blob: 23a961c9d4efcd49d8062d7d7f5c6f0c5ec20fff [file] [log] [blame]
Dirk Behme12201a12008-12-14 09:47:16 +01001/*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
4 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02005 * SPDX-License-Identifier: GPL-2.0+
Dirk Behme12201a12008-12-14 09:47:16 +01006 */
7
8#include <common.h>
9#include <asm/io.h>
10#include <asm/errno.h>
11#include <asm/arch/mem.h>
Tom Rini98f92002013-03-14 11:15:25 +000012#include <asm/arch/cpu.h>
Andreas Bießmann5bf299b2013-04-02 06:05:54 +000013#include <asm/omap_gpmc.h>
Dirk Behme12201a12008-12-14 09:47:16 +010014#include <linux/mtd/nand_ecc.h>
Andreas Bießmann4a093002013-04-05 04:55:21 +000015#include <linux/bch.h>
Stefano Babicf7dad8f2012-03-21 23:56:17 +000016#include <linux/compiler.h>
Dirk Behme12201a12008-12-14 09:47:16 +010017#include <nand.h>
pekon guptabeba5f02013-11-18 19:02:59 +053018#include <asm/omap_elm.h>
pekon guptad016dc42013-11-18 19:03:00 +053019
20#define BADBLOCK_MARKER_LENGTH 2
21#define SECTOR_BYTES 512
Dirk Behme12201a12008-12-14 09:47:16 +010022
23static uint8_t cs;
pekon guptad016dc42013-11-18 19:03:00 +053024static __maybe_unused struct nand_ecclayout omap_ecclayout;
Dirk Behme12201a12008-12-14 09:47:16 +010025
26/*
27 * omap_nand_hwcontrol - Set the address pointers corretly for the
28 * following address/data/command operation
29 */
30static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
31 uint32_t ctrl)
32{
33 register struct nand_chip *this = mtd->priv;
34
35 /*
36 * Point the IO_ADDR to DATA and ADDRESS registers instead
37 * of chip address
38 */
39 switch (ctrl) {
40 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
Dirk Behme89411352009-08-08 09:30:22 +020041 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
Dirk Behme12201a12008-12-14 09:47:16 +010042 break;
43 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
Dirk Behme89411352009-08-08 09:30:22 +020044 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
Dirk Behme12201a12008-12-14 09:47:16 +010045 break;
46 case NAND_CTRL_CHANGE | NAND_NCE:
Dirk Behme89411352009-08-08 09:30:22 +020047 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
Dirk Behme12201a12008-12-14 09:47:16 +010048 break;
49 }
50
51 if (cmd != NAND_CMD_NONE)
52 writeb(cmd, this->IO_ADDR_W);
53}
54
Simon Schwarz12c2f1e2011-09-14 15:30:16 -040055#ifdef CONFIG_SPL_BUILD
56/* Check wait pin as dev ready indicator */
57int omap_spl_dev_ready(struct mtd_info *mtd)
58{
59 return gpmc_cfg->status & (1 << 8);
60}
61#endif
62
Dirk Behme12201a12008-12-14 09:47:16 +010063/*
64 * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
65 * GPMC controller
66 * @mtd: MTD device structure
67 *
68 */
Stefano Babicf7dad8f2012-03-21 23:56:17 +000069static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
Dirk Behme12201a12008-12-14 09:47:16 +010070{
71 /*
72 * Init ECC Control Register
73 * Clear all ECC | Enable Reg1
74 */
Dirk Behme89411352009-08-08 09:30:22 +020075 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
76 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
Dirk Behme12201a12008-12-14 09:47:16 +010077}
78
79/*
80 * gen_true_ecc - This function will generate true ECC value, which
81 * can be used when correcting data read from NAND flash memory core
82 *
83 * @ecc_buf: buffer to store ecc code
84 *
85 * @return: re-formatted ECC value
86 */
87static uint32_t gen_true_ecc(uint8_t *ecc_buf)
88{
89 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
90 ((ecc_buf[2] & 0x0F) << 8);
91}
92
93/*
94 * omap_correct_data - Compares the ecc read from nand spare area with ECC
95 * registers values and corrects one bit error if it has occured
96 * Further details can be had from OMAP TRM and the following selected links:
97 * http://en.wikipedia.org/wiki/Hamming_code
98 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
99 *
100 * @mtd: MTD device structure
101 * @dat: page data
102 * @read_ecc: ecc read from nand flash
103 * @calc_ecc: ecc read from ECC registers
104 *
105 * @return 0 if data is OK or corrected, else returns -1
106 */
Stefano Babicf7dad8f2012-03-21 23:56:17 +0000107static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
Dirk Behme12201a12008-12-14 09:47:16 +0100108 uint8_t *read_ecc, uint8_t *calc_ecc)
109{
110 uint32_t orig_ecc, new_ecc, res, hm;
111 uint16_t parity_bits, byte;
112 uint8_t bit;
113
114 /* Regenerate the orginal ECC */
115 orig_ecc = gen_true_ecc(read_ecc);
116 new_ecc = gen_true_ecc(calc_ecc);
117 /* Get the XOR of real ecc */
118 res = orig_ecc ^ new_ecc;
119 if (res) {
120 /* Get the hamming width */
121 hm = hweight32(res);
122 /* Single bit errors can be corrected! */
123 if (hm == 12) {
124 /* Correctable data! */
125 parity_bits = res >> 16;
126 bit = (parity_bits & 0x7);
127 byte = (parity_bits >> 3) & 0x1FF;
128 /* Flip the bit to correct */
129 dat[byte] ^= (0x1 << bit);
130 } else if (hm == 1) {
131 printf("Error: Ecc is wrong\n");
132 /* ECC itself is corrupted */
133 return 2;
134 } else {
135 /*
136 * hm distance != parity pairs OR one, could mean 2 bit
137 * error OR potentially be on a blank page..
