blob: 9d8114c4ecfaf87e4c6bf5c6910fffe92ce35af0 [file] [log] [blame]
Tom Warren150c2492012-09-19 15:50:56 -07001/*
2 * Copyright (c) 2011 The Chromium OS Authors.
Tom Warren150c2492012-09-19 15:50:56 -07003 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02004 * SPDX-License-Identifier: GPL-2.0+
Tom Warren150c2492012-09-19 15:50:56 -07005 */
6
7/* Tegra clock control functions */
8
Tom Warrendc89ad12012-12-11 13:34:12 +00009#ifndef _TEGRA_CLOCK_H_
10#define _TEGRA_CLOCK_H_
Tom Warren150c2492012-09-19 15:50:56 -070011
12/* Set of oscillator frequencies supported in the internal API. */
13enum clock_osc_freq {
14 /* All in MHz, so 13_0 is 13.0MHz */
15 CLOCK_OSC_FREQ_13_0,
16 CLOCK_OSC_FREQ_19_2,
17 CLOCK_OSC_FREQ_12_0,
18 CLOCK_OSC_FREQ_26_0,
19
20 CLOCK_OSC_FREQ_COUNT,
21};
22
Stephen Warren5916a362014-01-24 10:16:18 -070023/*
24 * Note that no Tegra clock register actually uses all of bits 31:28 as
25 * the mux field. Rather, bits 30:28, 29:28, or 28 are used. However, in
26 * those cases, nothing is stored in the bits about the mux field, so it's
27 * safe to pretend that the mux field extends all the way to the end of the
28 * register. As such, the U-Boot clock driver is currently a bit lazy, and
29 * doesn't distinguish between 31:28, 30:28, 29:28 and 28; it just lumps
30 * them all together and pretends they're all 31:28.
31 */
Tom Warren0b01b532014-01-24 10:16:17 -070032enum {
Stephen Warren04b8e8e2014-01-24 10:16:21 -070033 MASK_BITS_31_30,
Tom Warren0b01b532014-01-24 10:16:17 -070034 MASK_BITS_31_29,
Stephen Warren5916a362014-01-24 10:16:18 -070035 MASK_BITS_31_28,
Tom Warren0b01b532014-01-24 10:16:17 -070036};
37
Tom Warren150c2492012-09-19 15:50:56 -070038#include <asm/arch/clock-tables.h>
39/* PLL stabilization delay in usec */
40#define CLOCK_PLL_STABLE_DELAY_US 300
41
42/* return the current oscillator clock frequency */
43enum clock_osc_freq clock_get_osc_freq(void);
44
45/**
46 * Start PLL using the provided configuration parameters.
47 *
48 * @param id clock id
49 * @param divm input divider
50 * @param divn feedback divider
51 * @param divp post divider 2^n
52 * @param cpcon charge pump setup control
53 * @param lfcon loop filter setup control
54 *
55 * @returns monotonic time in us that the PLL will be stable
56 */
57unsigned long clock_start_pll(enum clock_id id, u32 divm, u32 divn,
58 u32 divp, u32 cpcon, u32 lfcon);
59
60/**
Lucas Stach65530a82012-09-25 20:21:13 +000061 * Set PLL output frequency
62 *
63 * @param clkid clock id
64 * @param pllout pll output id
65 * @param rate desired output rate
66 *
67 * @return 0 if ok, -1 on error (invalid clock id or no suitable divider)
68 */
69int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout,
70 unsigned rate);
71
72/**
Tom Warren150c2492012-09-19 15:50:56 -070073 * Read low-level parameters of a PLL.
74 *
75 * @param id clock id to read (note: USB is not supported)
76 * @param divm returns input divider
77 * @param divn returns feedback divider
78 * @param divp returns post divider 2^n
79 * @param cpcon returns charge pump setup control
80 * @param lfcon returns loop filter setup control
81 *
82 * @returns 0 if ok, -1 on error (invalid clock id)
83 */
84int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
Tom Warrenf29f0862013-01-23 14:01:01 -070085 u32 *divp, u32 *cpcon, u32 *lfcon);
Tom Warren150c2492012-09-19 15:50:56 -070086
87/*
88 * Enable a clock
89 *
90 * @param id clock id
91 */
92void clock_enable(enum periph_id clkid);
93
94/*
95 * Disable a clock
96 *
97 * @param id clock id
98 */
99void clock_disable(enum periph_id clkid);
100
101/*
102 * Set whether a clock is enabled or disabled.
