blob: 86709cc8754719b066f4b2e95bf3404a17d97d6b [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0
Christian Hitz4c6de852011-10-12 09:31:59 +02002/*
3 * Generic binary BCH encoding/decoding library
4 *
Christian Hitz4c6de852011-10-12 09:31:59 +02005 * Copyright © 2011 Parrot S.A.
6 *
7 * Author: Ivan Djelic <ivan.djelic@parrot.com>
8 *
9 * Description:
10 *
11 * This library provides runtime configurable encoding/decoding of binary
12 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
13 *
14 * Call init_bch to get a pointer to a newly allocated bch_control structure for
15 * the given m (Galois field order), t (error correction capability) and
16 * (optional) primitive polynomial parameters.
17 *
18 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
19 * Call decode_bch to detect and locate errors in received data.
20 *
21 * On systems supporting hw BCH features, intermediate results may be provided
22 * to decode_bch in order to skip certain steps. See decode_bch() documentation
23 * for details.
24 *
25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
26 * parameters m and t; thus allowing extra compiler optimizations and providing
27 * better (up to 2x) encoding performance. Using this option makes sense when
28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
29 * on a particular NAND flash device.
30 *
31 * Algorithmic details:
32 *
33 * Encoding is performed by processing 32 input bits in parallel, using 4
34 * remainder lookup tables.
35 *
36 * The final stage of decoding involves the following internal steps:
37 * a. Syndrome computation
38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
39 * c. Error locator root finding (by far the most expensive step)
40 *
41 * In this implementation, step c is not performed using the usual Chien search.
42 * Instead, an alternative approach described in [1] is used. It consists in
43 * factoring the error locator polynomial using the Berlekamp Trace algorithm
44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
46 * much better performance than Chien search for usual (m,t) values (typically
47 * m >= 13, t < 32, see [1]).
48 *
49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
50 * of characteristic 2, in: Western European Workshop on Research in Cryptology
51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
54 */
55
Maxime Ripard71d2c072017-02-27 18:22:01 +010056#ifndef USE_HOSTCC
Christian Hitz4c6de852011-10-12 09:31:59 +020057#include <common.h>
58#include <ubi_uboot.h>
Simon Glass61b29b82020-02-03 07:36:15 -070059#include <dm/devres.h>
Christian Hitz4c6de852011-10-12 09:31:59 +020060
61#include <linux/bitops.h>
Maxime Ripard71d2c072017-02-27 18:22:01 +010062#else
63#include <errno.h>
Emmanuel Vadot4ecc9882017-06-20 09:02:29 +020064#if defined(__FreeBSD__)
65#include <sys/endian.h>
默默ab8fc412019-03-31 16:07:03 +080066#elif defined(__APPLE__)
67#include <machine/endian.h>
68#include <libkern/OSByteOrder.h>
Emmanuel Vadot4ecc9882017-06-20 09:02:29 +020069#else
Maxime Ripard71d2c072017-02-27 18:22:01 +010070#include <endian.h>
Emmanuel Vadot4ecc9882017-06-20 09:02:29 +020071#endif
Maxime Ripard71d2c072017-02-27 18:22:01 +010072#include <stdint.h>
73#include <stdlib.h>
74#include <string.h>
75
76#undef cpu_to_be32
默默ab8fc412019-03-31 16:07:03 +080077#if defined(__APPLE__)
78#define cpu_to_be32 OSSwapHostToBigInt32
79#else
Maxime Ripard71d2c072017-02-27 18:22:01 +010080#define cpu_to_be32 htobe32
默默ab8fc412019-03-31 16:07:03 +080081#endif
Maxime Ripard71d2c072017-02-27 18:22:01 +010082#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
83#define kmalloc(size, flags) malloc(size)
84#define kzalloc(size, flags) calloc(1, size)
85#define kfree free
86#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
87#endif
88
Christian Hitz4c6de852011-10-12 09:31:59 +020089#include <asm/byteorder.h>
90#include <linux/bch.h>
91
92#if defined(CONFIG_BCH_CONST_PARAMS)
93#define GF_M(_p) (CONFIG_BCH_CONST_M)
94#define GF_T(_p) (CONFIG_BCH_CONST_T)
95#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
96#else
97#define GF_M(_p) ((_p)->m)
98#define GF_T(_p) ((_p)->t)
99#define GF_N(_p) ((_p)->n)
100#endif
101
102#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
103#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
104
105#ifndef dbg
106#define dbg(_fmt, args...) do {} while (0)
107#endif
108
109/*
110 * represent a polynomial over GF(2^m)
111 */
112struct gf_poly {
113 unsigned int deg; /* polynomial degree */
114 unsigned int c[0]; /* polynomial terms */
115};
116
117/* given its degree, compute a polynomial size in bytes */
118#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
119
120/* polynomial of degree 1 */
121struct gf_poly_deg1 {
122 struct gf_poly poly;
123 unsigned int c[2];
124};
125
Maxime Ripard71d2c072017-02-27 18:22:01 +0100126#ifdef USE_HOSTCC
默默ab8fc412019-03-31 16:07:03 +0800127#if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__)
Maxime Ripard71d2c072017-02-27 18:22:01 +0100128static int fls(int x)
129{
130 int r = 32;
131
132 if (!x)
133 return 0;
134 if (!(x & 0xffff0000u)) {
135 x <<= 16;
136 r -= 16;
137 }
138 if (!(x & 0xff000000u)) {
