wdenk | c609719 | 2002-11-03 00:24:07 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Driver for Disk-On-Chip 2000 and Millennium |
| 3 | * (c) 1999 Machine Vision Holdings, Inc. |
| 4 | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> |
| 5 | * |
| 6 | * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $ |
| 7 | */ |
| 8 | |
| 9 | #include <common.h> |
| 10 | #include <config.h> |
| 11 | #include <command.h> |
| 12 | #include <malloc.h> |
| 13 | #include <asm/io.h> |
| 14 | |
| 15 | #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| 16 | # include <status_led.h> |
| 17 | # define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg) |
| 18 | #else |
| 19 | # define SHOW_BOOT_PROGRESS(arg) |
| 20 | #endif |
| 21 | |
| 22 | #if (CONFIG_COMMANDS & CFG_CMD_DOC) |
| 23 | |
| 24 | #include <linux/mtd/nand.h> |
| 25 | #include <linux/mtd/nand_ids.h> |
| 26 | #include <linux/mtd/doc2000.h> |
| 27 | #include <linux/mtd/nftl.h> |
| 28 | |
| 29 | #ifdef CFG_DOC_SUPPORT_2000 |
| 30 | #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) |
| 31 | #else |
| 32 | #define DoC_is_2000(doc) (0) |
| 33 | #endif |
| 34 | |
| 35 | #ifdef CFG_DOC_SUPPORT_MILLENNIUM |
| 36 | #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) |
| 37 | #else |
| 38 | #define DoC_is_Millennium(doc) (0) |
| 39 | #endif |
| 40 | |
| 41 | /* CFG_DOC_PASSIVE_PROBE: |
| 42 | In order to ensure that the BIOS checksum is correct at boot time, and |
| 43 | hence that the onboard BIOS extension gets executed, the DiskOnChip |
| 44 | goes into reset mode when it is read sequentially: all registers |
| 45 | return 0xff until the chip is woken up again by writing to the |
| 46 | DOCControl register. |
| 47 | |
| 48 | Unfortunately, this means that the probe for the DiskOnChip is unsafe, |
| 49 | because one of the first things it does is write to where it thinks |
| 50 | the DOCControl register should be - which may well be shared memory |
| 51 | for another device. I've had machines which lock up when this is |
| 52 | attempted. Hence the possibility to do a passive probe, which will fail |
| 53 | to detect a chip in reset mode, but is at least guaranteed not to lock |
| 54 | the machine. |
| 55 | |
| 56 | If you have this problem, uncomment the following line: |
| 57 | #define CFG_DOC_PASSIVE_PROBE |
| 58 | */ |
| 59 | |
| 60 | #undef DOC_DEBUG |
| 61 | #undef ECC_DEBUG |
| 62 | #undef PSYCHO_DEBUG |
| 63 | #undef NFTL_DEBUG |
| 64 | |
| 65 | static struct DiskOnChip doc_dev_desc[CFG_MAX_DOC_DEVICE]; |
| 66 | |
| 67 | /* Current DOC Device */ |
| 68 | static int curr_device = -1; |
| 69 | |
| 70 | /* ------------------------------------------------------------------------- */ |
| 71 | |
| 72 | int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| 73 | { |
| 74 | int rcode = 0; |
| 75 | |
| 76 | switch (argc) { |
| 77 | case 0: |
| 78 | case 1: |
| 79 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 80 | return 1; |
| 81 | case 2: |
| 82 | if (strcmp(argv[1],"info") == 0) { |
| 83 | int i; |
| 84 | |
| 85 | putc ('\n'); |
| 86 | |
| 87 | for (i=0; i<CFG_MAX_DOC_DEVICE; ++i) { |
| 88 | if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) |
| 89 | continue; /* list only known devices */ |
| 90 | printf ("Device %d: ", i); |
| 91 | doc_print(&doc_dev_desc[i]); |
| 92 | } |
| 93 | return 0; |
| 94 | |
| 95 | } else if (strcmp(argv[1],"device") == 0) { |
| 96 | if ((curr_device < 0) || (curr_device >= CFG_MAX_DOC_DEVICE)) { |
| 97 | puts ("\nno devices available\n"); |
| 98 | return 1; |
| 99 | } |
| 100 | printf ("\nDevice %d: ", curr_device); |
| 101 | doc_print(&doc_dev_desc[curr_device]); |
| 102 | return 0; |
| 103 | } |
| 104 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 105 | return 1; |
| 106 | case 3: |
| 107 | if (strcmp(argv[1],"device") == 0) { |
| 108 | int dev = (int)simple_strtoul(argv[2], NULL, 10); |
| 109 | |
| 110 | printf ("\nDevice %d: ", dev); |
| 111 | if (dev >= CFG_MAX_DOC_DEVICE) { |
| 112 | puts ("unknown device\n"); |
| 113 | return 1; |
| 114 | } |
| 115 | doc_print(&doc_dev_desc[dev]); |
| 116 | /*doc_print (dev);*/ |
| 117 | |
| 118 | if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) { |
| 119 | return 1; |
| 120 | } |