138 * orig_ecc: contains spare area data from nand flash.
139 * new_ecc: generated ecc while reading data area.
140 * Note: if the ecc = 0, all data bits from which it was
141 * generated are 0xFF.
142 * The 3 byte(24 bits) ecc is generated per 512byte
143 * chunk of a page. If orig_ecc(from spare area)
144 * is 0xFF && new_ecc(computed now from data area)=0x0,
145 * this means that data area is 0xFF and spare area is
146 * 0xFF. A sure sign of a erased page!
147 */
148 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
149 return 0;
150 printf("Error: Bad compare! failed\n");
151 /* detected 2 bit error */
152 return -1;
153 }
154 }
155 return 0;
156}
157
158/*
159 * omap_calculate_ecc - Generate non-inverted ECC bytes.
160 *
161 * Using noninverted ECC can be considered ugly since writing a blank
162 * page ie. padding will clear the ECC bytes. This is no problem as
163 * long nobody is trying to write data on the seemingly unused page.
164 * Reading an erased page will produce an ECC mismatch between
165 * generated and read ECC bytes that has to be dealt with separately.
166 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
167 * is used, the result of read will be 0x0 while the ECC offsets of the
168 * spare area will be 0xFF which will result in an ECC mismatch.
169 * @mtd: MTD structure
170 * @dat: unused
171 * @ecc_code: ecc_code buffer
172 */
Stefano Babicf7dad8f2012-03-21 23:56:17 +0000173static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
174 const uint8_t *dat, uint8_t *ecc_code)
Dirk Behme12201a12008-12-14 09:47:16 +0100175{
176 u_int32_t val;
177
178 /* Start Reading from HW ECC1_Result = 0x200 */
Dirk Behme89411352009-08-08 09:30:22 +0200179 val = readl(&gpmc_cfg->ecc1_result);
Dirk Behme12201a12008-12-14 09:47:16 +0100180
181 ecc_code[0] = val & 0xFF;
182 ecc_code[1] = (val >> 16) & 0xFF;
183 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
184
185 /*
186 * Stop reading anymore ECC vals and clear old results
187 * enable will be called if more reads are required
188 */
Dirk Behme89411352009-08-08 09:30:22 +0200189 writel(0x000, &gpmc_cfg->ecc_config);
Dirk Behme12201a12008-12-14 09:47:16 +0100190
191 return 0;
192}
193
194/*
195 * omap_enable_ecc - This function enables the hardware ecc functionality
196 * @mtd: MTD device structure
197 * @mode: Read/Write mode
198 */
Stefano Babicf7dad8f2012-03-21 23:56:17 +0000199static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
Dirk Behme12201a12008-12-14 09:47:16 +0100200{
201 struct nand_chip *chip = mtd->priv;
202 uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
203
204 switch (mode) {
205 case NAND_ECC_READ:
206 case NAND_ECC_WRITE:
207 /* Clear the ecc result registers, select ecc reg as 1 */
Dirk Behme89411352009-08-08 09:30:22 +0200208 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
Dirk Behme12201a12008-12-14 09:47:16 +0100209
210 /*
211 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
212 * tell all regs to generate size0 sized regs
213 * we just have a single ECC engine for all CS
214 */
215 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
Dirk Behme89411352009-08-08 09:30:22 +0200216 &gpmc_cfg->ecc_size_config);
Dirk Behme12201a12008-12-14 09:47:16 +0100217 val = (dev_width << 7) | (cs << 1) | (0x1);
Dirk Behme89411352009-08-08 09:30:22 +0200218 writel(val, &gpmc_cfg->ecc_config);
Dirk Behme12201a12008-12-14 09:47:16 +0100219 break;
220 default:
221 printf("Error: Unrecognized Mode[%d]!\n", mode);
222 break;
223 }
224}
225
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000226/*
Andreas Bießmann4a093002013-04-05 04:55:21 +0000227 * Generic BCH interface
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000228 */
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000229struct nand_bch_priv {
230 uint8_t mode;
231 uint8_t type;
232 uint8_t nibbles;
Andreas Bießmann4a093002013-04-05 04:55:21 +0000233 struct bch_control *control;
pekon guptad016dc42013-11-18 19:03:00 +0530234 enum omap_ecc ecc_scheme;
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000235};
236
237/* bch types */
238#define ECC_BCH4 0
239#define ECC_BCH8 1
240#define ECC_BCH16 2
241
Andreas Bießmann4a093002013-04-05 04:55:21 +0000242/* GPMC ecc engine settings */
243#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
244#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
245
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000246/* BCH nibbles for diff bch levels */
247#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
248#define ECC_BCH4_NIBBLES 13
249#define ECC_BCH8_NIBBLES 26
250#define ECC_BCH16_NIBBLES 52
251
Andreas Bießmann4a093002013-04-05 04:55:21 +0000252/*
253 * This can be a single instance cause all current users have only one NAND
254 * with nearly the same setup (BCH8, some with ELM and others with sw BCH
255 * library).
