blob: fe32e1c3f123eb9c200207eb9cc26a28aa454eae [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Peng Fanbb0fabe2018-01-10 13:20:22 +08002/*
3 * Copyright 2017 NXP
4 *
5 * Peng Fan <peng.fan@nxp.com>
Peng Fanbb0fabe2018-01-10 13:20:22 +08006 */
7
8#include <common.h>
9#include <asm/arch/clock.h>
10#include <asm/arch/imx-regs.h>
11#include <asm/io.h>
12#include <asm/arch/sys_proto.h>
13#include <errno.h>
14#include <linux/iopoll.h>
15
Peng Fanbb0fabe2018-01-10 13:20:22 +080016static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
17
18static u32 decode_frac_pll(enum clk_root_src frac_pll)
19{
20 u32 pll_cfg0, pll_cfg1, pllout;
21 u32 pll_refclk_sel, pll_refclk;
22 u32 divr_val, divq_val, divf_val, divff, divfi;
23 u32 pllout_div_shift, pllout_div_mask, pllout_div;
24
25 switch (frac_pll) {
26 case ARM_PLL_CLK:
27 pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
28 pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
29 pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
30 pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
31 break;
32 default:
33 printf("Frac PLL %d not supporte\n", frac_pll);
34 return 0;
35 }
36
37 pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
38 pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
39
40 /* Power down */
41 if (pll_cfg0 & FRAC_PLL_PD_MASK)
42 return 0;
43
44 /* output not enabled */
45 if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
46 return 0;
47
48 pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
49
50 if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
51 pll_refclk = 25000000u;
52 else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
53 pll_refclk = 27000000u;
54 else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
55 pll_refclk = 27000000u;
56 else
57 pll_refclk = 0;
58
59 if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
60 return pll_refclk;
61
62 divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
63 FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
64 divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
65
66 divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
67 FRAC_PLL_FRAC_DIV_CTL_SHIFT;
68 divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
69
70 divf_val = 1 + divfi + divff / (1 << 24);
71
72 pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
73 ((divq_val + 1) * 2);
74
75 return pllout / (pllout_div + 1);
76}
77
78static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
79{
80 u32 pll_cfg0, pll_cfg1, pll_cfg2;
81 u32 pll_refclk_sel, pll_refclk;
82 u32 divr1, divr2, divf1, divf2, divq, div;
83 u32 sse;
84 u32 pll_clke;
85 u32 pllout_div_shift, pllout_div_mask, pllout_div;
86 u32 pllout;
87
88 switch (sscg_pll) {
89 case SYSTEM_PLL1_800M_CLK:
90 case SYSTEM_PLL1_400M_CLK:
91 case SYSTEM_PLL1_266M_CLK:
92 case SYSTEM_PLL1_200M_CLK:
93 case SYSTEM_PLL1_160M_CLK:
94 case SYSTEM_PLL1_133M_CLK:
95 case SYSTEM_PLL1_100M_CLK:
96 case SYSTEM_PLL1_80M_CLK:
97 case SYSTEM_PLL1_40M_CLK:
98 pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
99 pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
100 pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
101 pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
102 pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
103 break;
104 case SYSTEM_PLL2_1000M_CLK:
105 case SYSTEM_PLL2_500M_CLK:
106 case SYSTEM_PLL2_333M_CLK:
107 case SYSTEM_PLL2_250M_CLK:
108 case SYSTEM_PLL2_200M_CLK:
109 case SYSTEM_PLL2_166M_CLK:
110 case SYSTEM_PLL2_125M_CLK:
111 case SYSTEM_PLL2_100M_CLK:
112 case SYSTEM_PLL2_50M_CLK:
113 pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
114 pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
115 pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
116 pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
117 pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
118 break;
119 case SYSTEM_PLL3_CLK:
120 pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
121 pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