| 121 | |
| 122 | curr_device = dev; |
| 123 | |
| 124 | puts ("... is now current device\n"); |
| 125 | |
| 126 | return 0; |
| 127 | } |
| 128 | |
| 129 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 130 | return 1; |
| 131 | default: |
| 132 | /* at least 4 args */ |
| 133 | |
| 134 | if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) { |
| 135 | ulong addr = simple_strtoul(argv[2], NULL, 16); |
| 136 | ulong off = simple_strtoul(argv[3], NULL, 16); |
| 137 | ulong size = simple_strtoul(argv[4], NULL, 16); |
| 138 | int cmd = (strcmp(argv[1],"read") == 0); |
| 139 | int ret, total; |
| 140 | |
| 141 | printf ("\nDOC %s: device %d offset %ld, size %ld ... ", |
| 142 | cmd ? "read" : "write", curr_device, off, size); |
| 143 | |
| 144 | ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size, |
| 145 | &total, (u_char*)addr); |
| 146 | |
| 147 | printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write", |
| 148 | ret ? "ERROR" : "OK"); |
| 149 | |
| 150 | return ret; |
| 151 | } else if (strcmp(argv[1],"erase") == 0) { |
| 152 | ulong off = simple_strtoul(argv[2], NULL, 16); |
| 153 | ulong size = simple_strtoul(argv[3], NULL, 16); |
| 154 | int ret; |
| 155 | |
| 156 | printf ("\nDOC erase: device %d offset %ld, size %ld ... ", |
| 157 | curr_device, off, size); |
| 158 | |
| 159 | ret = doc_erase (doc_dev_desc + curr_device, off, size); |
| 160 | |
| 161 | printf("%s\n", ret ? "ERROR" : "OK"); |
| 162 | |
| 163 | return ret; |
| 164 | } else { |
| 165 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 166 | rcode = 1; |
| 167 | } |
| 168 | |
| 169 | return rcode; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| 174 | { |
| 175 | char *boot_device = NULL; |
| 176 | char *ep; |
| 177 | int dev; |
| 178 | ulong cnt; |
| 179 | ulong addr; |
| 180 | ulong offset = 0; |
| 181 | image_header_t *hdr; |
| 182 | int rcode = 0; |
| 183 | |
| 184 | switch (argc) { |
| 185 | case 1: |
| 186 | addr = CFG_LOAD_ADDR; |
| 187 | boot_device = getenv ("bootdevice"); |
| 188 | break; |
| 189 | case 2: |
| 190 | addr = simple_strtoul(argv[1], NULL, 16); |
| 191 | boot_device = getenv ("bootdevice"); |
| 192 | break; |
| 193 | case 3: |
| 194 | addr = simple_strtoul(argv[1], NULL, 16); |
| 195 | boot_device = argv[2]; |
| 196 | break; |
| 197 | case 4: |
| 198 | addr = simple_strtoul(argv[1], NULL, 16); |
| 199 | boot_device = argv[2]; |
| 200 | offset = simple_strtoul(argv[3], NULL, 16); |
| 201 | break; |
| 202 | default: |
| 203 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 204 | SHOW_BOOT_PROGRESS (-1); |
| 205 | return 1; |
| 206 | } |
| 207 | |
| 208 | if (!boot_device) { |
| 209 | puts ("\n** No boot device **\n"); |
| 210 | SHOW_BOOT_PROGRESS (-1); |
| 211 | return 1; |
| 212 | } |
| 213 | |
| 214 | dev = simple_strtoul(boot_device, &ep, 16); |
| 215 | |
| 216 | if ((dev >= CFG_MAX_DOC_DEVICE) || |
| 217 | (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) { |
| 218 | printf ("\n** Device %d not available\n", dev); |
| 219 | SHOW_BOOT_PROGRESS (-1); |
| 220 | return 1; |
| 221 | } |
| 222 | |
| 223 | printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n", |
| 224 | dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr, |
| 225 | offset); |
| 226 | |
| 227 | if (doc_rw (doc_dev_desc + dev, 1, offset, |
| 228 | SECTORSIZE, NULL, (u_char *)addr)) { |
| 229 | printf ("** Read error on %d\n", dev); |
| 230 | SHOW_BOOT_PROGRESS (-1); |
| 231 | return 1; |
| 232 | } |
| 233 | |
| 234 | hdr = (image_header_t *)addr; |
| 235 | |
| 236 | if (hdr->ih_magic == IH_MAGIC) { |
| 237 | |
| 238 | print_image_hdr (hdr); |
| 239 | |
| 240 | cnt = (hdr->ih_size + sizeof(image_header_t)); |
| 241 | cnt -= SECTORSIZE; |
| 242 | } else { |
| 243 | puts ("\n** Bad Magic Number **\n"); |
| 244 | SHOW_BOOT_PROGRESS (-1); |
| 245 | return 1; |
| 246 | } |
| 247 | |
| 248 | if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt, |
| 249 | NULL, (u_char *)(addr+SECTORSIZE))) { |
| 250 | printf ("** Read error on %d\n", dev); |
| 251 | SHOW_BOOT_PROGRESS (-1); |
| 252 | return 1; |
| 253 | } |
| 254 | |
| 255 | /* Loading ok, update default load address */ |
| 256 | |
| 257 | load_addr = addr; |
| 258 | |
| 259 | /* Check if we should attempt an auto-start */ |