256 * When some users with other BCH strength will exists this have to change!
257 */
258static __maybe_unused struct nand_bch_priv bch_priv = {
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000259 .mode = NAND_ECC_HW_BCH,
260 .type = ECC_BCH8,
Andreas Bießmann4a093002013-04-05 04:55:21 +0000261 .nibbles = ECC_BCH8_NIBBLES,
262 .control = NULL
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000263};
264
265/*
Andreas Bießmann4a093002013-04-05 04:55:21 +0000266 * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
267 * GPMC controller
268 * @mtd: MTD device structure
269 * @mode: Read/Write mode
270 */
271__maybe_unused
272static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
273{
274 uint32_t val;
275 uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
Andreas Bießmann4a093002013-04-05 04:55:21 +0000276 uint32_t unused_length = 0;
Andreas Bießmann4a093002013-04-05 04:55:21 +0000277 uint32_t wr_mode = BCH_WRAPMODE_6;
278 struct nand_bch_priv *bch = chip->priv;
279
280 /* Clear the ecc result registers, select ecc reg as 1 */
281 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
282
pekon guptad016dc42013-11-18 19:03:00 +0530283 if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
284 wr_mode = BCH_WRAPMODE_1;
Andreas Bießmann4a093002013-04-05 04:55:21 +0000285
286 switch (bch->nibbles) {
287 case ECC_BCH4_NIBBLES:
288 unused_length = 3;
289 break;
290 case ECC_BCH8_NIBBLES:
291 unused_length = 2;
292 break;
293 case ECC_BCH16_NIBBLES:
294 unused_length = 0;
295 break;
296 }
297
298 /*
299 * This is ecc_size_config for ELM mode.
300 * Here we are using different settings for read and write access and
301 * also depending on BCH strength.
302 */
303 switch (mode) {
304 case NAND_ECC_WRITE:
305 /* write access only setup eccsize1 config */
306 val = ((unused_length + bch->nibbles) << 22);
307 break;
308
309 case NAND_ECC_READ:
310 default:
311 /*
312 * by default eccsize0 selected for ecc1resultsize
313 * eccsize0 config.
314 */
315 val = (bch->nibbles << 12);
316 /* eccsize1 config */
317 val |= (unused_length << 22);
318 break;
319 }
pekon guptad016dc42013-11-18 19:03:00 +0530320 } else {
Andreas Bießmann4a093002013-04-05 04:55:21 +0000321 /*
322 * This ecc_size_config setting is for BCH sw library.
323 *
324 * Note: we only support BCH8 currently with BCH sw library!
325 * Should be really easy to adobt to BCH4, however some omap3 have
326 * flaws with BCH4.
327 *
328 * Here we are using wrapping mode 6 both for reading and writing, with:
329 * size0 = 0 (no additional protected byte in spare area)
330 * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
331 */
332 val = (32 << 22) | (0 << 12);
pekon guptad016dc42013-11-18 19:03:00 +0530333 }
Andreas Bießmann4a093002013-04-05 04:55:21 +0000334 /* ecc size configuration */
335 writel(val, &gpmc_cfg->ecc_size_config);
336
337 /*
338 * Configure the ecc engine in gpmc
339 * We assume 512 Byte sector pages for access to NAND.