139 x <<= 8;
140 r -= 8;
141 }
142 if (!(x & 0xf0000000u)) {
143 x <<= 4;
144 r -= 4;
145 }
146 if (!(x & 0xc0000000u)) {
147 x <<= 2;
148 r -= 2;
149 }
150 if (!(x & 0x80000000u)) {
151 x <<= 1;
152 r -= 1;
153 }
154 return r;
155}
156#endif
Emmanuel Vadot4ecc9882017-06-20 09:02:29 +0200157#endif
Maxime Ripard71d2c072017-02-27 18:22:01 +0100158
Christian Hitz4c6de852011-10-12 09:31:59 +0200159/*
160 * same as encode_bch(), but process input data one byte at a time
161 */
162static void encode_bch_unaligned(struct bch_control *bch,
163 const unsigned char *data, unsigned int len,
164 uint32_t *ecc)
165{
166 int i;
167 const uint32_t *p;
168 const int l = BCH_ECC_WORDS(bch)-1;
169
170 while (len--) {
171 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
172
173 for (i = 0; i < l; i++)
174 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
175
176 ecc[l] = (ecc[l] << 8)^(*p);
177 }
178}
179
180/*
181 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
182 */
183static void load_ecc8(struct bch_control *bch, uint32_t *dst,
184 const uint8_t *src)
185{
186 uint8_t pad[4] = {0, 0, 0, 0};
187 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
188
189 for (i = 0; i < nwords; i++, src += 4)
190 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
191
192 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
193 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
194}
195
196/*
197 * convert 32-bit ecc words to ecc bytes
198 */
199static void store_ecc8(struct bch_control *bch, uint8_t *dst,
200 const uint32_t *src)
201{
202 uint8_t pad[4];
203 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
204
205 for (i = 0; i < nwords; i++) {
206 *dst++ = (src[i] >> 24);
207 *dst++ = (src[i] >> 16) & 0xff;
208 *dst++ = (src[i] >> 8) & 0xff;
209 *dst++ = (src[i] >> 0) & 0xff;
210 }
211 pad[0] = (src[nwords] >> 24);
212 pad[1] = (src[nwords] >> 16) & 0xff;
213 pad[2] = (src[nwords] >> 8) & 0xff;
214 pad[3] = (src[nwords] >> 0) & 0xff;
215 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
216}
217
218/**
219 * encode_bch - calculate BCH ecc parity of data
220 * @bch: BCH control structure
221 * @data: data to encode
222 * @len: data length in bytes
223 * @ecc: ecc parity data, must be initialized by caller
224 *
225 * The @ecc parity array is used both as input and output parameter, in order to
226 * allow incremental computations. It should be of the size indicated by member
227 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
228 *
229 * The exact number of computed ecc parity bits is given by member @ecc_bits of
230 * @bch; it may be less than m*t for large values of t.
231 */
232void encode_bch(struct bch_control *bch, const uint8_t *data,
233 unsigned int len, uint8_t *ecc)
234{
235 const unsigned int l = BCH_ECC_WORDS(bch)-1;
236 unsigned int i, mlen;
237 unsigned long m;
238 uint32_t w, r[l+1];
239 const uint32_t * const tab0 = bch->mod8_tab;
240 const uint32_t * const tab1 = tab0 + 256*(l+1);
241 const uint32_t * const tab2 = tab1 + 256*(l+1);
242 const uint32_t * const tab3 = tab2 + 256*(l+1);
243 const uint32_t *pdata, *p0, *p1, *p2, *p3;
244
245 if (ecc) {
246 /* load ecc parity bytes into internal 32-bit buffer */
247 load_ecc8(bch, bch->ecc_buf, ecc);
248 } else {
249 memset(bch->ecc_buf, 0, sizeof(r));
250 }
251
252 /* process first unaligned data bytes */
253 m = ((unsigned long)data) & 3;
254 if (m) {
255 mlen = (len < (4-m)) ? len : 4-m;
256 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
257 data += mlen;
258 len -= mlen;
259 }
260
261 /* process 32-bit aligned data words */
262 pdata = (uint32_t *)data;
263 mlen = len/4;
264 data += 4*mlen;
265 len -= 4*mlen;
266 memcpy(r, bch->ecc_buf, sizeof(r));
267
268 /*
269 * split each 32-bit word into 4 polynomials of weight 8 as follows:
270 *
271 * 31 ...24 23 ...16 15 ... 8 7 ... 0
272 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
273 * tttttttt mod g = r0 (precomputed)
274 * zzzzzzzz 00000000 mod g = r1 (precomputed)
275 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
276 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
277 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
278 */
279 while (mlen--) {
280 /* input data is read in big-endian format */
281 w = r[0]^cpu_to_be32(*pdata++);
282 p0 = tab0 + (l+1)*((w >> 0) & 0xff);
283 p1 = tab1 + (l+1)*((w >> 8) & 0xff);
284 p2 = tab2 + (l+1)*((w >> 16) & 0xff);
285 p3 = tab3 + (l+1)*((w >> 24) & 0xff);
286
287 for (i = 0; i < l; i++)
288 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
289
290 r[l] = p0[l]^p1[l]^p2[l]^p3[l];
291 }
292 memcpy(bch->ecc_buf, r, sizeof(r));
293
294 /* process last unaligned bytes */
295 if (len)
296 encode_bch_unaligned(bch, data, len, bch->ecc_buf);
297
298 /* store ecc parity bytes into original parity buffer */
299 if (ecc)
300 store_ecc8(bch, ecc, bch->ecc_buf);
301}
302
303static inline int modulo(struct bch_control *bch, unsigned int v)
304{
305 const unsigned int n = GF_N(bch);
306 while (v >= n) {
307 v -= n;
308 v = (v & n) + (v >> GF_M(bch));
309 }
310 return v;
311}
312
313/*
314 * shorter and faster modulo function, only works when v < 2N.