| 260 | if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { |
| 261 | char *local_args[2]; |
| 262 | extern int do_bootm (cmd_tbl_t *, int, int, char *[]); |
| 263 | |
| 264 | local_args[0] = argv[0]; |
| 265 | local_args[1] = NULL; |
| 266 | |
| 267 | printf ("Automatic boot of image at addr 0x%08lX ...\n", addr); |
| 268 | |
| 269 | do_bootm (cmdtp, 0, 1, local_args); |
| 270 | rcode = 1; |
| 271 | } |
| 272 | return rcode; |
| 273 | } |
| 274 | |
| 275 | int doc_rw (struct DiskOnChip* this, int cmd, |
| 276 | loff_t from, size_t len, |
| 277 | size_t * retlen, u_char * buf) |
| 278 | { |
| 279 | int noecc, ret = 0, n, total = 0; |
| 280 | char eccbuf[6]; |
| 281 | |
| 282 | while(len) { |
| 283 | /* The ECC will not be calculated correctly if |
| 284 | less than 512 is written or read */ |
| 285 | noecc = (from != (from | 0x1ff) + 1) || (len < 0x200); |
| 286 | |
| 287 | if (cmd) |
| 288 | ret = doc_read_ecc(this, from, len, |
| 289 | &n, (u_char*)buf, |
| 290 | noecc ? NULL : eccbuf); |
| 291 | else |
| 292 | ret = doc_write_ecc(this, from, len, |
| 293 | &n, (u_char*)buf, |
| 294 | noecc ? NULL : eccbuf); |
| 295 | |
| 296 | if (ret) |
| 297 | break; |
| 298 | |
| 299 | from += n; |
| 300 | buf += n; |
| 301 | total += n; |
| 302 | len -= n; |
| 303 | } |
| 304 | |
| 305 | if (retlen) |
| 306 | *retlen = total; |
| 307 | |
| 308 | return ret; |
| 309 | } |
| 310 | |
| 311 | void doc_print(struct DiskOnChip *this) { |
| 312 | printf("%s at 0x%lX,\n" |
| 313 | "\t %d chip%s %s, size %d MB, \n" |
| 314 | "\t total size %ld MB, sector size %ld kB\n", |
| 315 | this->name, this->physadr, this->numchips, |
| 316 | this->numchips>1 ? "s" : "", this->chips_name, |
| 317 | 1 << (this->chipshift - 20), |
| 318 | this->totlen >> 20, this->erasesize >> 10); |
| 319 | |
| 320 | if (this->nftl_found) { |
| 321 | struct NFTLrecord *nftl = &this->nftl; |
| 322 | unsigned long bin_size, flash_size; |
| 323 | |
| 324 | bin_size = nftl->nb_boot_blocks * this->erasesize; |
| 325 | flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize; |
| 326 | |
| 327 | printf("\t NFTL boot record:\n" |
| 328 | "\t Binary partition: size %ld%s\n" |
| 329 | "\t Flash disk partition: size %ld%s, offset 0x%lx\n", |
| 330 | bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10, |
| 331 | bin_size > (1 << 20) ? "MB" : "kB", |
| 332 | flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10, |
| 333 | flash_size > (1 << 20) ? "MB" : "kB", bin_size); |
| 334 | } else { |
| 335 | puts ("\t No NFTL boot record found.\n"); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | /* ------------------------------------------------------------------------- */ |
| 340 | |
| 341 | /* This function is needed to avoid calls of the __ashrdi3 function. */ |
| 342 | static int shr(int val, int shift) { |
| 343 | return val >> shift; |
| 344 | } |
| 345 | |
| 346 | /* Perform the required delay cycles by reading from the appropriate register */ |
| 347 | static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) |
| 348 | { |
| 349 | volatile char dummy; |
| 350 | int i; |
| 351 | |
| 352 | for (i = 0; i < cycles; i++) { |
| 353 | if (DoC_is_Millennium(doc)) |
| 354 | dummy = ReadDOC(doc->virtadr, NOP); |
| 355 | else |
| 356 | dummy = ReadDOC(doc->virtadr, DOCStatus); |
| 357 | } |
| 358 | |
| 359 | } |
| 360 | |
| 361 | /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ |
| 362 | static int _DoC_WaitReady(struct DiskOnChip *doc) |
| 363 | { |
| 364 | unsigned long docptr = doc->virtadr; |
| 365 | unsigned long start = get_timer(0); |
| 366 | |
| 367 | #ifdef PSYCHO_DEBUG |
| 368 | puts ("_DoC_WaitReady called for out-of-line wait\n"); |
| 369 | #endif |
| 370 | |
| 371 | /* Out-of-line routine to wait for chip response */ |
| 372 | while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { |
| 373 | #ifdef CFG_DOC_SHORT_TIMEOUT |
| 374 | /* it seems that after a certain time the DoC deasserts |
| 375 | * the CDSN_CTRL_FR_B although it is not ready... |
| 376 | * using a short timout solve this (timer increments every ms) */ |
| 377 | if (get_timer(start) > 10) { |
| 378 | return DOC_ETIMEOUT; |
| 379 | } |
| 380 | #else |
| 381 | if (get_timer(start) > 10 * 1000) { |