340 */
341 val = (1 << 16); /* enable BCH mode */
342 val |= (bch->type << 12); /* setup BCH type */
343 val |= (wr_mode << 8); /* setup wrapping mode */
344 val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
345 val |= (cs << 1); /* setup chip select to work on */
346 debug("set ECC_CONFIG=0x%08x\n", val);
347 writel(val, &gpmc_cfg->ecc_config);
348}
349
350/*
351 * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
352 * @mtd: MTD device structure
353 * @mode: Read/Write mode
354 */
355__maybe_unused
356static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
357{
358 struct nand_chip *chip = mtd->priv;
359
360 omap_hwecc_init_bch(chip, mode);
361 /* enable ecc */
362 writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
363}
364
365/*
366 * omap_ecc_disable - Disable H/W ECC calculation
367 *
368 * @mtd: MTD device structure
369 */
370static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
371{
372 writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
373}
374
375/*
pekon guptad016dc42013-11-18 19:03:00 +0530376 * BCH support using ELM module
Andreas Bießmann4a093002013-04-05 04:55:21 +0000377 */
pekon guptad016dc42013-11-18 19:03:00 +0530378#ifdef CONFIG_NAND_OMAP_ELM
Andreas Bießmann4a093002013-04-05 04:55:21 +0000379/*
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000380 * omap_read_bch8_result - Read BCH result for BCH8 level
381 *
382 * @mtd: MTD device structure
383 * @big_endian: When set read register 3 first
384 * @ecc_code: Read syndrome from BCH result registers
385 */
386static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
387 uint8_t *ecc_code)
388{
389 uint32_t *ptr;
390 int8_t i = 0, j;
391
392 if (big_endian) {
393 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
394 ecc_code[i++] = readl(ptr) & 0xFF;
395 ptr--;
396 for (j = 0; j < 3; j++) {
397 ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
398 ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
399 ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
400 ecc_code[i++] = readl(ptr) & 0xFF;
401 ptr--;
402 }
403 } else {
404 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
405 for (j = 0; j < 3; j++) {
406 ecc_code[i++] = readl(ptr) & 0xFF;
407 ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
408 ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
409 ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
410 ptr++;
411 }
412 ecc_code[i++] = readl(ptr) & 0xFF;
413 ecc_code[i++] = 0; /* 14th byte is always zero */
414 }
415}
416
417/*
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000418 * omap_rotate_ecc_bch - Rotate the syndrome bytes
419 *
420 * @mtd: MTD device structure
421 * @calc_ecc: ECC read from ECC registers
422 * @syndrome: Rotated syndrome will be retuned in this array
423 *
424 */
425static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
426 uint8_t *syndrome)
427{
428 struct nand_chip *chip = mtd->priv;
429 struct nand_bch_priv *bch = chip->priv;
430 uint8_t n_bytes = 0;
431 int8_t i, j;
432
433 switch (bch->type) {
434 case ECC_BCH4:
435 n_bytes = 8;
436 break;
437
438 case ECC_BCH16:
439 n_bytes = 28;
440 break;
441
442 case ECC_BCH8:
443 default:
444 n_bytes = 13;
445 break;
446 }
447
448 for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
449 syndrome[i] = calc_ecc[j];
450}
451
452/*
453 * omap_calculate_ecc_bch - Read BCH ECC result
454 *
455 * @mtd: MTD structure
456 * @dat: unused
457 * @ecc_code: ecc_code buffer
458 */
459static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
460 uint8_t *ecc_code)
461{
462 struct nand_chip *chip = mtd->priv;
463 struct nand_bch_priv *bch = chip->priv;
464 uint8_t big_endian = 1;
465 int8_t ret = 0;
466
467 if (bch->type == ECC_BCH8)
468 omap_read_bch8_result(mtd, big_endian, ecc_code);
469 else /* BCH4 and BCH16 currently not supported */
470 ret = -1;
471
472 /*
473 * Stop reading anymore ECC vals and clear old results
474 * enable will be called if more reads are required
475 */
476 omap_ecc_disable(mtd);
477
478 return ret;
479}
480
481/*
482 * omap_fix_errors_bch - Correct bch error in the data
483 *
484 * @mtd: MTD device structure
485 * @data: Data read from flash
486 * @error_count:Number of errors in data
487 * @error_loc: Locations of errors in the data
488 *
489 */
490static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
491 uint32_t error_count, uint32_t *error_loc)
492{
493 struct nand_chip *chip = mtd->priv;
494 struct nand_bch_priv *bch = chip->priv;
495 uint8_t count = 0;
496 uint32_t error_byte_pos;
497 uint32_t error_bit_mask;
498 uint32_t last_bit = (bch->nibbles * 4) - 1;
499
500 /* Flip all bits as specified by the error location array. */
501 /* FOR( each found error location flip the bit ) */
502 for (count = 0; count < error_count; count++) {
503 if (error_loc[count] > last_bit) {
504 /* Remove the ECC spare bits from correction. */
505 error_loc[count] -= (last_bit + 1);
506 /* Offset bit in data region */
507 error_byte_pos = ((512 * 8) -
508 (error_loc[count]) - 1) / 8;
509 /* Error Bit mask */
510 error_bit_mask = 0x1 << (error_loc[count] % 8);
511 /* Toggle the error bit to make the correction. */
512 data[error_byte_pos] ^= error_bit_mask;
513 }
514 }
515}
516
517/*
518 * omap_correct_data_bch - Compares the ecc read from nand spare area
519 * with ECC registers values and corrects one bit error if it has occured
520 *
521 * @mtd: MTD device structure
522 * @dat: page data
523 * @read_ecc: ecc read from nand flash (ignored)
524 * @calc_ecc: ecc read from ECC registers
525 *
526 * @return 0 if data is OK or corrected, else returns -1
527 */
528static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
529 uint8_t *read_ecc, uint8_t *calc_ecc)
530{
531 struct nand_chip *chip = mtd->priv;
532 struct nand_bch_priv *bch = chip->priv;
533 uint8_t syndrome[28];
534 uint32_t error_count = 0;
535 uint32_t error_loc[8];
536 uint32_t i, ecc_flag;
537
538 ecc_flag = 0;
539 for (i = 0; i < chip->ecc.bytes; i++)
540 if (read_ecc[i] != 0xff)
541 ecc_flag = 1;
542
543 if (!ecc_flag)
544 return 0;
545
546 elm_reset();
547 elm_config((enum bch_level)(bch->type));
548
549 /*
550 * while reading ECC result we read it in big endian.
