 offs1 = (void *)mst1 - buf1;
248 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
249 (offs1 == 0 && !cor1)) {
250 /*
251 * mst1 was written by recovery at offset 0 with no
252 * corruption.
253 */
254 dbg_rcvry("recovery recovery");
255 mst = mst1;
256 } else if (mst2) {
257 offs2 = (void *)mst2 - buf2;
258 if (offs1 == offs2) {
259 /* Same offset, so must be the same */
260 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
261 (void *)mst2 + UBIFS_CH_SZ,
262 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
263 goto out_err;
264 mst = mst1;
265 } else if (offs2 + sz == offs1) {
266 /* 1st LEB was written, 2nd was not */
267 if (cor1)
268 goto out_err;
269 mst = mst1;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200270 } else if (offs1 == 0 &&
271 c->leb_size - offs2 - sz < sz) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100272 /* 1st LEB was unmapped and written, 2nd not */
273 if (cor1)
274 goto out_err;
275 mst = mst1;
276 } else
277 goto out_err;
278 } else {
279 /*
280 * 2nd LEB was unmapped and about to be written, so
281 * there must be only one master node in the first LEB
282 * and no corruption.
283 */
284 if (offs1 != 0 || cor1)
285 goto out_err;
286 mst = mst1;
287 }
288 } else {
289 if (!mst2)
290 goto out_err;
291 /*
292 * 1st LEB was unmapped and about to be written, so there must
293 * be no room left in 2nd LEB.
294 */
295 offs2 = (void *)mst2 - buf2;
296 if (offs2 + sz + sz <= c->leb_size)
297 goto out_err;
298 mst = mst2;
299 }
300
Heiko Schocherff94bc42014-06-24 10:10:04 +0200301 ubifs_msg("recovered master node from LEB %d",
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100302 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
303
304 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
305
Heiko Schocherff94bc42014-06-24 10:10:04 +0200306 if (c->ro_mount) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100307 /* Read-only mode. Keep a copy for switching to rw mode */
308 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
309 if (!c->rcvrd_mst_node) {
310 err = -ENOMEM;
311 goto out_free;
312 }
313 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200314
315 /*
316 * We had to recover the master node, which means there was an
317 * unclean reboot. However, it is possible that the master node
318 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
319 * E.g., consider the following chain of events:
320 *
321 * 1. UBIFS was cleanly unmounted, so the master node is clean
322 * 2. UBIFS is being mounted R/W and starts changing the master
323 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
324 * so this LEB ends up with some amount of garbage at the
325 * end.
326 * 3. UBIFS is being mounted R/O. We reach this place and
327 * recover the master node from the second LEB
328 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
329 * because we are being mounted R/O. We have to defer the
330 * operation.
331 * 4. However, this master node (@c->mst_node) is marked as
332 * clean (since the step 1). And if we just return, the
333 * mount code will be confused and won't recover the master
334 * node when it is re-mounter R/W later.
335 *
336 * Thus, to force the recovery by marking the master node as
337 * dirty.
338 */
339 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
340#ifndef __UBOOT__
341 } else {
342 /* Write the recovered master node */
343 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
344 err = write_rcvrd_mst_node(c, c->mst_node);
345 if (err)
346 goto out_free;
347#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100348 }
349
350 vfree(buf2);
351 vfree(buf1);
352
353 return 0;
354
355out_err:
356 err = -EINVAL;
357out_free:
358 ubifs_err("failed to recover master node");
359 if (mst1) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200360 ubifs_err("dumping first master node");
361 ubifs_dump_node(c, mst1);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100362 }
363 if (mst2) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200364 ubifs_err("dumping second master node");
365 ubifs_dump_node(c, mst2);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100366 }
367 vfree(buf2);
368 vfree(buf1);
369 return err;
370}
371
372/**
373 * ubifs_write_rcvrd_mst_node - write the recovered master node.
374 * @c: UBIFS file-system description object
375 *
376 * This function writes the master node that was recovered during mounting in
377 * read-only mode and must now be written because we are remounting rw.
378 *
379 * This function returns %0 on success and a negative error code on failure.
380 */
381int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
382{
383 int err;
384
385 if (!c->rcvrd_mst_node)
386 return 0;
387 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
388 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
389 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
390 if (err)
391 return err;
392 kfree(c->rcvrd_mst_node);
393 c->rcvrd_mst_node = NULL;
394 return 0;
395}
396
397/**
398 * is_last_write - determine if an offset was in the last write to a LEB.
399 * @c: UBIFS file-system description object
400 * @buf: buffer to check
401 * @offs: offset to check
402 *
403 * This function returns %1 if @offs was in the last write to the LEB whose data
Heiko Schocherff94bc42014-06-24 10:10:04 +0200404 * is in @buf, otherwise %0 is returned. The determination is made by checking
405 * for subsequent empty space starting from the next @c->max_write_size
406 * boundary.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100407 */
408static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
409{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200410 int empty_offs, check_len;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100411 uint8_t *p;
412
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100413 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +0200414 * Round up to the next @c->max_write_size boundary i.e. @offs is in
415 * the last wbuf written. After that should be empty space.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100416 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200417 empty_offs = ALIGN(offs + 1, c->max_write_size);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100418 check_len = c->leb_size - empty_offs;
419 p = buf + empty_offs - offs;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200420 return is_empty(p, check_len);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100421}
422
423/**
424 * clean_buf - clean the data from an LEB sitting in a buffer.