315 */
316static inline int mod_s(struct bch_control *bch, unsigned int v)
317{
318 const unsigned int n = GF_N(bch);
319 return (v < n) ? v : v-n;
320}
321
322static inline int deg(unsigned int poly)
323{
324 /* polynomial degree is the most-significant bit index */
325 return fls(poly)-1;
326}
327
328static inline int parity(unsigned int x)
329{
330 /*
331 * public domain code snippet, lifted from
332 * http://www-graphics.stanford.edu/~seander/bithacks.html
333 */
334 x ^= x >> 1;
335 x ^= x >> 2;
336 x = (x & 0x11111111U) * 0x11111111U;
337 return (x >> 28) & 1;
338}
339
340/* Galois field basic operations: multiply, divide, inverse, etc. */
341
342static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
343 unsigned int b)
344{
345 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
346 bch->a_log_tab[b])] : 0;
347}
348
349static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
350{
351 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
352}
353
354static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
355 unsigned int b)
356{
357 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
358 GF_N(bch)-bch->a_log_tab[b])] : 0;
359}
360
361static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
362{
363 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
364}
365
366static inline unsigned int a_pow(struct bch_control *bch, int i)
367{
368 return bch->a_pow_tab[modulo(bch, i)];
369}
370
371static inline int a_log(struct bch_control *bch, unsigned int x)
372{
373 return bch->a_log_tab[x];
374}
375
376static inline int a_ilog(struct bch_control *bch, unsigned int x)
377{
378 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
379}
380
381/*
382 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
383 */
384static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
385 unsigned int *syn)
386{
387 int i, j, s;
388 unsigned int m;
389 uint32_t poly;
390 const int t = GF_T(bch);
391
392 s = bch->ecc_bits;
393
394 /* make sure extra bits in last ecc word are cleared */
395 m = ((unsigned int)s) & 31;
396 if (m)
397 ecc[s/32] &= ~((1u << (32-m))-1);
398 memset(syn, 0, 2*t*sizeof(*syn));
399
400 /* compute v(a^j) for j=1 .. 2t-1 */
401 do {
402 poly = *ecc++;
403 s -= 32;
404 while (poly) {
405 i = deg(poly);
406 for (j = 0; j < 2*t; j += 2)
407 syn[j] ^= a_pow(bch, (j+1)*(i+s));
408
409 poly ^= (1 << i);
410 }
411 } while (s > 0);
412
413 /* v(a^(2j)) = v(a^j)^2 */
414 for (j = 0; j < t; j++)
415 syn[2*j+1] = gf_sqr(bch, syn[j]);
416}
417
418static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
419{
420 memcpy(dst, src, GF_POLY_SZ(src->deg));
421}
422
423static int compute_error_locator_polynomial(struct bch_control *bch,
424 const unsigned int *syn)
425{
426 const unsigned int t = GF_T(bch);
427 const unsigned int n = GF_N(bch);
428 unsigned int i, j, tmp, l, pd = 1, d = syn[0];
429 struct gf_poly *elp = bch->elp;
430 struct gf_poly *pelp = bch->poly_2t[0];
431 struct gf_poly *elp_copy = bch->poly_2t[1];
432 int k, pp = -1;
433
434 memset(pelp, 0, GF_POLY_SZ(2*t));
435 memset(elp, 0, GF_POLY_SZ(2*t));
436
437 pelp->deg = 0;
438 pelp->c[0] = 1;
439 elp->deg = 0;
440 elp->c[0] = 1;
441
442 /* use simplified binary Berlekamp-Massey algorithm */
443 for (i = 0; (i < t) && (elp->deg <= t); i++) {
444 if (d) {
445 k = 2*i-pp;
446 gf_poly_copy(elp_copy, elp);
447 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
448 tmp = a_log(bch, d)+n-a_log(bch, pd);
449 for (j = 0; j <= pelp->deg; j++) {
450 if (pelp->c[j]) {
451 l = a_log(bch, pelp->c[j]);
452 elp->c[j+k] ^= a_pow(bch, tmp+l);
453 }
454 }
455 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
456 tmp = pelp->deg+k;
457 if (tmp > elp->deg) {
458 elp->deg = tmp;
459 gf_poly_copy(pelp, elp_copy);
460 pd = d;
461 pp = 2*i;
462 }
463 }
464 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
465 if (i < t-1) {
466 d = syn[2*i+2];
467 for (j = 1; j <= elp->deg; j++)
468 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
469 }
470 }
471 dbg("elp=%s\n", gf_poly_str(elp));
472 return (elp->deg > t) ? -1 : (int)elp->deg;
473}
474
475/*
476 * solve a m x m linear system in GF(2) with an expected number of solutions,
477 * and return the number of found solutions
478 */
479static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
480 unsigned int *sol, int nsol)
481{
482 const int m = GF_M(bch);
483 unsigned int tmp, mask;
484 int rem, c, r, p, k, param[m];
485
486 k = 0;
487 mask = 1 << m;
488
489 /* Gaussian elimination */
490 for (c = 0; c < m; c++) {
491 rem = 0;
492 p = c-k;
493 /* find suitable row for elimination */
494 for (r = p; r < m; r++) {
495 if (rows[r] & mask) {
496 if (r != p) {
497 tmp = rows[r];
498 rows[r] = rows[p];
499 rows[p] = tmp;
500 }
501 rem = r+1;
502 break;
503 }
504 }
505 if (rem) {
506 /* perform elimination on remaining rows */
507 tmp = rows[p];
508 for (r = rem; r < m; r++) {
509 if (rows[r] & mask)
510 rows[r] ^= tmp;
511 }
512 } else {
513 /* elimination not needed, store defective row index */
514 param[k++] = c;
515 }
516 mask >>= 1;
517 }
518 /* rewrite system, inserting fake parameter rows */
519 if (k > 0) {
520 p = k;
521 for (r = m-1; r >= 0; r--) {
522 if ((r > m-1-k) && rows[r])
523 /* system has no solution */
524 return 0;
525
526 rows[r] = (p && (r == param[p-1])) ?