551 * Hence while loading to ELM we have rotate to get the right endian.
552 */
553 omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
554
555 /* use elm module to check for errors */
556 if (elm_check_error(syndrome, bch->nibbles, &error_count,
557 error_loc) != 0) {
558 printf("ECC: uncorrectable.\n");
559 return -1;
560 }
561
562 /* correct bch error */
563 if (error_count > 0)
564 omap_fix_errors_bch(mtd, dat, error_count, error_loc);
565
566 return 0;
567}
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000568
569/**
570 * omap_read_page_bch - hardware ecc based page read function
571 * @mtd: mtd info structure
572 * @chip: nand chip info structure
573 * @buf: buffer to store read data
Sergey Lapindfe64e22013-01-14 03:46:50 +0000574 * @oob_required: caller expects OOB data read to chip->oob_poi
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000575 * @page: page number to read
576 *
577 */
578static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
Sergey Lapindfe64e22013-01-14 03:46:50 +0000579 uint8_t *buf, int oob_required, int page)
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000580{
581 int i, eccsize = chip->ecc.size;
582 int eccbytes = chip->ecc.bytes;
583 int eccsteps = chip->ecc.steps;
584 uint8_t *p = buf;
585 uint8_t *ecc_calc = chip->buffers->ecccalc;
586 uint8_t *ecc_code = chip->buffers->ecccode;
587 uint32_t *eccpos = chip->ecc.layout->eccpos;
588 uint8_t *oob = chip->oob_poi;
589 uint32_t data_pos;
590 uint32_t oob_pos;
591
592 data_pos = 0;
593 /* oob area start */
594 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
595 oob += chip->ecc.layout->eccpos[0];
596
597 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
598 oob += eccbytes) {
599 chip->ecc.hwctl(mtd, NAND_ECC_READ);
600 /* read data */
601 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
602 chip->read_buf(mtd, p, eccsize);
603
604 /* read respective ecc from oob area */
605 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
606 chip->read_buf(mtd, oob, eccbytes);
607 /* read syndrome */
608 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
609
610 data_pos += eccsize;
611 oob_pos += eccbytes;
612 }
613
614 for (i = 0; i < chip->ecc.total; i++)
615 ecc_code[i] = chip->oob_poi[eccpos[i]];
616
617 eccsteps = chip->ecc.steps;
618 p = buf;
619
620 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
621 int stat;
622
623 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
624 if (stat < 0)
625 mtd->ecc_stats.failed++;
626 else
627 mtd->ecc_stats.corrected += stat;
628 }
629 return 0;
630}
pekon guptad016dc42013-11-18 19:03:00 +0530631#endif /* CONFIG_NAND_OMAP_ELM */
Mansoor Ahamedc3754e92012-11-06 13:06:33 +0000632
Andreas Bießmann4a093002013-04-05 04:55:21 +0000633/*
634 * OMAP3 BCH8 support (with BCH library)
635 */
pekon guptad016dc42013-11-18 19:03:00 +0530636#ifdef CONFIG_BCH
Andreas Bießmann4a093002013-04-05 04:55:21 +0000637/*
pekon guptad016dc42013-11-18 19:03:00 +0530638 * omap_calculate_ecc_bch_sw - Read BCH ECC result
Andreas Bießmann4a093002013-04-05 04:55:21 +0000639 *
640 * @mtd: MTD device structure
641 * @dat: The pointer to data on which ecc is computed (unused here)
642 * @ecc: The ECC output buffer
643 */
pekon guptad016dc42013-11-18 19:03:00 +0530644static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
Andreas Bießmann4a093002013-04-05 04:55:21 +0000645 uint8_t *ecc)
646{
647 int ret = 0;
648 size_t i;
649 unsigned long nsectors, val1, val2, val3, val4;
650
651 nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
652
653 for (i = 0; i < nsectors; i++) {
654 /* Read hw-computed remainder */
655 val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
656 val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
657 val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
658 val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
659
660 /*
661 * Add constant polynomial to remainder, in order to get an ecc
662 * sequence of 0xFFs for a buffer filled with 0xFFs.