425 * @c: UBIFS file-system description object
426 * @buf: buffer to clean
427 * @lnum: LEB number to clean
428 * @offs: offset from which to clean
429 * @len: length of buffer
430 *
431 * This function pads up to the next min_io_size boundary (if there is one) and
432 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
Heiko Schocherff94bc42014-06-24 10:10:04 +0200433 * @c->min_io_size boundary.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100434 */
435static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
436 int *offs, int *len)
437{
438 int empty_offs, pad_len;
439
440 lnum = lnum;
441 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
442
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100443 ubifs_assert(!(*offs & 7));
444 empty_offs = ALIGN(*offs, c->min_io_size);
445 pad_len = empty_offs - *offs;
446 ubifs_pad(c, *buf, pad_len);
447 *offs += pad_len;
448 *buf += pad_len;
449 *len -= pad_len;
450 memset(*buf, 0xff, c->leb_size - empty_offs);
451}
452
453/**
454 * no_more_nodes - determine if there are no more nodes in a buffer.
455 * @c: UBIFS file-system description object
456 * @buf: buffer to check
457 * @len: length of buffer
458 * @lnum: LEB number of the LEB from which @buf was read
459 * @offs: offset from which @buf was read
460 *
Adrian Hunter6356daf2009-04-14 17:50:38 +0200461 * This function ensures that the corrupted node at @offs is the last thing
462 * written to a LEB. This function returns %1 if more data is not found and
463 * %0 if more data is found.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100464 */
465static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
466 int lnum, int offs)
467{
Adrian Hunter6356daf2009-04-14 17:50:38 +0200468 struct ubifs_ch *ch = buf;
469 int skip, dlen = le32_to_cpu(ch->len);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100470
Adrian Hunter6356daf2009-04-14 17:50:38 +0200471 /* Check for empty space after the corrupt node's common header */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200472 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
Adrian Hunter6356daf2009-04-14 17:50:38 +0200473 if (is_empty(buf + skip, len - skip))
474 return 1;
475 /*
476 * The area after the common header size is not empty, so the common
477 * header must be intact. Check it.
478 */
479 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
480 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
481 return 0;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100482 }
Adrian Hunter6356daf2009-04-14 17:50:38 +0200483 /* Now we know the corrupt node's length we can skip over it */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200484 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
Adrian Hunter6356daf2009-04-14 17:50:38 +0200485 /* After which there should be empty space */
486 if (is_empty(buf + skip, len - skip))
487 return 1;
488 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
489 return 0;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100490}
491
492/**
493 * fix_unclean_leb - fix an unclean LEB.
494 * @c: UBIFS file-system description object
495 * @sleb: scanned LEB information
496 * @start: offset where scan started
497 */
498static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
499 int start)
500{
501 int lnum = sleb->lnum, endpt = start;
502
503 /* Get the end offset of the last node we are keeping */
504 if (!list_empty(&sleb->nodes)) {
505 struct ubifs_scan_node *snod;
506
507 snod = list_entry(sleb->nodes.prev,
508 struct ubifs_scan_node, list);
509 endpt = snod->offs + snod->len;
510 }
511
Heiko Schocherff94bc42014-06-24 10:10:04 +0200512 if (c->ro_mount && !c->remounting_rw) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100513 /* Add to recovery list */
514 struct ubifs_unclean_leb *ucleb;
515
516 dbg_rcvry("need to fix LEB %d start %d endpt %d",
517 lnum, start, sleb->endpt);
518 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
519 if (!ucleb)
520 return -ENOMEM;
521 ucleb->lnum = lnum;
522 ucleb->endpt = endpt;
523 list_add_tail(&ucleb->list, &c->unclean_leb_list);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200524#ifndef __UBOOT__
525 } else {
526 /* Write the fixed LEB back to flash */
527 int err;
528
529 dbg_rcvry("fixing LEB %d start %d endpt %d",
530 lnum, start, sleb->endpt);
531 if (endpt == 0) {
532 err = ubifs_leb_unmap(c, lnum);
533 if (err)
534 return err;
535 } else {
536 int len = ALIGN(endpt, c->min_io_size);
537
538 if (start) {
539 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
540 start, 1);
541 if (err)
542 return err;
543 }
544 /* Pad to min_io_size */
545 if (len > endpt) {
546 int pad_len = len - ALIGN(endpt, 8);
547
548 if (pad_len > 0) {
549 void *buf = sleb->buf + len - pad_len;
550
551 ubifs_pad(c, buf, pad_len);
552 }
553 }
554 err = ubifs_leb_change(c, lnum, sleb->buf, len);
555 if (err)
556 return err;
557 }
558#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100559 }
560 return 0;
561}
562
563/**
Heiko Schocherff94bc42014-06-24 10:10:04 +0200564 * drop_last_group - drop the last group of nodes.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100565 * @sleb: scanned LEB information
566 * @offs: offset of dropped nodes is returned here
567 *
Heiko Schocherff94bc42014-06-24 10:10:04 +0200568 * This is a helper function for 'ubifs_recover_leb()' which drops the last
569 * group of nodes of the scanned LEB.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100570 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200571static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100572{
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100573 while (!list_empty(&sleb->nodes)) {
574 struct ubifs_scan_node *snod;
575 struct ubifs_ch *ch;
576
577 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
578 list);
579 ch = snod->node;
580 if (ch->group_type != UBIFS_IN_NODE_GROUP)
Heiko Schocherff94bc42014-06-24 10:10:04 +0200581 break;
582
583 dbg_rcvry("dropping grouped node at %d:%d",
584 sleb->lnum, snod->offs);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100585 *offs = snod->offs;
586 list_del(&snod->list);
587 kfree(snod);
588 sleb->nodes_cnt -= 1;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100589 }
Heiko Schocherff94bc42014-06-24 10:10:04 +0200590}
591
592/**
593 * drop_last_node - drop the last node.