103 *
104 * @param id clock id
105 * @param enable 1 to enable, 0 to disable
106 */
107void clock_set_enable(enum periph_id clkid, int enable);
108
109/**
110 * Reset a peripheral. This puts it in reset, waits for a delay, then takes
111 * it out of reset and waits for th delay again.
112 *
113 * @param periph_id peripheral to reset
114 * @param us_delay time to delay in microseconds
115 */
116void reset_periph(enum periph_id periph_id, int us_delay);
117
118/**
119 * Put a peripheral into or out of reset.
120 *
121 * @param periph_id peripheral to reset
122 * @param enable 1 to put into reset, 0 to take out of reset
123 */
124void reset_set_enable(enum periph_id periph_id, int enable);
125
126
127/* CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET/CLR_0 */
128enum crc_reset_id {
129 /* Things we can hold in reset for each CPU */
130 crc_rst_cpu = 1,
Alban Bedel766afc32013-11-20 17:42:46 +0100131 crc_rst_de = 1 << 4, /* What is de? */
132 crc_rst_watchdog = 1 << 8,
133 crc_rst_debug = 1 << 12,
Tom Warren150c2492012-09-19 15:50:56 -0700134};
135
136/**
137 * Put parts of the CPU complex into or out of reset.\
138 *
Tom Warrendc89ad12012-12-11 13:34:12 +0000139 * @param cpu cpu number (0 or 1 on Tegra2, 0-3 on Tegra3)
Tom Warren150c2492012-09-19 15:50:56 -0700140 * @param which which parts of the complex to affect (OR of crc_reset_id)
141 * @param reset 1 to assert reset, 0 to de-assert
142 */
143void reset_cmplx_set_enable(int cpu, int which, int reset);
144
145/**
146 * Set the source for a peripheral clock. This plus the divisor sets the
147 * clock rate. You need to look up the datasheet to see the meaning of the
148 * source parameter as it changes for each peripheral.
149 *
150 * Warning: This function is only for use pre-relocation. Please use
151 * clock_start_periph_pll() instead.
152 *
153 * @param periph_id peripheral to adjust
154 * @param source source clock (0, 1, 2 or 3)
155 */
156void clock_ll_set_source(enum periph_id periph_id, unsigned source);
157
158/**
159 * Set the source and divisor for a peripheral clock. This sets the
160 * clock rate. You need to look up the datasheet to see the meaning of the
161 * source parameter as it changes for each peripheral.
162 *
163 * Warning: This function is only for use pre-relocation. Please use
164 * clock_start_periph_pll() instead.
165 *
166 * @param periph_id peripheral to adjust
167 * @param source source clock (0, 1, 2 or 3)
168 * @param divisor divisor value to use
169 */
170void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
171 unsigned divisor);
172
173/**
174 * Start a peripheral PLL clock at the given rate. This also resets the
175 * peripheral.
176 *
177 * @param periph_id peripheral to start
178 * @param parent PLL id of required parent clock
179 * @param rate Required clock rate in Hz
180 * @return rate selected in Hz, or -1U if something went wrong
181 */
182unsigned clock_start_periph_pll(enum periph_id periph_id,
183 enum clock_id parent, unsigned rate);
184
185/**
186 * Returns the rate of a peripheral clock in Hz. Since the caller almost
187 * certainly knows the parent clock (having just set it) we require that
188 * this be passed in so we don't need to work it out.
189 *
190 * @param periph_id peripheral to start
191 * @param parent PLL id of parent clock (used to calculate rate, you
192 * must know this!)
193 * @return clock rate of peripheral in Hz
194 */
195unsigned long clock_get_periph_rate(enum periph_id periph_id,
196 enum clock_id parent);
197
198/**
199 * Adjust peripheral PLL clock to the given rate. This does not reset the
200 * peripheral. If a second stage divisor is not available, pass NULL for
201 * extra_div. If it is available, then this parameter will return the
202 * divisor selected (which will be a power of 2 from 1 to 256).