663 */
664 *ecc++ = 0xef ^ (val4 & 0xFF);
665 *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
666 *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
667 *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
668 *ecc++ = 0xed ^ (val3 & 0xFF);
669 *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
670 *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
671 *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
672 *ecc++ = 0x97 ^ (val2 & 0xFF);
673 *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
674 *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
675 *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
676 *ecc++ = 0xb5 ^ (val1 & 0xFF);
677 }
678
679 /*
680 * Stop reading anymore ECC vals and clear old results
681 * enable will be called if more reads are required
682 */
683 omap_ecc_disable(mtd);
684
685 return ret;
686}
687
688/**
pekon guptad016dc42013-11-18 19:03:00 +0530689 * omap_correct_data_bch_sw - Decode received data and correct errors
Andreas Bießmann4a093002013-04-05 04:55:21 +0000690 * @mtd: MTD device structure
691 * @data: page data
692 * @read_ecc: ecc read from nand flash
693 * @calc_ecc: ecc read from HW ECC registers
694 */
pekon guptad016dc42013-11-18 19:03:00 +0530695static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
Andreas Bießmann4a093002013-04-05 04:55:21 +0000696 u_char *read_ecc, u_char *calc_ecc)
697{
698 int i, count;
699 /* cannot correct more than 8 errors */
700 unsigned int errloc[8];
701 struct nand_chip *chip = mtd->priv;
702 struct nand_bch_priv *chip_priv = chip->priv;
703 struct bch_control *bch = chip_priv->control;
704
705 count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
706 if (count > 0) {
707 /* correct errors */
708 for (i = 0; i < count; i++) {
709 /* correct data only, not ecc bytes */
710 if (errloc[i] < 8*512)
711 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
712 printf("corrected bitflip %u\n", errloc[i]);
713#ifdef DEBUG
714 puts("read_ecc: ");
715 /*
716 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
717 * here!
718 */
719 for (i = 0; i < 13; i++)
720 printf("%02x ", read_ecc[i]);
721 puts("\n");
722 puts("calc_ecc: ");
723 for (i = 0; i < 13; i++)
724 printf("%02x ", calc_ecc[i]);
725 puts("\n");
726#endif
727 }
728 } else if (count < 0) {
729 puts("ecc unrecoverable error\n");
730 }
731 return count;
732}
733
734/**
735 * omap_free_bch - Release BCH ecc resources
736 * @mtd: MTD device structure
737 */
738static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
739{
740 struct nand_chip *chip = mtd->priv;
741 struct nand_bch_priv *chip_priv = chip->priv;
742 struct bch_control *bch = NULL;
743
744 if (chip_priv)
745 bch = chip_priv->control;
746
747 if (bch) {
748 free_bch(bch);
749 chip_priv->control = NULL;
750 }
751}
pekon guptad016dc42013-11-18 19:03:00 +0530752#endif /* CONFIG_BCH */
753
754/**
755 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
756 * @nand: NAND chip device structure
757 * @ecc_scheme: ecc scheme to configure
758 * @pagesize: number of main-area bytes per page of NAND device
759 * @oobsize: number of OOB/spare bytes per page of NAND device
760 */
761static int omap_select_ecc_scheme(struct nand_chip *nand,
762 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
763 struct nand_bch_priv *bch = nand->priv;
764 struct nand_ecclayout *ecclayout = nand->ecc.layout;
765 int eccsteps = pagesize / SECTOR_BYTES;
766 int i;
767
768 switch (ecc_scheme) {
769 case OMAP_ECC_HAM1_CODE_SW:
770 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
771 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
772 * initialized in nand_scan_tail(), so just set ecc.mode */
773 bch_priv.control = NULL;
774 bch_priv.type = 0;
775 nand->ecc.mode = NAND_ECC_SOFT;
776 nand->ecc.layout = NULL;
777 nand->ecc.size = pagesize;
778 bch->ecc_scheme = OMAP_ECC_HAM1_CODE_SW;
779 break;
780
781 case OMAP_ECC_HAM1_CODE_HW:
782 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
783 /* check ecc-scheme requirements before updating ecc info */
784 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
785 printf("nand: error: insufficient OOB: require=%d\n", (
786 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
787 return -EINVAL;
788 }
789 bch_priv.control = NULL;
790 bch_priv.type = 0;
791 /* populate ecc specific fields */
792 nand->ecc.mode = NAND_ECC_HW;
793 nand->ecc.strength = 1;
794 nand->ecc.size = SECTOR_BYTES;
795 nand->ecc.bytes = 3;
796 nand->ecc.hwctl = omap_enable_hwecc;
797 nand->ecc.correct = omap_correct_data;
798 nand->ecc.calculate = omap_calculate_ecc;
799 /* define ecc-layout */
800 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
pekon gupta69cc97f2013-12-05 17:54:21 +0530801 for (i = 0; i < ecclayout->eccbytes; i++) {
802 if (nand->options & NAND_BUSWIDTH_16)
803 ecclayout->eccpos[i] = i + 2;
804 else
805 ecclayout->eccpos[i] = i + 1;
806 }
pekon guptad016dc42013-11-18 19:03:00 +0530807 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