594 * @sleb: scanned LEB information
595 * @offs: offset of dropped nodes is returned here
596 * @grouped: non-zero if whole group of nodes have to be dropped
597 *
598 * This is a helper function for 'ubifs_recover_leb()' which drops the last
599 * node of the scanned LEB.
600 */
601static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
602{
603 struct ubifs_scan_node *snod;
604
605 if (!list_empty(&sleb->nodes)) {
606 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
607 list);
608
609 dbg_rcvry("dropping last node at %d:%d",
610 sleb->lnum, snod->offs);
611 *offs = snod->offs;
612 list_del(&snod->list);
613 kfree(snod);
614 sleb->nodes_cnt -= 1;
615 }
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100616}
617
618/**
619 * ubifs_recover_leb - scan and recover a LEB.
620 * @c: UBIFS file-system description object
621 * @lnum: LEB number
622 * @offs: offset
623 * @sbuf: LEB-sized buffer to use
Heiko Schocherff94bc42014-06-24 10:10:04 +0200624 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
625 * belong to any journal head)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100626 *
627 * This function does a scan of a LEB, but caters for errors that might have
628 * been caused by the unclean unmount from which we are attempting to recover.
Heiko Schocherff94bc42014-06-24 10:10:04 +0200629 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
630 * found, and a negative error code in case of failure.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100631 */
632struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200633 int offs, void *sbuf, int jhead)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100634{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200635 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
636 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100637 struct ubifs_scan_leb *sleb;
638 void *buf = sbuf + offs;
639
Heiko Schocherff94bc42014-06-24 10:10:04 +0200640 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100641
642 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
643 if (IS_ERR(sleb))
644 return sleb;
645
Heiko Schocherff94bc42014-06-24 10:10:04 +0200646 ubifs_assert(len >= 8);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100647 while (len >= 8) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100648 dbg_scan("look at LEB %d:%d (%d bytes left)",
649 lnum, offs, len);
650
651 cond_resched();
652
653 /*
654 * Scan quietly until there is an error from which we cannot
655 * recover
656 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200657 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100658 if (ret == SCANNED_A_NODE) {
659 /* A valid node, and not a padding node */
660 struct ubifs_ch *ch = buf;
661 int node_len;
662
663 err = ubifs_add_snod(c, sleb, buf, offs);
664 if (err)
665 goto error;
666 node_len = ALIGN(le32_to_cpu(ch->len), 8);
667 offs += node_len;
668 buf += node_len;
669 len -= node_len;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200670 } else if (ret > 0) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100671 /* Padding bytes or a valid padding node */
672 offs += ret;
673 buf += ret;
674 len -= ret;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200675 } else if (ret == SCANNED_EMPTY_SPACE ||
676 ret == SCANNED_GARBAGE ||
677 ret == SCANNED_A_BAD_PAD_NODE ||
678 ret == SCANNED_A_CORRUPT_NODE) {
679 dbg_rcvry("found corruption (%d) at %d:%d",
680 ret, lnum, offs);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100681 break;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100682 } else {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200683 ubifs_err("unexpected return value %d", ret);
684 err = -EINVAL;
685 goto error;
686 }
687 }
688
689 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
690 if (!is_last_write(c, buf, offs))
691 goto corrupted_rescan;
692 } else if (ret == SCANNED_A_CORRUPT_NODE) {
693 if (!no_more_nodes(c, buf, len, lnum, offs))
694 goto corrupted_rescan;
695 } else if (!is_empty(buf, len)) {
696 if (!is_last_write(c, buf, offs)) {
697 int corruption = first_non_ff(buf, len);
698
699 /*
700 * See header comment for this file for more
701 * explanations about the reasons we have this check.
702 */
703 ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
704 lnum, offs, corruption);
705 /* Make sure we dump interesting non-0xFF data */
706 offs += corruption;
707 buf += corruption;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100708 goto corrupted;
709 }
710 }
711
Heiko Schocherff94bc42014-06-24 10:10:04 +0200712 min_io_unit = round_down(offs, c->min_io_size);
713 if (grouped)
714 /*
715 * If nodes are grouped, always drop the incomplete group at
716 * the end.
717 */
718 drop_last_group(sleb, &offs);
719
720 if (jhead == GCHD) {
721 /*
722 * If this LEB belongs to the GC head then while we are in the
723 * middle of the same min. I/O unit keep dropping nodes. So
724 * basically, what we want is to make sure that the last min.
725 * I/O unit where we saw the corruption is dropped completely
726 * with all the uncorrupted nodes which may possibly sit there.