122 pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
123 pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
124 pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
125 break;
126 case DRAM_PLL1_CLK:
127 pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
128 pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
129 pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
130 pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
131 pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
132 break;
133 default:
134 printf("sscg pll %d not supporte\n", sscg_pll);
135 return 0;
136 }
137
138 switch (sscg_pll) {
139 case DRAM_PLL1_CLK:
140 pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
141 div = 1;
142 break;
143 case SYSTEM_PLL3_CLK:
144 pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
145 div = 1;
146 break;
147 case SYSTEM_PLL2_1000M_CLK:
148 case SYSTEM_PLL1_800M_CLK:
149 pll_clke = SSCG_PLL_CLKE_MASK;
150 div = 1;
151 break;
152 case SYSTEM_PLL2_500M_CLK:
153 case SYSTEM_PLL1_400M_CLK:
154 pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
155 div = 2;
156 break;
157 case SYSTEM_PLL2_333M_CLK:
158 case SYSTEM_PLL1_266M_CLK:
159 pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
160 div = 3;
161 break;
162 case SYSTEM_PLL2_250M_CLK:
163 case SYSTEM_PLL1_200M_CLK:
164 pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
165 div = 4;
166 break;
167 case SYSTEM_PLL2_200M_CLK:
168 case SYSTEM_PLL1_160M_CLK:
169 pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
170 div = 5;
171 break;
172 case SYSTEM_PLL2_166M_CLK:
173 case SYSTEM_PLL1_133M_CLK:
174 pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
175 div = 6;
176 break;
177 case SYSTEM_PLL2_125M_CLK:
178 case SYSTEM_PLL1_100M_CLK:
179 pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
180 div = 8;
181 break;
182 case SYSTEM_PLL2_100M_CLK:
183 case SYSTEM_PLL1_80M_CLK:
184 pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
185 div = 10;
186 break;
187 case SYSTEM_PLL2_50M_CLK:
188 case SYSTEM_PLL1_40M_CLK:
189 pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
190 div = 20;
191 break;
192 default:
193 printf("sscg pll %d not supporte\n", sscg_pll);
194 return 0;
195 }
196
197 /* Power down */
198 if (pll_cfg0 & SSCG_PLL_PD_MASK)
199 return 0;
200
201 /* output not enabled */
202 if ((pll_cfg0 & pll_clke) == 0)
203 return 0;
204
205 pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
206 pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
207
208 pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
209
210 if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
211 pll_refclk = 25000000u;
212 else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
213 pll_refclk = 27000000u;
214 else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
215 pll_refclk = 27000000u;
216 else
217 pll_refclk = 0;
218
219 /* We assume bypass1/2 are the same value */
220 if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
221 (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
222 return pll_refclk;
223
224 divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
225 SSCG_PLL_REF_DIVR1_SHIFT;
226 divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
227 SSCG_PLL_REF_DIVR2_SHIFT;
228 divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
229 SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
230 divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
231 SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
232 divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
233 SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
234 sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
235
236 if (sse)
237 sse = 8;
238 else
239 sse = 2;
240
241 pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
242 (divr2 + 1) * (divf2 + 1) / (divq + 1);
243
244 return pllout / (pllout_div + 1) / div;
245}
246
247static u32 get_root_src_clk(enum clk_root_src root_src)
248{
249 switch (root_src) {
250 case OSC_25M_CLK:
251 return 25000000;
252 case OSC_27M_CLK:
253 return 25000000;