527 p--, 1u << (m-r) : rows[r-p];
528 }
529 }
530
531 if (nsol != (1 << k))
532 /* unexpected number of solutions */
533 return 0;
534
535 for (p = 0; p < nsol; p++) {
536 /* set parameters for p-th solution */
537 for (c = 0; c < k; c++)
538 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
539
540 /* compute unique solution */
541 tmp = 0;
542 for (r = m-1; r >= 0; r--) {
543 mask = rows[r] & (tmp|1);
544 tmp |= parity(mask) << (m-r);
545 }
546 sol[p] = tmp >> 1;
547 }
548 return nsol;
549}
550
551/*
552 * this function builds and solves a linear system for finding roots of a degree
553 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
554 */
555static int find_affine4_roots(struct bch_control *bch, unsigned int a,
556 unsigned int b, unsigned int c,
557 unsigned int *roots)
558{
559 int i, j, k;
560 const int m = GF_M(bch);
561 unsigned int mask = 0xff, t, rows[16] = {0,};
562
563 j = a_log(bch, b);
564 k = a_log(bch, a);
565 rows[0] = c;
566
567 /* buid linear system to solve X^4+aX^2+bX+c = 0 */
568 for (i = 0; i < m; i++) {
569 rows[i+1] = bch->a_pow_tab[4*i]^
570 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
571 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
572 j++;
573 k += 2;
574 }
575 /*
576 * transpose 16x16 matrix before passing it to linear solver
577 * warning: this code assumes m < 16
578 */
579 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
580 for (k = 0; k < 16; k = (k+j+1) & ~j) {
581 t = ((rows[k] >> j)^rows[k+j]) & mask;
582 rows[k] ^= (t << j);
583 rows[k+j] ^= t;
584 }
585 }
586 return solve_linear_system(bch, rows, roots, 4);
587}
588
589/*
590 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
591 */
592static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
593 unsigned int *roots)
594{
595 int n = 0;
596
597 if (poly->c[0])
598 /* poly[X] = bX+c with c!=0, root=c/b */
599 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
600 bch->a_log_tab[poly->c[1]]);
601 return n;
602}
603
604/*
605 * compute roots of a degree 2 polynomial over GF(2^m)
606 */
607static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
608 unsigned int *roots)
609{
610 int n = 0, i, l0, l1, l2;
611 unsigned int u, v, r;
612
613 if (poly->c[0] && poly->c[1]) {
614
615 l0 = bch->a_log_tab[poly->c[0]];
616 l1 = bch->a_log_tab[poly->c[1]];
617 l2 = bch->a_log_tab[poly->c[2]];
618
619 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
620 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
621 /*
622 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
623 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
624 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
625 * i.e. r and r+1 are roots iff Tr(u)=0
626 */
627 r = 0;
628 v = u;
629 while (v) {
630 i = deg(v);
631 r ^= bch->xi_tab[i];
632 v ^= (1 << i);
633 }
634 /* verify root */
635 if ((gf_sqr(bch, r)^r) == u) {
636 /* reverse z=a/bX transformation and compute log(1/r) */
637 roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
638 bch->a_log_tab[r]+l2);
639 roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
640 bch->a_log_tab[r^1]+l2);
641 }
642 }
643 return n;
644}
645
646/*
647 * compute roots of a degree 3 polynomial over GF(2^m)
648 */
649static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
650 unsigned int *roots)
651{
652 int i, n = 0;
653 unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
654
655 if (poly->c[0]) {
656 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
657 e3 = poly->c[3];
658 c2 = gf_div(bch, poly->c[0], e3);
659 b2 = gf_div(bch, poly->c[1], e3);
660 a2 = gf_div(bch, poly->c[2], e3);
661
662 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
663 c = gf_mul(bch, a2, c2); /* c = a2c2 */
664 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
665 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
666
667 /* find the 4 roots of this affine polynomial */
668 if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
669 /* remove a2 from final list of roots */
670 for (i = 0; i < 4; i++) {
671 if (tmp[i] != a2)
672 roots[n++] = a_ilog(bch, tmp[i]);
673 }
674 }
675 }
676 return n;
677}
678
679/*
680 * compute roots of a degree 4 polynomial over GF(2^m)
681 */
682static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
683 unsigned int *roots)
684{
685 int i, l, n = 0;
686 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
687
688 if (poly->c[0] == 0)
689 return 0;
690
691 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
692 e4 = poly->c[4];
693 d = gf_div(bch, poly->c[0], e4);
694 c = gf_div(bch, poly->c[1], e4);
695 b = gf_div(bch, poly->c[2], e4);
696 a = gf_div(bch, poly->c[3], e4);
697