727 *
728 * In other words, let's name the min. I/O unit where the
729 * corruption starts B, and the previous min. I/O unit A. The
730 * below code tries to deal with a situation when half of B
731 * contains valid nodes or the end of a valid node, and the
732 * second half of B contains corrupted data or garbage. This
733 * means that UBIFS had been writing to B just before the power
734 * cut happened. I do not know how realistic is this scenario
735 * that half of the min. I/O unit had been written successfully
736 * and the other half not, but this is possible in our 'failure
737 * mode emulation' infrastructure at least.
738 *
739 * So what is the problem, why we need to drop those nodes? Why
740 * can't we just clean-up the second half of B by putting a
741 * padding node there? We can, and this works fine with one
742 * exception which was reproduced with power cut emulation
743 * testing and happens extremely rarely.
744 *
745 * Imagine the file-system is full, we run GC which starts
746 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
747 * the current GC head LEB). The @c->gc_lnum is -1, which means
748 * that GC will retain LEB X and will try to continue. Imagine
749 * that LEB X is currently the dirtiest LEB, and the amount of
750 * used space in LEB Y is exactly the same as amount of free
751 * space in LEB X.
752 *
753 * And a power cut happens when nodes are moved from LEB X to
754 * LEB Y. We are here trying to recover LEB Y which is the GC
755 * head LEB. We find the min. I/O unit B as described above.
756 * Then we clean-up LEB Y by padding min. I/O unit. And later
757 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
758 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
759 * does not match because the amount of valid nodes there does
760 * not fit the free space in LEB Y any more! And this is
761 * because of the padding node which we added to LEB Y. The
762 * user-visible effect of this which I once observed and
763 * analysed is that we cannot mount the file-system with
764 * -ENOSPC error.
765 *
766 * So obviously, to make sure that situation does not happen we
767 * should free min. I/O unit B in LEB Y completely and the last
768 * used min. I/O unit in LEB Y should be A. This is basically
769 * what the below code tries to do.
770 */
771 while (offs > min_io_unit)
772 drop_last_node(sleb, &offs);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100773 }
774
Heiko Schocherff94bc42014-06-24 10:10:04 +0200775 buf = sbuf + offs;
776 len = c->leb_size - offs;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100777
Heiko Schocherff94bc42014-06-24 10:10:04 +0200778 clean_buf(c, &buf, lnum, &offs, &len);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100779 ubifs_end_scan(c, sleb, lnum, offs);
780
Heiko Schocherff94bc42014-06-24 10:10:04 +0200781 err = fix_unclean_leb(c, sleb, start);
782 if (err)
783 goto error;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100784
785 return sleb;
786
Heiko Schocherff94bc42014-06-24 10:10:04 +0200787corrupted_rescan:
788 /* Re-scan the corrupted data with verbose messages */
789 ubifs_err("corruption %d", ret);
790 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100791corrupted:
792 ubifs_scanned_corruption(c, lnum, offs, buf);
793 err = -EUCLEAN;
794error:
795 ubifs_err("LEB %d scanning failed", lnum);
796 ubifs_scan_destroy(sleb);
797 return ERR_PTR(err);
798}
799
800/**
801 * get_cs_sqnum - get commit start sequence number.
802 * @c: UBIFS file-system description object
803 * @lnum: LEB number of commit start node
804 * @offs: offset of commit start node
805 * @cs_sqnum: commit start sequence number is returned here
806 *
807 * This function returns %0 on success and a negative error code on failure.
808 */
809static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
810 unsigned long long *cs_sqnum)
811{
812 struct ubifs_cs_node *cs_node = NULL;
813 int err, ret;
814
815 dbg_rcvry("at %d:%d", lnum, offs);
816 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
817 if (!cs_node)
818 return -ENOMEM;
819 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
820 goto out_err;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200821 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
822 UBIFS_CS_NODE_SZ, 0);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100823 if (err && err != -EBADMSG)
824 goto out_free;
825 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
826 if (ret != SCANNED_A_NODE) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200827 ubifs_err("Not a valid node");
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100828 goto out_err;
829 }
830 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200831 ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100832 goto out_err;
833 }
834 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200835 ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
836 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
837 c->cmt_no);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100838 goto out_err;
839 }
840 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
841 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
842 kfree(cs_node);
843 return 0;
844
845out_err:
846 err = -EINVAL;
847out_free:
848 ubifs_err("failed to get CS sqnum");
849 kfree(cs_node);
850 return err;
851}
852
853/**
854 * ubifs_recover_log_leb - scan and recover a log LEB.
855 * @c: UBIFS file-system description object
856 * @lnum: LEB number
857 * @offs: offset
858 * @sbuf: LEB-sized buffer to use
859 *
860 * This function does a scan of a LEB, but caters for errors that might have
Heiko Schocherff94bc42014-06-24 10:10:04 +0200861 * been caused by unclean reboots from which we are attempting to recover
862 * (assume that only the last log LEB can be corrupted by an unclean reboot).
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100863 *
864 * This function returns %0 on success and a negative error code on failure.
865 */
866struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
867 int offs, void *sbuf)
868{
869 struct ubifs_scan_leb *sleb;
870 int next_lnum;
871
872 dbg_rcvry("LEB %d", lnum);
873 next_lnum = lnum + 1;
874 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
875 next_lnum = UBIFS_LOG_LNUM;
876 if (next_lnum != c->ltail_lnum) {
877 /*
878 * We can only recover at the end of the log, so check that the
879 * next log LEB is empty or out of date.