254 case OSC_32K_CLK:
255 return 32000;
256 case ARM_PLL_CLK:
257 return decode_frac_pll(root_src);
258 case SYSTEM_PLL1_800M_CLK:
259 case SYSTEM_PLL1_400M_CLK:
260 case SYSTEM_PLL1_266M_CLK:
261 case SYSTEM_PLL1_200M_CLK:
262 case SYSTEM_PLL1_160M_CLK:
263 case SYSTEM_PLL1_133M_CLK:
264 case SYSTEM_PLL1_100M_CLK:
265 case SYSTEM_PLL1_80M_CLK:
266 case SYSTEM_PLL1_40M_CLK:
267 case SYSTEM_PLL2_1000M_CLK:
268 case SYSTEM_PLL2_500M_CLK:
269 case SYSTEM_PLL2_333M_CLK:
270 case SYSTEM_PLL2_250M_CLK:
271 case SYSTEM_PLL2_200M_CLK:
272 case SYSTEM_PLL2_166M_CLK:
273 case SYSTEM_PLL2_125M_CLK:
274 case SYSTEM_PLL2_100M_CLK:
275 case SYSTEM_PLL2_50M_CLK:
276 case SYSTEM_PLL3_CLK:
277 return decode_sscg_pll(root_src);
278 default:
279 return 0;
280 }
281
282 return 0;
283}
284
285static u32 get_root_clk(enum clk_root_index clock_id)
286{
287 enum clk_root_src root_src;
288 u32 post_podf, pre_podf, root_src_clk;
289
290 if (clock_root_enabled(clock_id) <= 0)
291 return 0;
292
293 if (clock_get_prediv(clock_id, &pre_podf) < 0)
294 return 0;
295
296 if (clock_get_postdiv(clock_id, &post_podf) < 0)
297 return 0;
298
299 if (clock_get_src(clock_id, &root_src) < 0)
300 return 0;
301
302 root_src_clk = get_root_src_clk(root_src);
303
304 return root_src_clk / (post_podf + 1) / (pre_podf + 1);
305}
306
307#ifdef CONFIG_MXC_OCOTP
308void enable_ocotp_clk(unsigned char enable)
309{
310 clock_enable(CCGR_OCOTP, !!enable);
311}
312#endif
313
314int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
315{
316 /* 0 - 3 is valid i2c num */
317 if (i2c_num > 3)
318 return -EINVAL;
319
320 clock_enable(CCGR_I2C1 + i2c_num, !!enable);
321
322 return 0;
323}
324
325unsigned int mxc_get_clock(enum clk_root_index clk)
326{
327 u32 val;
328
329 if (clk >= CLK_ROOT_MAX)
330 return 0;
331
332 if (clk == MXC_ARM_CLK)
333 return get_root_clk(ARM_A53_CLK_ROOT);
334
335 if (clk == MXC_IPG_CLK) {
336 clock_get_target_val(IPG_CLK_ROOT, &val);
337 val = val & 0x3;
338 return get_root_clk(AHB_CLK_ROOT) / (val + 1);
339 }
340
341 return get_root_clk(clk);
342}
343
344u32 imx_get_uartclk(void)
345{
346 return mxc_get_clock(UART1_CLK_ROOT);
347}
348
349void mxs_set_lcdclk(u32 base_addr, u32 freq)
350{
351 /*
352 * LCDIF_PIXEL_CLK: select 800MHz root clock,
353 * select pre divider 8, output is 100 MHz
354 */
355 clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
356 CLK_ROOT_SOURCE_SEL(4) |
357 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
358}
359
360void init_wdog_clk(void)
361{
362 clock_enable(CCGR_WDOG1, 0);
363 clock_enable(CCGR_WDOG2, 0);
364 clock_enable(CCGR_WDOG3, 0);
365 clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
366 CLK_ROOT_SOURCE_SEL(0));
367 clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
368 CLK_ROOT_SOURCE_SEL(0));
369 clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
370 CLK_ROOT_SOURCE_SEL(0));
371 clock_enable(CCGR_WDOG1, 1);
372 clock_enable(CCGR_WDOG2, 1);
373 clock_enable(CCGR_WDOG3, 1);
374}
375
376void init_usb_clk(void)
377{
378 if (!is_usb_boot()) {
379 clock_enable(CCGR_USB_CTRL1, 0);
380 clock_enable(CCGR_USB_CTRL2, 0);
381 clock_enable(CCGR_USB_PHY1, 0);
382 clock_enable(CCGR_USB_PHY2, 0);
383 /* 500MHz */
384 clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
385 CLK_ROOT_SOURCE_SEL(1));
386 /* 100MHz */
387 clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
388 CLK_ROOT_SOURCE_SEL(1));
389 /* 100MHz */
390 clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
391 CLK_ROOT_SOURCE_SEL(1));
392 clock_enable(CCGR_USB_CTRL1, 1);
393 clock_enable(CCGR_USB_CTRL2, 1);
394 clock_enable(CCGR_USB_PHY1, 1);
395 clock_enable(CCGR_USB_PHY2, 1);
396 }
397}
398
399void init_uart_clk(u32 index)
400{
401 /* Set uart clock root 25M OSC */
402 switch (index) {
403 case 0:
404 clock_enable(CCGR_UART1, 0);
405 clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
406 CLK_ROOT_SOURCE_SEL(0));
407 clock_enable(CCGR_UART1, 1);
408 return;
409 case 1:
410 clock_enable(CCGR_UART2, 0);
411 clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