698 /* use Y=1/X transformation to get an affine polynomial */
699 if (a) {
700 /* first, eliminate cX by using z=X+e with ae^2+c=0 */
701 if (c) {
702 /* compute e such that e^2 = c/a */
703 f = gf_div(bch, c, a);
704 l = a_log(bch, f);
705 l += (l & 1) ? GF_N(bch) : 0;
706 e = a_pow(bch, l/2);
707 /*
708 * use transformation z=X+e:
709 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
710 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
711 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
712 * z^4 + az^3 + b'z^2 + d'
713 */
714 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
715 b = gf_mul(bch, a, e)^b;
716 }
717 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
718 if (d == 0)
719 /* assume all roots have multiplicity 1 */
720 return 0;
721
722 c2 = gf_inv(bch, d);
723 b2 = gf_div(bch, a, d);
724 a2 = gf_div(bch, b, d);
725 } else {
726 /* polynomial is already affine */
727 c2 = d;
728 b2 = c;
729 a2 = b;
730 }
731 /* find the 4 roots of this affine polynomial */
732 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
733 for (i = 0; i < 4; i++) {
734 /* post-process roots (reverse transformations) */
735 f = a ? gf_inv(bch, roots[i]) : roots[i];
736 roots[i] = a_ilog(bch, f^e);
737 }
738 n = 4;
739 }
740 return n;
741}
742
743/*
744 * build monic, log-based representation of a polynomial
745 */
746static void gf_poly_logrep(struct bch_control *bch,
747 const struct gf_poly *a, int *rep)
748{
749 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
750
751 /* represent 0 values with -1; warning, rep[d] is not set to 1 */
752 for (i = 0; i < d; i++)
753 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
754}
755
756/*
757 * compute polynomial Euclidean division remainder in GF(2^m)[X]
758 */
759static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
760 const struct gf_poly *b, int *rep)
761{
762 int la, p, m;
763 unsigned int i, j, *c = a->c;
764 const unsigned int d = b->deg;
765
766 if (a->deg < d)
767 return;
768
769 /* reuse or compute log representation of denominator */
770 if (!rep) {
771 rep = bch->cache;
772 gf_poly_logrep(bch, b, rep);
773 }
774
775 for (j = a->deg; j >= d; j--) {
776 if (c[j]) {
777 la = a_log(bch, c[j]);
778 p = j-d;
779 for (i = 0; i < d; i++, p++) {
780 m = rep[i];
781 if (m >= 0)
782 c[p] ^= bch->a_pow_tab[mod_s(bch,
783 m+la)];
784 }
785 }
786 }
787 a->deg = d-1;
788 while (!c[a->deg] && a->deg)
789 a->deg--;
790}
791
792/*
793 * compute polynomial Euclidean division quotient in GF(2^m)[X]
794 */
795static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
796 const struct gf_poly *b, struct gf_poly *q)
797{
798 if (a->deg >= b->deg) {
799 q->deg = a->deg-b->deg;
800 /* compute a mod b (modifies a) */
801 gf_poly_mod(bch, a, b, NULL);
802 /* quotient is stored in upper part of polynomial a */
803 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
804 } else {
805 q->deg = 0;
806 q->c[0] = 0;
807 }
808}
809
810/*
811 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
812 */
813static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
814 struct gf_poly *b)
815{
816 struct gf_poly *tmp;
817
818 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
819
820 if (a->deg < b->deg) {
821 tmp = b;
822 b = a;
823 a = tmp;
824 }
825
826 while (b->deg > 0) {
827 gf_poly_mod(bch, a, b, NULL);
828 tmp = b;
829 b = a;
830 a = tmp;
831 }
832
833 dbg("%s\n", gf_poly_str(a));
834
835 return a;
836}
837
838/*
839 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
840 * This is used in Berlekamp Trace algorithm for splitting polynomials
841 */
842static void compute_trace_bk_mod(struct bch_control *bch, int k,
843 const struct gf_poly *f, struct gf_poly *z,
844 struct gf_poly *out)
845{
846 const int m = GF_M(bch);
847 int i, j;
848
849 /* z contains z^2j mod f */
850 z->deg = 1;
851 z->c[0] = 0;
852 z->c[1] = bch->a_pow_tab[k];
853
854 out->deg = 0;
855 memset(out, 0, GF_POLY_SZ(f->deg));
856
857 /* compute f log representation only once */
858 gf_poly_logrep(bch, f, bch->cache);
859
860 for (i = 0; i < m; i++) {
861 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
862 for (j = z->deg; j >= 0; j--) {
863 out->c[j] ^= z->c[j];
864 z->c[2*j] = gf_sqr(bch, z->c[j]);
865 z->c[2*j+1] = 0;
866 }
867 if (z->deg > out->deg)
868 out->deg = z->deg;
869
870 if (i < m-1) {
871 z->deg *= 2;
872 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
873 gf_poly_mod(bch, z, f, bch->cache);
874 }
875 }
876 while (!out->c[out->deg] && out->deg)
877 out->deg--;
878
879 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
880}
881
882/*
883 * factor a polynomial using Berlekamp Trace algorithm (BTA)
884 */
885static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