880 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200881 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100882 if (IS_ERR(sleb))
883 return sleb;
884 if (sleb->nodes_cnt) {
885 struct ubifs_scan_node *snod;
886 unsigned long long cs_sqnum = c->cs_sqnum;
887
888 snod = list_entry(sleb->nodes.next,
889 struct ubifs_scan_node, list);
890 if (cs_sqnum == 0) {
891 int err;
892
893 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
894 if (err) {
895 ubifs_scan_destroy(sleb);
896 return ERR_PTR(err);
897 }
898 }
899 if (snod->sqnum > cs_sqnum) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200900 ubifs_err("unrecoverable log corruption in LEB %d",
901 lnum);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100902 ubifs_scan_destroy(sleb);
903 return ERR_PTR(-EUCLEAN);
904 }
905 }
906 ubifs_scan_destroy(sleb);
907 }
Heiko Schocherff94bc42014-06-24 10:10:04 +0200908 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100909}
910
911/**
912 * recover_head - recover a head.
913 * @c: UBIFS file-system description object
914 * @lnum: LEB number of head to recover
915 * @offs: offset of head to recover
916 * @sbuf: LEB-sized buffer to use
917 *
918 * This function ensures that there is no data on the flash at a head location.
919 *
920 * This function returns %0 on success and a negative error code on failure.
921 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200922static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100923{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200924 int len = c->max_write_size, err;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100925
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100926 if (offs + len > c->leb_size)
927 len = c->leb_size - offs;
928
929 if (!len)
930 return 0;
931
932 /* Read at the head location and check it is empty flash */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200933 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
934 if (err || !is_empty(sbuf, len)) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100935 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
936 if (offs == 0)
937 return ubifs_leb_unmap(c, lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200938 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100939 if (err)
940 return err;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200941 return ubifs_leb_change(c, lnum, sbuf, offs);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100942 }
943
944 return 0;
945}
946
947/**
948 * ubifs_recover_inl_heads - recover index and LPT heads.
949 * @c: UBIFS file-system description object
950 * @sbuf: LEB-sized buffer to use
951 *
952 * This function ensures that there is no data on the flash at the index and
953 * LPT head locations.
954 *
955 * This deals with the recovery of a half-completed journal commit. UBIFS is
956 * careful never to overwrite the last version of the index or the LPT. Because
957 * the index and LPT are wandering trees, data from a half-completed commit will
958 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
959 * assumed to be empty and will be unmapped anyway before use, or in the index
960 * and LPT heads.
961 *
962 * This function returns %0 on success and a negative error code on failure.
963 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200964int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100965{
966 int err;
967
Heiko Schocherff94bc42014-06-24 10:10:04 +0200968 ubifs_assert(!c->ro_mount || c->remounting_rw);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100969
970 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
971 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
972 if (err)
973 return err;
974
975 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
976 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
977 if (err)
978 return err;
979
980 return 0;
981}
982
983/**
Heiko Schocherff94bc42014-06-24 10:10:04 +0200984 * clean_an_unclean_leb - read and write a LEB to remove corruption.
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100985 * @c: UBIFS file-system description object
986 * @ucleb: unclean LEB information
987 * @sbuf: LEB-sized buffer to use
988 *
989 * This function reads a LEB up to a point pre-determined by the mount recovery,
990 * checks the nodes, and writes the result back to the flash, thereby cleaning
991 * off any following corruption, or non-fatal ECC errors.
992 *
993 * This function returns %0 on success and a negative error code on failure.
994 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200995static int clean_an_unclean_leb(struct ubifs_info *c,
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100996 struct ubifs_unclean_leb *ucleb, void *sbuf)
997{
998 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
999 void *buf = sbuf;
1000
1001 dbg_rcvry("LEB %d len %d", lnum, len);
1002
1003 if (len == 0) {
1004 /* Nothing to read, just unmap it */
1005 err = ubifs_leb_unmap(c, lnum);
1006 if (err)
1007 return err;
1008 return 0;
1009 }
1010
Heiko Schocherff94bc42014-06-24 10:10:04 +02001011 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001012 if (err && err != -EBADMSG)
1013 return err;
1014
1015 while (len >= 8) {
1016 int ret;
1017
1018 cond_resched();
1019
1020 /* Scan quietly until there is an error */
1021 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1022
1023 if (ret == SCANNED_A_NODE) {
1024 /* A valid node, and not a padding node */
1025 struct ubifs_ch *ch = buf;
1026 int node_len;
1027
1028 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1029 offs += node_len;
1030 buf += node_len;
1031 len -= node_len;
1032 continue;
1033 }
1034
1035 if (ret > 0) {
1036 /* Padding bytes or a valid padding node */
1037 offs += ret;
1038 buf += ret;
1039 len -= ret;
1040 continue;
1041 }
1042
1043 if (ret == SCANNED_EMPTY_SPACE) {
1044 ubifs_err("unexpected empty space at %d:%d",
1045 lnum, offs);
1046 return -EUCLEAN;
1047 }
1048
1049 if (quiet) {
1050 /* Redo the last scan but noisily */
1051 quiet = 0;
1052 continue;
1053 }
1054
1055 ubifs_scanned_corruption(c, lnum, offs, buf);
1056 return -EUCLEAN;
1057 }
1058
1059 /* Pad to min_io_size */
1060 len = ALIGN(ucleb->endpt, c->min_io_size);
1061 if (len > ucleb->endpt) {
1062 int pad_len = len - ALIGN(ucleb->endpt, 8);
1063
1064 if (pad_len > 0) {
1065 buf = c->sbuf + len - pad_len;
1066 ubifs_pad(c, buf, pad_len);
1067 }
1068 }
1069
1070 /* Write back the LEB atomically */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001071 err = ubifs_leb_change(c, lnum, sbuf, len);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001072 if (err)
1073 return err;
1074
1075 dbg_rcvry("cleaned LEB %d", lnum);
1076
1077 return 0;
1078}
1079
1080/**
1081 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1082 * @c: UBIFS file-system description object
1083 * @sbuf: LEB-sized buffer to use
1084 *
1085 * This function cleans a LEB identified during recovery that needs to be
1086 * written but was not because UBIFS was mounted read-only. This happens when
1087 * remounting to read-write mode.