412 CLK_ROOT_SOURCE_SEL(0));
413 clock_enable(CCGR_UART2, 1);
414 return;
415 case 2:
416 clock_enable(CCGR_UART3, 0);
417 clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
418 CLK_ROOT_SOURCE_SEL(0));
419 clock_enable(CCGR_UART3, 1);
420 return;
421 case 3:
422 clock_enable(CCGR_UART4, 0);
423 clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
424 CLK_ROOT_SOURCE_SEL(0));
425 clock_enable(CCGR_UART4, 1);
426 return;
427 default:
428 printf("Invalid uart index\n");
429 return;
430 }
431}
432
433void init_clk_usdhc(u32 index)
434{
435 /*
436 * set usdhc clock root
437 * sys pll1 400M
438 */
439 switch (index) {
440 case 0:
441 clock_enable(CCGR_USDHC1, 0);
442 clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
443 CLK_ROOT_SOURCE_SEL(1) |
444 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
445 clock_enable(CCGR_USDHC1, 1);
446 return;
447 case 1:
448 clock_enable(CCGR_USDHC2, 0);
449 clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
450 CLK_ROOT_SOURCE_SEL(1) |
451 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
452 clock_enable(CCGR_USDHC2, 1);
453 return;
454 default:
455 printf("Invalid usdhc index\n");
456 return;
457 }
458}
459
460int set_clk_qspi(void)
461{
462 /*
463 * set qspi root
464 * sys pll1 100M
465 */
466 clock_enable(CCGR_QSPI, 0);
467 clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
468 CLK_ROOT_SOURCE_SEL(7));
469 clock_enable(CCGR_QSPI, 1);
470
471 return 0;
472}
473
474#ifdef CONFIG_FEC_MXC
475int set_clk_enet(enum enet_freq type)
476{
477 u32 target;
478 u32 enet1_ref;
479
480 switch (type) {
481 case ENET_125MHZ:
482 enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
483 break;
484 case ENET_50MHZ:
485 enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
486 break;
487 case ENET_25MHZ:
488 enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
489 break;
490 default:
491 return -EINVAL;
492 }
493
494 /* disable the clock first */
495 clock_enable(CCGR_ENET1, 0);
496 clock_enable(CCGR_SIM_ENET, 0);
497
498 /* set enet axi clock 266Mhz */
499 target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
500 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
501 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
502 clock_set_target_val(ENET_AXI_CLK_ROOT, target);
503
504 target = CLK_ROOT_ON | enet1_ref |
505 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
506 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
507 clock_set_target_val(ENET_REF_CLK_ROOT, target);
508
509 target = CLK_ROOT_ON |
510 ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
511 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
512 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
513 clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
514
515 /* enable clock */
516 clock_enable(CCGR_SIM_ENET, 1);
517 clock_enable(CCGR_ENET1, 1);
518
519 return 0;
520}
521#endif
522
523u32 imx_get_fecclk(void)
524{
525 return get_root_clk(ENET_AXI_CLK_ROOT);
526}
527
528#ifdef CONFIG_SPL_BUILD
529void dram_pll_init(void)
530{
531 struct src *src = (struct src *)SRC_BASE_ADDR;
532 void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
533 u32 pwdn_mask = 0, pll_clke = 0, bypass1 = 0, bypass2 = 0;
534 u32 val;
535 int ret;
536
537 setbits_le32(GPC_BASE_ADDR + 0xEC, BIT(7));
538 setbits_le32(GPC_BASE_ADDR + 0xF8, BIT(5));
539
540 pwdn_mask = SSCG_PLL_PD_MASK;
541 pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
542 bypass1 = SSCG_PLL_BYPASS1_MASK;
543 bypass2 = SSCG_PLL_BYPASS2_MASK;
544
545 /* Enable DDR1 and DDR2 domain */
546 writel(SRC_DDR1_ENABLE_MASK, &src->ddr1_rcr);
547 writel(SRC_DDR1_ENABLE_MASK, &src->ddr2_rcr);
548
549 /* Clear power down bit */
550 clrbits_le32(pll_control_reg, pwdn_mask);
551 /* Eanble ARM_PLL/SYS_PLL */
552 setbits_le32(pll_control_reg, pll_clke);
553
554 /* Clear bypass */
555 clrbits_le32(pll_control_reg, bypass1);
556 __udelay(100);
557 clrbits_le32(pll_control_reg, bypass2);
558 /* Wait lock */
559 ret = readl_poll_timeout(pll_control_reg, val,