886 struct gf_poly **g, struct gf_poly **h)
887{
888 struct gf_poly *f2 = bch->poly_2t[0];
889 struct gf_poly *q = bch->poly_2t[1];
890 struct gf_poly *tk = bch->poly_2t[2];
891 struct gf_poly *z = bch->poly_2t[3];
892 struct gf_poly *gcd;
893
894 dbg("factoring %s...\n", gf_poly_str(f));
895
896 *g = f;
897 *h = NULL;
898
899 /* tk = Tr(a^k.X) mod f */
900 compute_trace_bk_mod(bch, k, f, z, tk);
901
902 if (tk->deg > 0) {
903 /* compute g = gcd(f, tk) (destructive operation) */
904 gf_poly_copy(f2, f);
905 gcd = gf_poly_gcd(bch, f2, tk);
906 if (gcd->deg < f->deg) {
907 /* compute h=f/gcd(f,tk); this will modify f and q */
908 gf_poly_div(bch, f, gcd, q);
909 /* store g and h in-place (clobbering f) */
910 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
911 gf_poly_copy(*g, gcd);
912 gf_poly_copy(*h, q);
913 }
914 }
915}
916
917/*
918 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
919 * file for details
920 */
921static int find_poly_roots(struct bch_control *bch, unsigned int k,
922 struct gf_poly *poly, unsigned int *roots)
923{
924 int cnt;
925 struct gf_poly *f1, *f2;
926
927 switch (poly->deg) {
928 /* handle low degree polynomials with ad hoc techniques */
929 case 1:
930 cnt = find_poly_deg1_roots(bch, poly, roots);
931 break;
932 case 2:
933 cnt = find_poly_deg2_roots(bch, poly, roots);
934 break;
935 case 3:
936 cnt = find_poly_deg3_roots(bch, poly, roots);
937 break;
938 case 4:
939 cnt = find_poly_deg4_roots(bch, poly, roots);
940 break;
941 default:
942 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
943 cnt = 0;
944 if (poly->deg && (k <= GF_M(bch))) {
945 factor_polynomial(bch, k, poly, &f1, &f2);
946 if (f1)
947 cnt += find_poly_roots(bch, k+1, f1, roots);
948 if (f2)
949 cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
950 }
951 break;
952 }
953 return cnt;
954}
955
956#if defined(USE_CHIEN_SEARCH)
957/*
958 * exhaustive root search (Chien) implementation - not used, included only for
959 * reference/comparison tests
960 */
961static int chien_search(struct bch_control *bch, unsigned int len,
962 struct gf_poly *p, unsigned int *roots)
963{
964 int m;
965 unsigned int i, j, syn, syn0, count = 0;
966 const unsigned int k = 8*len+bch->ecc_bits;
967
968 /* use a log-based representation of polynomial */
969 gf_poly_logrep(bch, p, bch->cache);
970 bch->cache[p->deg] = 0;
971 syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
972
973 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
974 /* compute elp(a^i) */
975 for (j = 1, syn = syn0; j <= p->deg; j++) {
976 m = bch->cache[j];
977 if (m >= 0)
978 syn ^= a_pow(bch, m+j*i);
979 }
980 if (syn == 0) {
981 roots[count++] = GF_N(bch)-i;
982 if (count == p->deg)
983 break;
984 }
985 }
986 return (count == p->deg) ? count : 0;
987}
988#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
989#endif /* USE_CHIEN_SEARCH */
990
991/**
992 * decode_bch - decode received codeword and find bit error locations
993 * @bch: BCH control structure
994 * @data: received data, ignored if @calc_ecc is provided
995 * @len: data length in bytes, must always be provided
996 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
997 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
998 * @syn: hw computed syndrome data (if NULL, syndrome is calculated)
999 * @errloc: output array of error locations
1000 *
1001 * Returns:
1002 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
1003 * invalid parameters were provided
1004 *
1005 * Depending on the available hw BCH support and the need to compute @calc_ecc
1006 * separately (using encode_bch()), this function should be called with one of
1007 * the following parameter configurations -
1008 *
1009 * by providing @data and @recv_ecc only:
1010 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1011 *
1012 * by providing @recv_ecc and @calc_ecc:
1013 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1014 *
1015 * by providing ecc = recv_ecc XOR calc_ecc:
1016 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1017 *
1018 * by providing syndrome results @syn:
1019 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1020 *
1021 * Once decode_bch() has successfully returned with a positive value, error
1022 * locations returned in array @errloc should be interpreted as follows -
1023 *
1024 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1025 * data correction)
1026 *
1027 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1028 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1029 *
1030 * Note that this function does not perform any data correction by itself, it
1031 * merely indicates error locations.