1088 *
1089 * This function returns %0 on success and a negative error code on failure.
1090 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001091int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001092{
1093 dbg_rcvry("recovery");
1094 while (!list_empty(&c->unclean_leb_list)) {
1095 struct ubifs_unclean_leb *ucleb;
1096 int err;
1097
1098 ucleb = list_entry(c->unclean_leb_list.next,
1099 struct ubifs_unclean_leb, list);
1100 err = clean_an_unclean_leb(c, ucleb, sbuf);
1101 if (err)
1102 return err;
1103 list_del(&ucleb->list);
1104 kfree(ucleb);
1105 }
1106 return 0;
1107}
1108
Heiko Schocherff94bc42014-06-24 10:10:04 +02001109#ifndef __UBOOT__
1110/**
1111 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1112 * @c: UBIFS file-system description object
1113 *
1114 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1115 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1116 * zero in case of success and a negative error code in case of failure.
1117 */
1118static int grab_empty_leb(struct ubifs_info *c)
1119{
1120 int lnum, err;
1121
1122 /*
1123 * Note, it is very important to first search for an empty LEB and then
1124 * run the commit, not vice-versa. The reason is that there might be
1125 * only one empty LEB at the moment, the one which has been the
1126 * @c->gc_lnum just before the power cut happened. During the regular
1127 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1128 * one but GC can grab it. But at this moment this single empty LEB is
1129 * not marked as taken, so if we run commit - what happens? Right, the
1130 * commit will grab it and write the index there. Remember that the
1131 * index always expands as long as there is free space, and it only
1132 * starts consolidating when we run out of space.
1133 *
1134 * IOW, if we run commit now, we might not be able to find a free LEB
1135 * after this.
1136 */
1137 lnum = ubifs_find_free_leb_for_idx(c);
1138 if (lnum < 0) {
1139 ubifs_err("could not find an empty LEB");
1140 ubifs_dump_lprops(c);
1141 ubifs_dump_budg(c, &c->bi);
1142 return lnum;
1143 }
1144
1145 /* Reset the index flag */
1146 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1147 LPROPS_INDEX, 0);
1148 if (err)
1149 return err;
1150
1151 c->gc_lnum = lnum;
1152 dbg_rcvry("found empty LEB %d, run commit", lnum);
1153
1154 return ubifs_run_commit(c);
1155}
1156
1157/**
1158 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1159 * @c: UBIFS file-system description object
1160 *
1161 * Out-of-place garbage collection requires always one empty LEB with which to
1162 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1163 * written to the master node on unmounting. In the case of an unclean unmount
1164 * the value of gc_lnum recorded in the master node is out of date and cannot
1165 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1166 * However, there may not be enough empty space, in which case it must be
1167 * possible to GC the dirtiest LEB into the GC head LEB.
1168 *
1169 * This function also runs the commit which causes the TNC updates from
1170 * size-recovery and orphans to be written to the flash. That is important to
1171 * ensure correct replay order for subsequent mounts.
1172 *
1173 * This function returns %0 on success and a negative error code on failure.
1174 */
1175int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1176{
1177 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1178 struct ubifs_lprops lp;
1179 int err;
1180
1181 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1182
1183 c->gc_lnum = -1;
1184 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1185 return grab_empty_leb(c);
1186
1187 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1188 if (err) {
1189 if (err != -ENOSPC)
1190 return err;
1191
1192 dbg_rcvry("could not find a dirty LEB");
1193 return grab_empty_leb(c);
1194 }
1195
1196 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1197 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1198
1199 /*
1200 * We run the commit before garbage collection otherwise subsequent
1201 * mounts will see the GC and orphan deletion in a different order.
1202 */
1203 dbg_rcvry("committing");
1204 err = ubifs_run_commit(c);
1205 if (err)
1206 return err;
1207
1208 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1209 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1210 err = ubifs_garbage_collect_leb(c, &lp);
1211 if (err >= 0) {
1212 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1213
1214 if (err2)
1215 err = err2;
1216 }
1217 mutex_unlock(&wbuf->io_mutex);
1218 if (err < 0) {
1219 ubifs_err("GC failed, error %d", err);
1220 if (err == -EAGAIN)
1221 err = -EINVAL;
1222 return err;
1223 }
1224
1225 ubifs_assert(err == LEB_RETAINED);
1226 if (err != LEB_RETAINED)
1227 return -EINVAL;
1228
1229 err = ubifs_leb_unmap(c, c->gc_lnum);
1230 if (err)
1231 return err;
1232
1233 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1234 return 0;
1235}
1236#else
1237int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1238{
1239 return 0;
1240}
1241#endif
1242
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001243/**
1244 * struct size_entry - inode size information for recovery.