560 val & SSCG_PLL_LOCK_MASK, 1);
561 if (ret)
562 printf("%s timeout\n", __func__);
563}
564
565int frac_pll_init(u32 pll, enum frac_pll_out_val val)
566{
567 void __iomem *pll_cfg0, __iomem *pll_cfg1;
568 u32 val_cfg0, val_cfg1;
569 int ret;
570
571 switch (pll) {
572 case ANATOP_ARM_PLL:
573 pll_cfg0 = &ana_pll->arm_pll_cfg0;
574 pll_cfg1 = &ana_pll->arm_pll_cfg1;
575
576 if (val == FRAC_PLL_OUT_1000M)
577 val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
578 else
579 val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
580 val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
581 FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
582 FRAC_PLL_REFCLK_DIV_VAL(4) |
583 FRAC_PLL_OUTPUT_DIV_VAL(0);
584 break;
585 default:
586 return -EINVAL;
587 }
588
589 /* bypass the clock */
590 setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
591 /* Set the value */
592 writel(val_cfg1, pll_cfg1);
593 writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
594 val_cfg0 = readl(pll_cfg0);
595 /* unbypass the clock */
596 clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
597 ret = readl_poll_timeout(pll_cfg0, val_cfg0,
598 val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
599 if (ret)
600 printf("%s timeout\n", __func__);
601 clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
602
603 return 0;
604}
605
606int sscg_pll_init(u32 pll)
607{
608 void __iomem *pll_cfg0, __iomem *pll_cfg1, __iomem *pll_cfg2;
609 u32 val_cfg0, val_cfg1, val_cfg2, val;
610 u32 bypass1_mask = 0x20, bypass2_mask = 0x10;
611 int ret;
612
613 switch (pll) {
614 case ANATOP_SYSTEM_PLL1:
615 pll_cfg0 = &ana_pll->sys_pll1_cfg0;
616 pll_cfg1 = &ana_pll->sys_pll1_cfg1;
617 pll_cfg2 = &ana_pll->sys_pll1_cfg2;
618 /* 800MHz */
619 val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
620 SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
621 val_cfg1 = 0;
622 val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
623 SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
624 SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
625 SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
626 SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
627 SSCG_PLL_REFCLK_SEL_OSC_25M;
628 break;
629 case ANATOP_SYSTEM_PLL2:
630 pll_cfg0 = &ana_pll->sys_pll2_cfg0;
631 pll_cfg1 = &ana_pll->sys_pll2_cfg1;
632 pll_cfg2 = &ana_pll->sys_pll2_cfg2;
633 /* 1000MHz */
634 val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
635 SSCG_PLL_FEEDBACK_DIV_F2_VAL(4);
636 val_cfg1 = 0;
637 val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
638 SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
639 SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
640 SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
641 SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
642 SSCG_PLL_REFCLK_SEL_OSC_25M;
643 break;
644 case ANATOP_SYSTEM_PLL3:
645 pll_cfg0 = &ana_pll->sys_pll3_cfg0;
646 pll_cfg1 = &ana_pll->sys_pll3_cfg1;
647 pll_cfg2 = &ana_pll->sys_pll3_cfg2;
648 /* 800MHz */
649 val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
650 SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
651 val_cfg1 = 0;
652 val_cfg0 = SSCG_PLL_PLL3_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
653 SSCG_PLL_REFCLK_SEL_OSC_25M;
654 break;
655 default:
656 return -EINVAL;
657 }
658
659 /*bypass*/
660 setbits_le32(pll_cfg0, bypass1_mask | bypass2_mask);
661 /* set value */
662 writel(val_cfg2, pll_cfg2);
663 writel(val_cfg1, pll_cfg1);
664 /*unbypass1 and wait 70us */
665 writel(val_cfg0 | bypass2_mask, pll_cfg1);
666
667 __udelay(70);
668
669 /* unbypass2 and wait lock */
670 writel(val_cfg0, pll_cfg1);
671 ret = readl_poll_timeout(pll_cfg0, val, val & SSCG_PLL_LOCK_MASK, 1);
672 if (ret)
673 printf("%s timeout\n", __func__);
674
675 return ret;
676}
677
678int clock_init(void)
679{
680 u32 grade;
681
682 clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
683 CLK_ROOT_SOURCE_SEL(0));
684
685 /*
686 * 8MQ only supports two grades: consumer and industrial.