| 382 | puts ("_DoC_WaitReady timed out.\n"); |
| 383 | return DOC_ETIMEOUT; |
| 384 | } |
| 385 | #endif |
| 386 | udelay(1); |
| 387 | } |
| 388 | |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | static int DoC_WaitReady(struct DiskOnChip *doc) |
| 393 | { |
| 394 | unsigned long docptr = doc->virtadr; |
| 395 | /* This is inline, to optimise the common case, where it's ready instantly */ |
| 396 | int ret = 0; |
| 397 | |
| 398 | /* 4 read form NOP register should be issued in prior to the read from CDSNControl |
| 399 | see Software Requirement 11.4 item 2. */ |
| 400 | DoC_Delay(doc, 4); |
| 401 | |
| 402 | if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) |
| 403 | /* Call the out-of-line routine to wait */ |
| 404 | ret = _DoC_WaitReady(doc); |
| 405 | |
| 406 | /* issue 2 read from NOP register after reading from CDSNControl register |
| 407 | see Software Requirement 11.4 item 2. */ |
| 408 | DoC_Delay(doc, 2); |
| 409 | |
| 410 | return ret; |
| 411 | } |
| 412 | |
| 413 | /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to |
| 414 | bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is |
| 415 | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ |
| 416 | |
| 417 | static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, |
| 418 | unsigned char xtraflags) |
| 419 | { |
| 420 | unsigned long docptr = doc->virtadr; |
| 421 | |
| 422 | if (DoC_is_2000(doc)) |
| 423 | xtraflags |= CDSN_CTRL_FLASH_IO; |
| 424 | |
| 425 | /* Assert the CLE (Command Latch Enable) line to the flash chip */ |
| 426 | WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); |
| 427 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| 428 | |
| 429 | if (DoC_is_Millennium(doc)) |
| 430 | WriteDOC(command, docptr, CDSNSlowIO); |
| 431 | |
| 432 | /* Send the command */ |
| 433 | WriteDOC_(command, docptr, doc->ioreg); |
| 434 | |
| 435 | /* Lower the CLE line */ |
| 436 | WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); |
| 437 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| 438 | |
| 439 | /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ |
| 440 | return DoC_WaitReady(doc); |
| 441 | } |
| 442 | |
| 443 | /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to |
| 444 | bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is |
| 445 | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ |
| 446 | |
| 447 | static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, |
| 448 | unsigned char xtraflags1, unsigned char xtraflags2) |
| 449 | { |
| 450 | unsigned long docptr; |
| 451 | int i; |
| 452 | |
| 453 | docptr = doc->virtadr; |
| 454 | |
| 455 | if (DoC_is_2000(doc)) |
| 456 | xtraflags1 |= CDSN_CTRL_FLASH_IO; |
| 457 | |
| 458 | /* Assert the ALE (Address Latch Enable) line to the flash chip */ |
| 459 | WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); |
| 460 | |
| 461 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| 462 | |
| 463 | /* Send the address */ |
| 464 | /* Devices with 256-byte page are addressed as: |
| 465 | Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) |
| 466 | * there is no device on the market with page256 |
| 467 | and more than 24 bits. |
| 468 | Devices with 512-byte page are addressed as: |
| 469 | Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) |
| 470 | * 25-31 is sent only if the chip support it. |
| 471 | * bit 8 changes the read command to be sent |
| 472 | (NAND_CMD_READ0 or NAND_CMD_READ1). |
| 473 | */ |
| 474 | |
| 475 | if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { |
| 476 | if (DoC_is_Millennium(doc)) |
| 477 | WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); |
| 478 | WriteDOC_(ofs & 0xff, docptr, doc->ioreg); |
| 479 | } |
| 480 | |
| 481 | if (doc->page256) { |
| 482 | ofs = ofs >> 8; |
| 483 | } else { |
| 484 | ofs = ofs >> 9; |
| 485 | } |
| 486 | |
| 487 | if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { |
| 488 | for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { |
| 489 | if (DoC_is_Millennium(doc)) |
| 490 | WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); |
| 491 | WriteDOC_(ofs & 0xff, docptr, doc->ioreg); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ |
| 496 | |