1245 * @rb: link in the RB-tree of sizes
1246 * @inum: inode number
1247 * @i_size: size on inode
1248 * @d_size: maximum size based on data nodes
1249 * @exists: indicates whether the inode exists
1250 * @inode: inode if pinned in memory awaiting rw mode to fix it
1251 */
1252struct size_entry {
1253 struct rb_node rb;
1254 ino_t inum;
1255 loff_t i_size;
1256 loff_t d_size;
1257 int exists;
1258 struct inode *inode;
1259};
1260
1261/**
1262 * add_ino - add an entry to the size tree.
1263 * @c: UBIFS file-system description object
1264 * @inum: inode number
1265 * @i_size: size on inode
1266 * @d_size: maximum size based on data nodes
1267 * @exists: indicates whether the inode exists
1268 */
1269static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1270 loff_t d_size, int exists)
1271{
1272 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1273 struct size_entry *e;
1274
1275 while (*p) {
1276 parent = *p;
1277 e = rb_entry(parent, struct size_entry, rb);
1278 if (inum < e->inum)
1279 p = &(*p)->rb_left;
1280 else
1281 p = &(*p)->rb_right;
1282 }
1283
1284 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1285 if (!e)
1286 return -ENOMEM;
1287
1288 e->inum = inum;
1289 e->i_size = i_size;
1290 e->d_size = d_size;
1291 e->exists = exists;
1292
1293 rb_link_node(&e->rb, parent, p);
1294 rb_insert_color(&e->rb, &c->size_tree);
1295
1296 return 0;
1297}
1298
1299/**
1300 * find_ino - find an entry on the size tree.
1301 * @c: UBIFS file-system description object
1302 * @inum: inode number
1303 */
1304static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1305{
1306 struct rb_node *p = c->size_tree.rb_node;
1307 struct size_entry *e;
1308
1309 while (p) {
1310 e = rb_entry(p, struct size_entry, rb);
1311 if (inum < e->inum)
1312 p = p->rb_left;
1313 else if (inum > e->inum)
1314 p = p->rb_right;
1315 else
1316 return e;
1317 }
1318 return NULL;
1319}
1320
1321/**
1322 * remove_ino - remove an entry from the size tree.
1323 * @c: UBIFS file-system description object
1324 * @inum: inode number
1325 */
1326static void remove_ino(struct ubifs_info *c, ino_t inum)
1327{
1328 struct size_entry *e = find_ino(c, inum);
1329
1330 if (!e)
1331 return;
1332 rb_erase(&e->rb, &c->size_tree);
1333 kfree(e);
1334}
1335
1336/**
Heiko Schocherff94bc42014-06-24 10:10:04 +02001337 * ubifs_destroy_size_tree - free resources related to the size tree.
1338 * @c: UBIFS file-system description object
1339 */
1340void ubifs_destroy_size_tree(struct ubifs_info *c)
1341{
1342 struct size_entry *e, *n;
1343
1344 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1345 if (e->inode)
1346 iput(e->inode);
1347 kfree(e);
1348 }
1349
1350 c->size_tree = RB_ROOT;
1351}
1352
1353/**
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001354 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1355 * @c: UBIFS file-system description object
1356 * @key: node key
1357 * @deletion: node is for a deletion
1358 * @new_size: inode size
1359 *
1360 * This function has two purposes:
1361 * 1) to ensure there are no data nodes that fall outside the inode size
1362 * 2) to ensure there are no data nodes for inodes that do not exist
1363 * To accomplish those purposes, a rb-tree is constructed containing an entry
1364 * for each inode number in the journal that has not been deleted, and recording
1365 * the size from the inode node, the maximum size of any data node (also altered
1366 * by truncations) and a flag indicating a inode number for which no inode node
1367 * was present in the journal.
1368 *
1369 * Note that there is still the possibility that there are data nodes that have
1370 * been committed that are beyond the inode size, however the only way to find
1371 * them would be to scan the entire index. Alternatively, some provision could
1372 * be made to record the size of inodes at the start of commit, which would seem
1373 * very cumbersome for a scenario that is quite unlikely and the only negative
1374 * consequence of which is wasted space.
1375 *
1376 * This functions returns %0 on success and a negative error code on failure.
1377 */
1378int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1379 int deletion, loff_t new_size)
1380{
1381 ino_t inum = key_inum(c, key);
1382 struct size_entry *e;
1383 int err;
1384
1385 switch (key_type(c, key)) {
1386 case UBIFS_INO_KEY:
1387 if (deletion)
1388 remove_ino(c, inum);
1389 else {
1390 e = find_ino(c, inum);
1391 if (e) {
1392 e->i_size = new_size;
1393 e->exists = 1;
1394 } else {
1395 err = add_ino(c, inum, new_size, 0, 1);
1396 if (err)
1397 return err;
1398 }
1399 }
1400 break;
1401 case UBIFS_DATA_KEY:
1402 e = find_ino(c, inum);
1403 if (e) {
1404 if (new_size > e->d_size)
1405 e->d_size = new_size;
1406 } else {
1407 err = add_ino(c, inum, 0, new_size, 0);
1408 if (err)
1409 return err;
1410 }
1411 break;
1412 case UBIFS_TRUN_KEY:
1413 e = find_ino(c, inum);
1414 if (e)
1415 e->d_size = new_size;
1416 break;
1417 }
1418 return 0;
1419}
1420
Heiko Schocherff94bc42014-06-24 10:10:04 +02001421#ifndef __UBOOT__
1422/**
1423 * fix_size_in_place - fix inode size in place on flash.