203 *
204 * @param periph_id peripheral to start
205 * @param parent PLL id of required parent clock
206 * @param rate Required clock rate in Hz
207 * @param extra_div value for the second-stage divisor (NULL if one is
208 not available)
209 * @return rate selected in Hz, or -1U if something went wrong
210 */
211unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
212 enum clock_id parent, unsigned rate, int *extra_div);
213
214/**
215 * Returns the clock rate of a specified clock, in Hz.
216 *
217 * @param parent PLL id of clock to check
218 * @return rate of clock in Hz
219 */
220unsigned clock_get_rate(enum clock_id clkid);
221
222/**
223 * Start up a UART using low-level calls
224 *
225 * Prior to relocation clock_start_periph_pll() cannot be called. This
226 * function provides a way to set up a UART using low-level calls which
227 * do not require BSS.
228 *
229 * @param periph_id Peripheral ID of UART to enable (e,g, PERIPH_ID_UART1)
230 */
231void clock_ll_start_uart(enum periph_id periph_id);
232
233/**
234 * Decode a peripheral ID from a device tree node.
235 *
236 * This works by looking up the peripheral's 'clocks' node and reading out
237 * the second cell, which is the clock number / peripheral ID.
238 *
239 * @param blob FDT blob to use
240 * @param node Node to look at
241 * @return peripheral ID, or PERIPH_ID_NONE if none
242 */
243enum periph_id clock_decode_periph_id(const void *blob, int node);
244
245/**
246 * Checks if the oscillator bypass is enabled (XOBP bit)
247 *
248 * @return 1 if bypass is enabled, 0 if not
249 */
250int clock_get_osc_bypass(void);
251
252/*
253 * Checks that clocks are valid and prints a warning if not
254 *
255 * @return 0 if ok, -1 on error
256 */
257int clock_verify(void);
258
259/* Initialize the clocks */
260void clock_init(void);
261
262/* Initialize the PLLs */
263void clock_early_init(void);
264
Tom Warrenf29f0862013-01-23 14:01:01 -0700265/* Returns a pointer to the clock source register for a peripheral */
266u32 *get_periph_source_reg(enum periph_id periph_id);
267
268/**
269 * Given a peripheral ID and the required source clock, this returns which
270 * value should be programmed into the source mux for that peripheral.
271 *
272 * There is special code here to handle the one source type with 5 sources.
273 *
274 * @param periph_id peripheral to start
275 * @param source PLL id of required parent clock
276 * @param mux_bits Set to number of bits in mux register: 2 or 4
277 * @param divider_bits Set to number of divider bits (8 or 16)
278 * @return mux value (0-4, or -1 if not found)
279 */
280int get_periph_clock_source(enum periph_id periph_id,
281 enum clock_id parent, int *mux_bits, int *divider_bits);
282
283/*
284 * Convert a device tree clock ID to our peripheral ID. They are mostly
285 * the same but we are very cautious so we check that a valid clock ID is
286 * provided.
287 *
288 * @param clk_id Clock ID according to tegra30 device tree binding
289 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
290 */
291enum periph_id clk_id_to_periph_id(int clk_id);
292
293/**
294 * Set the output frequency you want for each PLL clock.
295 * PLL output frequencies are programmed by setting their N, M and P values.
296 * The governing equations are:
297 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
298 * where Fo is the output frequency from the PLL.
299 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
300 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
301 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
302 *
303 * @param n PLL feedback divider(DIVN)
304 * @param m PLL input divider(DIVN)
305 * @param p post divider(DIVP)
306 * @param cpcon base PLL charge pump(CPCON)
307 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
308 * be overriden), 1 if PLL is already correct
309 */
310int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon);
311
312/* return 1 if a peripheral ID is in range */
313#define clock_type_id_isvalid(id) ((id) >= 0 && \
314 (id) < CLOCK_TYPE_COUNT)
315
316/* return 1 if a periphc_internal_id is in range */
317#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
318 (id) < PERIPHC_COUNT)
319
Tom Warrenb40f7342013-04-01 15:48:54 -0700320/* SoC-specific TSC init */
321void arch_timer_init(void);
322
Jimmy Zhangb9dd6212014-01-24 10:37:36 -0700323void tegra30_set_up_pllp(void);
324
Tom Warrenf29f0862013-01-23 14:01:01 -0700325#endif /* _TEGRA_CLOCK_H_ */