| 497 | /* FIXME: The SlowIO's for millennium could be replaced by |
| 498 | a single WritePipeTerm here. mf. */ |
| 499 | |
| 500 | /* Lower the ALE line */ |
| 501 | WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, |
| 502 | CDSNControl); |
| 503 | |
| 504 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| 505 | |
| 506 | /* Wait for the chip to respond - Software requirement 11.4.1 */ |
| 507 | return DoC_WaitReady(doc); |
| 508 | } |
| 509 | |
| 510 | /* Read a buffer from DoC, taking care of Millennium odditys */ |
| 511 | static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) |
| 512 | { |
| 513 | volatile int dummy; |
| 514 | int modulus = 0xffff; |
| 515 | unsigned long docptr; |
| 516 | int i; |
| 517 | |
| 518 | docptr = doc->virtadr; |
| 519 | |
| 520 | if (len <= 0) |
| 521 | return; |
| 522 | |
| 523 | if (DoC_is_Millennium(doc)) { |
| 524 | /* Read the data via the internal pipeline through CDSN IO register, |
| 525 | see Pipelined Read Operations 11.3 */ |
| 526 | dummy = ReadDOC(docptr, ReadPipeInit); |
| 527 | |
| 528 | /* Millennium should use the LastDataRead register - Pipeline Reads */ |
| 529 | len--; |
| 530 | |
| 531 | /* This is needed for correctly ECC calculation */ |
| 532 | modulus = 0xff; |
| 533 | } |
| 534 | |
| 535 | for (i = 0; i < len; i++) |
| 536 | buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); |
| 537 | |
| 538 | if (DoC_is_Millennium(doc)) { |
| 539 | buf[i] = ReadDOC(docptr, LastDataRead); |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | /* Write a buffer to DoC, taking care of Millennium odditys */ |
| 544 | static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) |
| 545 | { |
| 546 | unsigned long docptr; |
| 547 | int i; |
| 548 | |
| 549 | docptr = doc->virtadr; |
| 550 | |
| 551 | if (len <= 0) |
| 552 | return; |
| 553 | |
| 554 | for (i = 0; i < len; i++) |
| 555 | WriteDOC_(buf[i], docptr, doc->ioreg + i); |
| 556 | |
| 557 | if (DoC_is_Millennium(doc)) { |
| 558 | WriteDOC(0x00, docptr, WritePipeTerm); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | |
| 563 | /* DoC_SelectChip: Select a given flash chip within the current floor */ |
| 564 | |
| 565 | static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) |
| 566 | { |
| 567 | unsigned long docptr = doc->virtadr; |
| 568 | |
| 569 | /* Software requirement 11.4.4 before writing DeviceSelect */ |
| 570 | /* Deassert the CE line to eliminate glitches on the FCE# outputs */ |
| 571 | WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); |
| 572 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| 573 | |
| 574 | /* Select the individual flash chip requested */ |
| 575 | WriteDOC(chip, docptr, CDSNDeviceSelect); |
| 576 | DoC_Delay(doc, 4); |
| 577 | |
| 578 | /* Reassert the CE line */ |
| 579 | WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, |
| 580 | CDSNControl); |
| 581 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| 582 | |
| 583 | /* Wait for it to be ready */ |
| 584 | return DoC_WaitReady(doc); |
| 585 | } |
| 586 | |
| 587 | /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ |
| 588 | |
| 589 | static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) |
| 590 | { |
| 591 | unsigned long docptr = doc->virtadr; |
| 592 | |
| 593 | /* Select the floor (bank) of chips required */ |
| 594 | WriteDOC(floor, docptr, FloorSelect); |
| 595 | |
| 596 | /* Wait for the chip to be ready */ |
| 597 | return DoC_WaitReady(doc); |
| 598 | } |
| 599 | |
| 600 | /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ |
| 601 | |
| 602 | static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) |
| 603 | { |
| 604 | int mfr, id, i; |
| 605 | volatile char dummy; |
| 606 | |
| 607 | /* Page in the required floor/chip */ |
| 608 | DoC_SelectFloor(doc, floor); |
| 609 | DoC_SelectChip(doc, chip); |
| 610 | |
| 611 | /* Reset the chip */ |
| 612 | if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { |
| 613 | #ifdef DOC_DEBUG |
| 614 | printf("DoC_Command (reset) for %d,%d returned true\n", |
| 615 | floor, chip); |
| 616 | #endif |
| 617 | return 0; |
| 618 | } |
| 619 | |
| 620 | |
| 621 | /* Read the NAND chip ID: 1. Send ReadID command */ |
| 622 | if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { |
| 623 | #ifdef DOC_DEBUG |
| 624 | printf("DoC_Command (ReadID) for %d,%d returned true\n", |
| 625 | floor, chip); |
| 626 | #endif |
| 627 | return 0; |
| 628 | } |
| 629 | |
| 630 | /* Read the NAND chip ID: 2. Send address byte zero */ |
| 631 | DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); |
| 632 | |
| 633 | /* Read the manufacturer and device id codes from the device */ |
| 634 | |
| 635 | /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ |
| 636 | dummy = ReadDOC(doc->virtadr, CDSNSlowIO); |
| 637 | DoC_Delay(doc, 2); |
| 638 | mfr = ReadDOC_(doc->virtadr, doc->ioreg); |
| 639 | |
| 640 | /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ |
| 641 | dummy = ReadDOC(doc->virtadr, CDSNSlowIO); |
| 642 | DoC_Delay(doc, 2); |
| 643 | id = ReadDOC_(doc->virtadr, doc->ioreg); |
| 644 | |
| 645 | /* No response - return failure */ |
| 646 | if (mfr == 0xff || mfr == 0) |
| 647 | return 0; |
| 648 | |
| 649 | /* Check it's the same as the first chip we identified. |
| 650 | * M-Systems say that any given DiskOnChip device should only |
| 651 | * contain _one_ type of flash part, although that's not a |
| 652 | * hardware restriction. */ |
| 653 | if (doc->mfr) { |
| 654 | if (doc->mfr == mfr && doc->id == id) |
| 655 | return 1; /* This is another the same the first */ |
| 656 | else |
| 657 | printf("Flash chip at floor %d, chip %d is different:\n", |
| 658 | floor, chip); |
| 659 | } |
| 660 | |
| 661 | /* Print and store the manufacturer and ID codes. */ |
| 662 | for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| 663 | if (mfr == nand_flash_ids[i].manufacture_id && |
| 664 | id == nand_flash_ids[i].model_id) { |
| 665 | #ifdef DOC_DEBUG |
| 666 | printf("Flash chip found: Manufacturer ID: %2.2X, " |
| 667 | "Chip ID: %2.2X (%s)\n", mfr, id, |
| 668 | nand_flash_ids[i].name); |
| 669 | #endif |
| 670 | if (!doc->mfr) { |
| 671 | doc->mfr = mfr; |
| 672 | doc->id = id; |
| 673 | doc->chipshift = |
| 674 | nand_flash_ids[i].chipshift; |
| 675 | doc->page256 = nand_flash_ids[i].page256; |
| 676 | doc->pageadrlen = |
| 677 | nand_flash_ids[i].pageadrlen; |
| 678 | doc->erasesize = |
| 679 | nand_flash_ids[i].erasesize; |
| 680 | doc->chips_name = |
| 681 | nand_flash_ids[i].name; |
| 682 | return 1; |
| 683 | } |
| 684 | return 0; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | |
| 689 | #ifdef DOC_DEBUG |
| 690 | /* We haven't fully identified the chip. Print as much as we know. */ |
| 691 | printf("Unknown flash chip found: %2.2X %2.2X\n", |
| 692 | id, mfr); |
| 693 | #endif |
| 694 | |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ |
| 699 | |
| 700 | static void DoC_ScanChips(struct DiskOnChip *this) |
| 701 | { |
| 702 | int floor, chip; |
| 703 | int numchips[MAX_FLOORS]; |
| 704 | int maxchips = MAX_CHIPS; |
| 705 | int ret = 1; |
| 706 | |
| 707 | this->numchips = 0; |
| 708 | this->mfr = 0; |
| 709 | this->id = 0; |
| 710 | |
| 711 | if (DoC_is_Millennium(this)) |
| 712 | maxchips = MAX_CHIPS_MIL; |
| 713 | |
| 714 | /* For each floor, find the number of valid chips it contains */ |
| 715 | for (floor = 0; floor < MAX_FLOORS; floor++) { |
| 716 | ret = 1; |
| 717 | numchips[floor] = 0; |
| 718 | for (chip = 0; chip < maxchips && ret != 0; chip++) { |
| 719 | |
| 720 | ret = DoC_IdentChip(this, floor, chip); |
| 721 | if (ret) { |
| 722 | numchips[floor]++; |
| 723 | this->numchips++; |
| 724 | } |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | /* If there are none at all that we recognise, bail */ |
| 729 | if (!this->numchips) { |
| 730 | puts ("No flash chips recognised.\n"); |
| 731 | return; |
| 732 | } |
| 733 | |
| 734 | /* Allocate an array to hold the information for each chip */ |
| 735 | this->chips = malloc(sizeof(struct Nand) * this->numchips); |
| 736 | if (!this->chips) { |
| 737 | puts ("No memory for allocating chip info structures\n"); |
| 738 | return; |
| 739 | } |
| 740 | |
| 741 | ret = 0; |
| 742 | |
| 743 | /* Fill out the chip array with {floor, chipno} for each |
| 744 | * detected chip in the device. */ |
| 745 | for (floor = 0; floor < MAX_FLOORS; floor++) { |
| 746 | for (chip = 0; chip < numchips[floor]; chip++) { |
| 747 | this->chips[ret].floor = floor; |