808 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
809 BADBLOCK_MARKER_LENGTH;
810 bch->ecc_scheme = OMAP_ECC_HAM1_CODE_HW;
811 break;
812
813 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
814#ifdef CONFIG_BCH
815 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
816 /* check ecc-scheme requirements before updating ecc info */
817 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
818 printf("nand: error: insufficient OOB: require=%d\n", (
819 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
820 return -EINVAL;
821 }
822 /* check if BCH S/W library can be used for error detection */
823 bch_priv.control = init_bch(13, 8, 0x201b);
824 if (!bch_priv.control) {
825 printf("nand: error: could not init_bch()\n");
826 return -ENODEV;
827 }
828 bch_priv.type = ECC_BCH8;
829 /* populate ecc specific fields */
830 nand->ecc.mode = NAND_ECC_HW;
831 nand->ecc.strength = 8;
832 nand->ecc.size = SECTOR_BYTES;
833 nand->ecc.bytes = 13;
834 nand->ecc.hwctl = omap_enable_ecc_bch;
835 nand->ecc.correct = omap_correct_data_bch_sw;
836 nand->ecc.calculate = omap_calculate_ecc_bch_sw;
837 /* define ecc-layout */
838 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
839 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
840 for (i = 1; i < ecclayout->eccbytes; i++) {
841 if (i % nand->ecc.bytes)
842 ecclayout->eccpos[i] =
843 ecclayout->eccpos[i - 1] + 1;
844 else
845 ecclayout->eccpos[i] =
846 ecclayout->eccpos[i - 1] + 2;
847 }
848 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
849 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
850 BADBLOCK_MARKER_LENGTH;
851 omap_hwecc_init_bch(nand, NAND_ECC_READ);
852 bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
853 break;
854#else
855 printf("nand: error: CONFIG_BCH required for ECC\n");
856 return -EINVAL;
857#endif
858
859 case OMAP_ECC_BCH8_CODE_HW:
860#ifdef CONFIG_NAND_OMAP_ELM
861 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
862 /* check ecc-scheme requirements before updating ecc info */
863 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
864 printf("nand: error: insufficient OOB: require=%d\n", (
865 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
866 return -EINVAL;
867 }
868 /* intialize ELM for ECC error detection */
869 elm_init();
870 bch_priv.type = ECC_BCH8;
871 /* populate ecc specific fields */
872 nand->ecc.mode = NAND_ECC_HW;
873 nand->ecc.strength = 8;
874 nand->ecc.size = SECTOR_BYTES;
875 nand->ecc.bytes = 14;
876 nand->ecc.hwctl = omap_enable_ecc_bch;
877 nand->ecc.correct = omap_correct_data_bch;
878 nand->ecc.calculate = omap_calculate_ecc_bch;
879 nand->ecc.read_page = omap_read_page_bch;
880 /* define ecc-layout */
881 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
882 for (i = 0; i < ecclayout->eccbytes; i++)
883 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
884 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
885 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
886 BADBLOCK_MARKER_LENGTH;
887 bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW;
888 break;
889#else
890 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
891 return -EINVAL;
892#endif
893
894 default:
895 debug("nand: error: ecc scheme not enabled or supported\n");
896 return -EINVAL;
897 }
898 return 0;
899}
Andreas Bießmann4a093002013-04-05 04:55:21 +0000900
Simon Schwarz12c2f1e2011-09-14 15:30:16 -0400901#ifndef CONFIG_SPL_BUILD
Dirk Behme12201a12008-12-14 09:47:16 +0100902/*
Andreas Bießmannda634ae2013-04-04 23:52:50 +0000903 * omap_nand_switch_ecc - switch the ECC operation between different engines
904 * (h/w and s/w) and different algorithms (hamming and BCHx)
Dirk Behme12201a12008-12-14 09:47:16 +0100905 *
Andreas Bießmannda634ae2013-04-04 23:52:50 +0000906 * @hardware - true if one of the HW engines should be used
907 * @eccstrength - the number of bits that could be corrected
908 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
Dirk Behme12201a12008-12-14 09:47:16 +0100909 */
pekon guptad016dc42013-11-18 19:03:00 +0530910int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
Dirk Behme12201a12008-12-14 09:47:16 +0100911{
912 struct nand_chip *nand;
913 struct mtd_info *mtd;
pekon guptad016dc42013-11-18 19:03:00 +0530914 int err = 0;
Dirk Behme12201a12008-12-14 09:47:16 +0100915
916 if (nand_curr_device < 0 ||
917 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
918 !nand_info[nand_curr_device].name) {
pekon guptad016dc42013-11-18 19:03:00 +0530919 printf("nand: error: no NAND devices found\n");
920 return -ENODEV;
Dirk Behme12201a12008-12-14 09:47:16 +0100921 }
922
923 mtd = &nand_info[nand_curr_device];
924 nand = mtd->priv;
Dirk Behme12201a12008-12-14 09:47:16 +0100925 nand->options |= NAND_OWN_BUFFERS;
Dirk Behme12201a12008-12-14 09:47:16 +0100926 /* Setup the ecc configurations again */
Andreas Bießmannda634ae2013-04-04 23:52:50 +0000927 if (hardware) {
928 if (eccstrength == 1) {