1032 */
1033int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1034 const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1035 const unsigned int *syn, unsigned int *errloc)
1036{
1037 const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1038 unsigned int nbits;
1039 int i, err, nroots;
1040 uint32_t sum;
1041
1042 /* sanity check: make sure data length can be handled */
1043 if (8*len > (bch->n-bch->ecc_bits))
1044 return -EINVAL;
1045
1046 /* if caller does not provide syndromes, compute them */
1047 if (!syn) {
1048 if (!calc_ecc) {
1049 /* compute received data ecc into an internal buffer */
1050 if (!data || !recv_ecc)
1051 return -EINVAL;
1052 encode_bch(bch, data, len, NULL);
1053 } else {
1054 /* load provided calculated ecc */
1055 load_ecc8(bch, bch->ecc_buf, calc_ecc);
1056 }
1057 /* load received ecc or assume it was XORed in calc_ecc */
1058 if (recv_ecc) {
1059 load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1060 /* XOR received and calculated ecc */
1061 for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1062 bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1063 sum |= bch->ecc_buf[i];
1064 }
1065 if (!sum)
1066 /* no error found */
1067 return 0;
1068 }
1069 compute_syndromes(bch, bch->ecc_buf, bch->syn);
1070 syn = bch->syn;
1071 }
1072
1073 err = compute_error_locator_polynomial(bch, syn);
1074 if (err > 0) {
1075 nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1076 if (err != nroots)
1077 err = -1;
1078 }
1079 if (err > 0) {
1080 /* post-process raw error locations for easier correction */
1081 nbits = (len*8)+bch->ecc_bits;
1082 for (i = 0; i < err; i++) {
1083 if (errloc[i] >= nbits) {
1084 err = -1;
1085 break;
1086 }
1087 errloc[i] = nbits-1-errloc[i];
1088 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1089 }
1090 }
1091 return (err >= 0) ? err : -EBADMSG;
1092}
1093
1094/*
1095 * generate Galois field lookup tables
1096 */
1097static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1098{
1099 unsigned int i, x = 1;
1100 const unsigned int k = 1 << deg(poly);
1101
1102 /* primitive polynomial must be of degree m */
1103 if (k != (1u << GF_M(bch)))
1104 return -1;
1105
1106 for (i = 0; i < GF_N(bch); i++) {
1107 bch->a_pow_tab[i] = x;
1108 bch->a_log_tab[x] = i;
1109 if (i && (x == 1))
1110 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1111 return -1;
1112 x <<= 1;
1113 if (x & k)
1114 x ^= poly;
1115 }
1116 bch->a_pow_tab[GF_N(bch)] = 1;
1117 bch->a_log_tab[0] = 0;
1118
1119 return 0;
1120}
1121
1122/*
1123 * compute generator polynomial remainder tables for fast encoding
1124 */
1125static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1126{
1127 int i, j, b, d;
1128 uint32_t data, hi, lo, *tab;
1129 const int l = BCH_ECC_WORDS(bch);
1130 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1131 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1132
1133 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1134
1135 for (i = 0; i < 256; i++) {
1136 /* p(X)=i is a small polynomial of weight <= 8 */
1137 for (b = 0; b < 4; b++) {
1138 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1139 tab = bch->mod8_tab + (b*256+i)*l;
1140 data = i << (8*b);
1141 while (data) {
1142 d = deg(data);
1143 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1144 data ^= g[0] >> (31-d);
1145 for (j = 0; j < ecclen; j++) {
1146 hi = (d < 31) ? g[j] << (d+1) : 0;
1147 lo = (j+1 < plen) ?
1148 g[j+1] >> (31-d) : 0;
1149 tab[j] ^= hi|lo;
1150 }
1151 }
1152 }
1153 }
1154}
1155
1156/*
1157 * build a base for factoring degree 2 polynomials
1158 */
1159static int build_deg2_base(struct bch_control *bch)
1160{
1161 const int m = GF_M(bch);
1162 int i, j, r;
1163 unsigned int sum, x, y, remaining, ak = 0, xi[m];
1164
1165 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1166 for (i = 0; i < m; i++) {
1167 for (j = 0, sum = 0; j < m; j++)
1168 sum ^= a_pow(bch, i*(1 << j));
1169
1170 if (sum) {
1171 ak = bch->a_pow_tab[i];
1172 break;
1173 }
1174 }
1175 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1176 remaining = m;
1177 memset(xi, 0, sizeof(xi));
1178
1179 for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1180 y = gf_sqr(bch, x)^x;
1181 for (i = 0; i < 2; i++) {
1182 r = a_log(bch, y);
1183 if (y && (r < m) && !xi[r]) {
1184 bch->xi_tab[r] = x;
1185 xi[r] = 1;
1186 remaining--;
1187 dbg("x%d = %x\n", r, x);
1188 break;
1189 }
1190 y ^= ak;
1191 }
1192 }
1193 /* should not happen but check anyway */
1194 return remaining ? -1 : 0;
1195}
1196
1197static void *bch_alloc(size_t size, int *err)
1198{
1199 void *ptr;
1200
1201 ptr = kmalloc(size, GFP_KERNEL);
1202 if (ptr == NULL)
1203 *err = 1;
1204 return ptr;
1205}
1206
1207/*
1208 * compute generator polynomial for given (m,t) parameters.