1424 * @c: UBIFS file-system description object
1425 * @e: inode size information for recovery
1426 */
1427static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1428{
1429 struct ubifs_ino_node *ino = c->sbuf;
1430 unsigned char *p;
1431 union ubifs_key key;
1432 int err, lnum, offs, len;
1433 loff_t i_size;
1434 uint32_t crc;
1435
1436 /* Locate the inode node LEB number and offset */
1437 ino_key_init(c, &key, e->inum);
1438 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1439 if (err)
1440 goto out;
1441 /*
1442 * If the size recorded on the inode node is greater than the size that
1443 * was calculated from nodes in the journal then don't change the inode.
1444 */
1445 i_size = le64_to_cpu(ino->size);
1446 if (i_size >= e->d_size)
1447 return 0;
1448 /* Read the LEB */
1449 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1450 if (err)
1451 goto out;
1452 /* Change the size field and recalculate the CRC */
1453 ino = c->sbuf + offs;
1454 ino->size = cpu_to_le64(e->d_size);
1455 len = le32_to_cpu(ino->ch.len);
1456 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1457 ino->ch.crc = cpu_to_le32(crc);
1458 /* Work out where data in the LEB ends and free space begins */
1459 p = c->sbuf;
1460 len = c->leb_size - 1;
1461 while (p[len] == 0xff)
1462 len -= 1;
1463 len = ALIGN(len + 1, c->min_io_size);
1464 /* Atomically write the fixed LEB back again */
1465 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1466 if (err)
1467 goto out;
1468 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1469 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1470 return 0;
1471
1472out:
1473 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1474 (unsigned long)e->inum, e->i_size, e->d_size, err);
1475 return err;
1476}
1477#endif
1478
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001479/**
1480 * ubifs_recover_size - recover inode size.
1481 * @c: UBIFS file-system description object
1482 *
1483 * This function attempts to fix inode size discrepancies identified by the
1484 * 'ubifs_recover_size_accum()' function.
1485 *
1486 * This functions returns %0 on success and a negative error code on failure.
1487 */
1488int ubifs_recover_size(struct ubifs_info *c)
1489{
1490 struct rb_node *this = rb_first(&c->size_tree);
1491
1492 while (this) {
1493 struct size_entry *e;
1494 int err;
1495
1496 e = rb_entry(this, struct size_entry, rb);
1497 if (!e->exists) {
1498 union ubifs_key key;
1499
1500 ino_key_init(c, &key, e->inum);
1501 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1502 if (err && err != -ENOENT)
1503 return err;
1504 if (err == -ENOENT) {
1505 /* Remove data nodes that have no inode */
1506 dbg_rcvry("removing ino %lu",
1507 (unsigned long)e->inum);
1508 err = ubifs_tnc_remove_ino(c, e->inum);
1509 if (err)
1510 return err;
1511 } else {
1512 struct ubifs_ino_node *ino = c->sbuf;
1513
1514 e->exists = 1;
1515 e->i_size = le64_to_cpu(ino->size);
1516 }
1517 }
Heiko Schocherff94bc42014-06-24 10:10:04 +02001518
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001519 if (e->exists && e->i_size < e->d_size) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001520 if (c->ro_mount) {
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001521 /* Fix the inode size and pin it in memory */
1522 struct inode *inode;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001523 struct ubifs_inode *ui;
1524
1525 ubifs_assert(!e->inode);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001526
1527 inode = ubifs_iget(c->vfs_sb, e->inum);
1528 if (IS_ERR(inode))
1529 return PTR_ERR(inode);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001530
1531 ui = ubifs_inode(inode);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001532 if (inode->i_size < e->d_size) {
1533 dbg_rcvry("ino %lu size %lld -> %lld",
1534 (unsigned long)e->inum,
Heiko Schocherff94bc42014-06-24 10:10:04 +02001535 inode->i_size, e->d_size);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001536 inode->i_size = e->d_size;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001537 ui->ui_size = e->d_size;
1538 ui->synced_i_size = e->d_size;
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001539 e->inode = inode;
1540 this = rb_next(this);
1541 continue;
1542 }
1543 iput(inode);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001544#ifndef __UBOOT__
1545 } else {
1546 /* Fix the size in place */
1547 err = fix_size_in_place(c, e);
1548 if (err)
1549 return err;
1550 if (e->inode)
1551 iput(e->inode);
1552#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001553 }
1554 }
Heiko Schocherff94bc42014-06-24 10:10:04 +02001555
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001556 this = rb_next(this);
1557 rb_erase(&e->rb, &c->size_tree);
1558 kfree(e);
1559 }
Heiko Schocherff94bc42014-06-24 10:10:04 +02001560
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001561 return 0;
1562}