pekon guptad016dc42013-11-18 19:03:00 +0530929 err = omap_select_ecc_scheme(nand,
930 OMAP_ECC_HAM1_CODE_HW,
931 mtd->writesize, mtd->oobsize);
932 } else if (eccstrength == 8) {
933 err = omap_select_ecc_scheme(nand,
934 OMAP_ECC_BCH8_CODE_HW,
935 mtd->writesize, mtd->oobsize);
936 } else {
937 printf("nand: error: unsupported ECC scheme\n");
938 return -EINVAL;
Andreas Bießmannda634ae2013-04-04 23:52:50 +0000939 }
Dirk Behme12201a12008-12-14 09:47:16 +0100940 } else {
pekon guptad016dc42013-11-18 19:03:00 +0530941 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
942 mtd->writesize, mtd->oobsize);
Dirk Behme12201a12008-12-14 09:47:16 +0100943 }
944
945 /* Update NAND handling after ECC mode switch */
pekon guptad016dc42013-11-18 19:03:00 +0530946 if (!err)
947 err = nand_scan_tail(mtd);
948 return err;
Dirk Behme12201a12008-12-14 09:47:16 +0100949}
Simon Schwarz12c2f1e2011-09-14 15:30:16 -0400950#endif /* CONFIG_SPL_BUILD */
Dirk Behme12201a12008-12-14 09:47:16 +0100951
952/*
953 * Board-specific NAND initialization. The following members of the
954 * argument are board-specific:
955 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
956 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
957 * - cmd_ctrl: hardwarespecific function for accesing control-lines
958 * - waitfunc: hardwarespecific function for accesing device ready/busy line
959 * - ecc.hwctl: function to enable (reset) hardware ecc generator
960 * - ecc.mode: mode of ecc, see defines
961 * - chip_delay: chip dependent delay for transfering data from array to
962 * read regs (tR)
963 * - options: various chip options. They can partly be set to inform
964 * nand_scan about special functionality. See the defines for further
965 * explanation
966 */
967int board_nand_init(struct nand_chip *nand)
968{
969 int32_t gpmc_config = 0;
970 cs = 0;
pekon guptad016dc42013-11-18 19:03:00 +0530971 int err = 0;
Dirk Behme12201a12008-12-14 09:47:16 +0100972 /*
973 * xloader/Uboot's gpmc configuration would have configured GPMC for
974 * nand type of memory. The following logic scans and latches on to the
975 * first CS with NAND type memory.
976 * TBD: need to make this logic generic to handle multiple CS NAND
977 * devices.
978 */
979 while (cs < GPMC_MAX_CS) {
Dirk Behme12201a12008-12-14 09:47:16 +0100980 /* Check if NAND type is set */
Dirk Behme89411352009-08-08 09:30:22 +0200981 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
Dirk Behme12201a12008-12-14 09:47:16 +0100982 /* Found it!! */
983 break;
984 }
985 cs++;
986 }
987 if (cs >= GPMC_MAX_CS) {
pekon guptad016dc42013-11-18 19:03:00 +0530988 printf("nand: error: Unable to find NAND settings in "
Dirk Behme12201a12008-12-14 09:47:16 +0100989 "GPMC Configuration - quitting\n");
990 return -ENODEV;
991 }
992
Dirk Behme89411352009-08-08 09:30:22 +0200993 gpmc_config = readl(&gpmc_cfg->config);
Dirk Behme12201a12008-12-14 09:47:16 +0100994 /* Disable Write protect */
995 gpmc_config |= 0x10;
Dirk Behme89411352009-08-08 09:30:22 +0200996 writel(gpmc_config, &gpmc_cfg->config);
Dirk Behme12201a12008-12-14 09:47:16 +0100997
Dirk Behme89411352009-08-08 09:30:22 +0200998 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
999 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
pekon guptad016dc42013-11-18 19:03:00 +05301000 nand->priv = &bch_priv;
1001 nand->cmd_ctrl = omap_nand_hwcontrol;
1002 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
Dirk Behme12201a12008-12-14 09:47:16 +01001003 /* If we are 16 bit dev, our gpmc config tells us that */
Dirk Behme89411352009-08-08 09:30:22 +02001004 if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
Dirk Behme12201a12008-12-14 09:47:16 +01001005 nand->options |= NAND_BUSWIDTH_16;
1006
1007 nand->chip_delay = 100;
pekon guptad016dc42013-11-18 19:03:00 +05301008 nand->ecc.layout = &omap_ecclayout;
Mansoor Ahamedc3754e92012-11-06 13:06:33 +00001009
pekon guptad016dc42013-11-18 19:03:00 +05301010 /* select ECC scheme */
pekon gupta3f719062013-11-18 19:03:01 +05301011#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1012 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
pekon guptad016dc42013-11-18 19:03:00 +05301013 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
pekon gupta3f719062013-11-18 19:03:01 +05301014#else
1015 /* pagesize and oobsize are not required to configure sw ecc-scheme */
pekon guptad016dc42013-11-18 19:03:00 +05301016 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1017 0, 0);
Andreas Bießmann4a093002013-04-05 04:55:21 +00001018#endif
pekon guptad016dc42013-11-18 19:03:00 +05301019 if (err)
1020 return err;
Simon Schwarz12c2f1e2011-09-14 15:30:16 -04001021
Ilya Yanokff62fb42011-11-28 06:37:38 +00001022#ifdef CONFIG_SPL_BUILD
Simon Schwarz12c2f1e2011-09-14 15:30:16 -04001023 if (nand->options & NAND_BUSWIDTH_16)
1024 nand->read_buf = nand_read_buf16;
1025 else
1026 nand->read_buf = nand_read_buf;
1027 nand->dev_ready = omap_spl_dev_ready;
1028#endif
Dirk Behme12201a12008-12-14 09:47:16 +01001029
1030 return 0;
1031}