687 * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
688 */
689 grade = get_cpu_temp_grade(NULL, NULL);
690 if (!grade) {
691 frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
692 clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
693 CLK_ROOT_SOURCE_SEL(1) |
694 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1));
695 } else {
696 frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1600M);
697 clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
698 CLK_ROOT_SOURCE_SEL(1) |
699 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
700 }
701 /*
702 * According to ANAMIX SPEC
703 * sys pll1 fixed at 800MHz
704 * sys pll2 fixed at 1GHz
705 * Here we only enable the outputs.
706 */
707 setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
708 SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
709 SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
710 SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
711 SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
712
713 setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
714 SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
715 SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
716 SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
717 SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
718
719 clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
720 CLK_ROOT_SOURCE_SEL(1));
721
722 init_wdog_clk();
723 clock_enable(CCGR_TSENSOR, 1);
724
725 return 0;
726}
727#endif
728
729/*
730 * Dump some clockes.
731 */
732#ifndef CONFIG_SPL_BUILD
733int do_mx8m_showclocks(cmd_tbl_t *cmdtp, int flag, int argc,
734 char * const argv[])
735{
736 u32 freq;
737
738 freq = decode_frac_pll(ARM_PLL_CLK);
739 printf("ARM_PLL %8d MHz\n", freq / 1000000);
740 freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
741 printf("SYS_PLL1_800 %8d MHz\n", freq / 1000000);
742 freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
743 printf("SYS_PLL1_400 %8d MHz\n", freq / 1000000);
744 freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
745 printf("SYS_PLL1_266 %8d MHz\n", freq / 1000000);
746 freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
747 printf("SYS_PLL1_200 %8d MHz\n", freq / 1000000);
748 freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
749 printf("SYS_PLL1_160 %8d MHz\n", freq / 1000000);
750 freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
751 printf("SYS_PLL1_133 %8d MHz\n", freq / 1000000);
752 freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
753 printf("SYS_PLL1_100 %8d MHz\n", freq / 1000000);
754 freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
755 printf("SYS_PLL1_80 %8d MHz\n", freq / 1000000);
756 freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
757 printf("SYS_PLL1_40 %8d MHz\n", freq / 1000000);
758 freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
759 printf("SYS_PLL2_1000 %8d MHz\n", freq / 1000000);
760 freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
761 printf("SYS_PLL2_500 %8d MHz\n", freq / 1000000);
762 freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
763 printf("SYS_PLL2_333 %8d MHz\n", freq / 1000000);
764 freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
765 printf("SYS_PLL2_250 %8d MHz\n", freq / 1000000);
766 freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
767 printf("SYS_PLL2_200 %8d MHz\n", freq / 1000000);
768 freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
769 printf("SYS_PLL2_166 %8d MHz\n", freq / 1000000);
770 freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
771 printf("SYS_PLL2_125 %8d MHz\n", freq / 1000000);
772 freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
773 printf("SYS_PLL2_100 %8d MHz\n", freq / 1000000);
774 freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
775 printf("SYS_PLL2_50 %8d MHz\n", freq / 1000000);
776 freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
777 printf("SYS_PLL3 %8d MHz\n", freq / 1000000);
778 freq = mxc_get_clock(UART1_CLK_ROOT);
779 printf("UART1 %8d MHz\n", freq / 1000000);
780 freq = mxc_get_clock(USDHC1_CLK_ROOT);
781 printf("USDHC1 %8d MHz\n", freq / 1000000);
782 freq = mxc_get_clock(QSPI_CLK_ROOT);
783 printf("QSPI %8d MHz\n", freq / 1000000);
784 return 0;
785}
786
787U_BOOT_CMD(
788 clocks, CONFIG_SYS_MAXARGS, 1, do_mx8m_showclocks,
789 "display clocks",
790 ""
791);
792#endif