1209 */
1210static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1211{
1212 const unsigned int m = GF_M(bch);
1213 const unsigned int t = GF_T(bch);
1214 int n, err = 0;
1215 unsigned int i, j, nbits, r, word, *roots;
1216 struct gf_poly *g;
1217 uint32_t *genpoly;
1218
1219 g = bch_alloc(GF_POLY_SZ(m*t), &err);
1220 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1221 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1222
1223 if (err) {
1224 kfree(genpoly);
1225 genpoly = NULL;
1226 goto finish;
1227 }
1228
1229 /* enumerate all roots of g(X) */
1230 memset(roots , 0, (bch->n+1)*sizeof(*roots));
1231 for (i = 0; i < t; i++) {
1232 for (j = 0, r = 2*i+1; j < m; j++) {
1233 roots[r] = 1;
1234 r = mod_s(bch, 2*r);
1235 }
1236 }
1237 /* build generator polynomial g(X) */
1238 g->deg = 0;
1239 g->c[0] = 1;
1240 for (i = 0; i < GF_N(bch); i++) {
1241 if (roots[i]) {
1242 /* multiply g(X) by (X+root) */
1243 r = bch->a_pow_tab[i];
1244 g->c[g->deg+1] = 1;
1245 for (j = g->deg; j > 0; j--)
1246 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1247
1248 g->c[0] = gf_mul(bch, g->c[0], r);
1249 g->deg++;
1250 }
1251 }
1252 /* store left-justified binary representation of g(X) */
1253 n = g->deg+1;
1254 i = 0;
1255
1256 while (n > 0) {
1257 nbits = (n > 32) ? 32 : n;
1258 for (j = 0, word = 0; j < nbits; j++) {
1259 if (g->c[n-1-j])
1260 word |= 1u << (31-j);
1261 }
1262 genpoly[i++] = word;
1263 n -= nbits;
1264 }
1265 bch->ecc_bits = g->deg;
1266
1267finish:
1268 kfree(g);
1269 kfree(roots);
1270
1271 return genpoly;
1272}
1273
1274/**
1275 * init_bch - initialize a BCH encoder/decoder
1276 * @m: Galois field order, should be in the range 5-15
1277 * @t: maximum error correction capability, in bits
1278 * @prim_poly: user-provided primitive polynomial (or 0 to use default)
1279 *
1280 * Returns:
1281 * a newly allocated BCH control structure if successful, NULL otherwise
1282 *
1283 * This initialization can take some time, as lookup tables are built for fast
1284 * encoding/decoding; make sure not to call this function from a time critical
1285 * path. Usually, init_bch() should be called on module/driver init and
1286 * free_bch() should be called to release memory on exit.
1287 *
1288 * You may provide your own primitive polynomial of degree @m in argument
1289 * @prim_poly, or let init_bch() use its default polynomial.
1290 *
1291 * Once init_bch() has successfully returned a pointer to a newly allocated
1292 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1293 * the structure.
1294 */
1295struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1296{
1297 int err = 0;
1298 unsigned int i, words;
1299 uint32_t *genpoly;
1300 struct bch_control *bch = NULL;
1301
1302 const int min_m = 5;
1303 const int max_m = 15;
1304
1305 /* default primitive polynomials */
1306 static const unsigned int prim_poly_tab[] = {
1307 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1308 0x402b, 0x8003,
1309 };
1310
1311#if defined(CONFIG_BCH_CONST_PARAMS)
1312 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1313 printk(KERN_ERR "bch encoder/decoder was configured to support "
1314 "parameters m=%d, t=%d only!\n",
1315 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1316 goto fail;
1317 }
1318#endif
1319 if ((m < min_m) || (m > max_m))
1320 /*
1321 * values of m greater than 15 are not currently supported;
1322 * supporting m > 15 would require changing table base type
1323 * (uint16_t) and a small patch in matrix transposition
1324 */
1325 goto fail;
1326
1327 /* sanity checks */
1328 if ((t < 1) || (m*t >= ((1 << m)-1)))
1329 /* invalid t value */
1330 goto fail;
1331
1332 /* select a primitive polynomial for generating GF(2^m) */
1333 if (prim_poly == 0)
1334 prim_poly = prim_poly_tab[m-min_m];
1335
1336 bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1337 if (bch == NULL)
1338 goto fail;
1339
1340 bch->m = m;
1341 bch->t = t;
1342 bch->n = (1 << m)-1;
1343 words = DIV_ROUND_UP(m*t, 32);
1344 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1345 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1346 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1347 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1348 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1349 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1350 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1351 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
1352 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
1353 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1354
1355 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1356 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1357
1358 if (err)
1359 goto fail;
1360
1361 err = build_gf_tables(bch, prim_poly);
1362 if (err)
1363 goto fail;
1364
1365 /* use generator polynomial for computing encoding tables */
1366 genpoly = compute_generator_polynomial(bch);
1367 if (genpoly == NULL)
1368 goto fail;
1369
1370 build_mod8_tables(bch, genpoly);
1371 kfree(genpoly);
1372
1373 err = build_deg2_base(bch);
1374 if (err)
1375 goto fail;
1376
1377 return bch;
1378
1379fail:
1380 free_bch(bch);
1381 return NULL;
1382}
1383
1384/**
1385 * free_bch - free the BCH control structure
1386 * @bch: BCH control structure to release
1387 */
1388void free_bch(struct bch_control *bch)
1389{
1390 unsigned int i;
1391
1392 if (bch) {
1393 kfree(bch->a_pow_tab);
1394 kfree(bch->a_log_tab);
1395 kfree(bch->mod8_tab);
1396 kfree(bch->ecc_buf);
1397 kfree(bch->ecc_buf2);
1398 kfree(bch->xi_tab);
1399 kfree(bch->syn);
1400 kfree(bch->cache);
1401 kfree(bch->elp);
1402
1403 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1404 kfree(bch->poly_2t[i]);
1405
1406 kfree(bch);
1407 }
1408}