| 748 | this->chips[ret].chip = chip; |
| 749 | this->chips[ret].curadr = 0; |
| 750 | this->chips[ret].curmode = 0x50; |
| 751 | ret++; |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | /* Calculate and print the total size of the device */ |
| 756 | this->totlen = this->numchips * (1 << this->chipshift); |
| 757 | |
| 758 | #ifdef DOC_DEBUG |
| 759 | printf("%d flash chips found. Total DiskOnChip size: %ld MB\n", |
| 760 | this->numchips, this->totlen >> 20); |
| 761 | #endif |
| 762 | } |
| 763 | |
| 764 | /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the |
| 765 | * various device information of the NFTL partition and Bad Unit Table. Update |
| 766 | * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] |
| 767 | * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c |
| 768 | */ |
| 769 | static int find_boot_record(struct NFTLrecord *nftl) |
| 770 | { |
| 771 | struct nftl_uci1 h1; |
| 772 | struct nftl_oob oob; |
| 773 | unsigned int block, boot_record_count = 0; |
| 774 | int retlen; |
| 775 | u8 buf[SECTORSIZE]; |
| 776 | struct NFTLMediaHeader *mh = &nftl->MediaHdr; |
| 777 | unsigned int i; |
| 778 | |
| 779 | nftl->MediaUnit = BLOCK_NIL; |
| 780 | nftl->SpareMediaUnit = BLOCK_NIL; |
| 781 | |
| 782 | /* search for a valid boot record */ |
| 783 | for (block = 0; block < nftl->nb_blocks; block++) { |
| 784 | int ret; |
| 785 | |
| 786 | /* Check for ANAND header first. Then can whinge if it's found but later |
| 787 | checks fail */ |
| 788 | if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, |
| 789 | &retlen, buf, NULL))) { |
| 790 | static int warncount = 5; |
| 791 | |
| 792 | if (warncount) { |
| 793 | printf("Block read at 0x%x failed\n", block * nftl->EraseSize); |
| 794 | if (!--warncount) |
| 795 | puts ("Further failures for this block will not be printed\n"); |
| 796 | } |
| 797 | continue; |
| 798 | } |
| 799 | |
| 800 | if (retlen < 6 || memcmp(buf, "ANAND", 6)) { |
| 801 | /* ANAND\0 not found. Continue */ |
| 802 | #ifdef PSYCHO_DEBUG |
| 803 | printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize); |
| 804 | #endif |
| 805 | continue; |
| 806 | } |
| 807 | |
| 808 | #ifdef NFTL_DEBUG |
| 809 | printf("ANAND header found at 0x%x\n", block * nftl->EraseSize); |
| 810 | #endif |
| 811 | |
| 812 | /* To be safer with BIOS, also use erase mark as discriminant */ |
| 813 | if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, |
| 814 | 8, &retlen, (char *)&h1) < 0)) { |
| 815 | #ifdef NFTL_DEBUG |
| 816 | printf("ANAND header found at 0x%x, but OOB data read failed\n", |
| 817 | block * nftl->EraseSize); |
| 818 | #endif |
| 819 | continue; |
| 820 | } |
| 821 | |
| 822 | /* OK, we like it. */ |
| 823 | |
| 824 | if (boot_record_count) { |
| 825 | /* We've already processed one. So we just check if |
| 826 | this one is the same as the first one we found */ |
| 827 | if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { |
| 828 | #ifdef NFTL_DEBUG |
| 829 | printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n", |
| 830 | nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); |
| 831 | #endif |
| 832 | /* if (debug) Print both side by side */ |
| 833 | return -1; |
| 834 | } |
| 835 | if (boot_record_count == 1) |
| 836 | nftl->SpareMediaUnit = block; |
| 837 | |
| 838 | boot_record_count++; |
| 839 | continue; |
| 840 | } |
| 841 | |
| 842 | /* This is the first we've seen. Copy the media header structure into place */ |
| 843 | memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); |
| 844 | |
| 845 | /* Do some sanity checks on it */ |
| 846 | if (mh->UnitSizeFactor != 0xff) { |
| 847 | puts ("Sorry, we don't support UnitSizeFactor " |
| 848 | "of != 1 yet.\n"); |
| 849 | return -1; |
| 850 | } |
| 851 | |
| 852 | nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); |
| 853 | if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { |
| 854 | printf ("NFTL Media Header sanity check failed:\n" |
| 855 | "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", |
| 856 | nftl->nb_boot_blocks, nftl->nb_blocks); |
| 857 | return -1; |
| 858 | } |
| 859 | |
| 860 | nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; |
| 861 | if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { |
| 862 | printf ("NFTL Media Header sanity check failed:\n" |
| 863 | "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", |
| 864 | nftl->numvunits, |
| 865 | nftl->nb_blocks, |
| 866 | nftl->nb_boot_blocks); |
| 867 | return -1; |
| 868 | } |
| 869 | |
| 870 | nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); |
| 871 | |
| 872 | /* If we're not using the last sectors in the device for some reason, |
| 873 | reduce nb_blocks accordingly so we forget they're there */ |
| 874 | nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); |
| 875 | |
| 876 | /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ |
| 877 | for (i = 0; i < nftl->nb_blocks; i++) { |
| 878 | if ((i & (SECTORSIZE - 1)) == 0) { |
| 879 | /* read one sector for every SECTORSIZE of blocks */ |
| 880 | if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize + |
| 881 | i + SECTORSIZE, SECTORSIZE, |
| 882 | &retlen, buf, (char *)&oob)) < 0) { |
| 883 | puts ("Read of bad sector table failed\n"); |
| 884 | return -1; |
| 885 | } |
| 886 | } |
| 887 | /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ |
| 888 | if (buf[i & (SECTORSIZE - 1)] != 0xff) |
| 889 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; |
| 890 | } |
| 891 | |
| 892 | nftl->MediaUnit = block; |
| 893 | boot_record_count++; |
| 894 | |
| 895 | } /* foreach (block) */ |
| 896 | |
| 897 | return boot_record_count?0:-1; |
| 898 | } |
| 899 | |
| 900 | /* This routine is made available to other mtd code via |
| 901 | * inter_module_register. It must only be accessed through |
| 902 | * inter_module_get which will bump the use count of this module. The |
| 903 | * addresses passed back in mtd are valid as long as the use count of |
| 904 | * this module is non-zero, i.e. between inter_module_get and |
| 905 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. |
| 906 | */ |
| 907 | static void DoC2k_init(struct DiskOnChip* this) |
| 908 | { |
| 909 | struct NFTLrecord *nftl; |
| 910 | |
| 911 | switch (this->ChipID) { |
| 912 | case DOC_ChipID_Doc2k: |
| 913 | this->name = "DiskOnChip 2000"; |
| 914 | this->ioreg = DoC_2k_CDSN_IO; |
| 915 | break; |
| 916 | case DOC_ChipID_DocMil: |
| 917 | this->name = "DiskOnChip Millennium"; |
| 918 | this->ioreg = DoC_Mil_CDSN_IO; |
| 919 | break; |
| 920 | } |
| 921 | |
| 922 | #ifdef DOC_DEBUG |
| 923 | printf("%s found at address 0x%lX\n", this->name, |
| 924 | this->physadr); |
| 925 | #endif |
| 926 | |
| 927 | this->totlen = 0; |
| 928 | this->numchips = 0; |
| 929 | |
| 930 | this->curfloor = -1; |
| 931 | this->curchip = -1; |
| 932 | |
| 933 | /* Ident all the chips present. */ |
| 934 | DoC_ScanChips(this); |
| 935 | |
| 936 | nftl = &this->nftl; |
| 937 | |
| 938 | /* Get physical parameters */ |
| 939 | nftl->EraseSize = this->erasesize; |
| 940 | nftl->nb_blocks = this->totlen / this->erasesize; |
| 941 | nftl->mtd = this; |
| 942 | |
| 943 | if (find_boot_record(nftl) != 0) |
| 944 | this->nftl_found = 0; |
| 945 | else |
| 946 | this->nftl_found = 1; |
| 947 | |
| 948 | printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20); |
| 949 | } |
| 950 | |
| 951 | int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len, |
| 952 | size_t * retlen, u_char * buf, u_char * eccbuf) |
| 953 | { |
| 954 | unsigned long docptr; |
| 955 | struct Nand *mychip; |
| 956 | unsigned char syndrome[6]; |
| 957 | volatile char dummy; |
| 958 | int i, len256 = 0, ret=0; |
| 959 | |
| 960 | docptr = this->virtadr; |
| 961 | |
| 962 | /* Don't allow read past end of device */ |
| 963 | if (from >= this->totlen) { |
| 964 | puts ("Out of flash\n"); |
| 965 | return DOC_EINVAL; |
| 966 | } |
| 967 | |
| 968 | /* Don't allow a single read to cross a 512-byte block boundary */ |
| 969 | if (from + len > ((from | 0x1ff) + 1)) |
| 970 | len = ((from | 0x1ff) + 1) - from; |
| 971 | |
| 972 | /* The ECC will not be calculated correctly if less than 512 is read */ |
| 973 | if (len != 0x200 && eccbuf) |
| 974 | printf("ECC needs a full sector read (adr: %lx size %lx)\n", |
| 975 | (long) from, (long) len); |
| 976 | |
| 977 | #ifdef PHYCH_DEBUG |
| 978 | printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); |
| 979 | #endif |
| 980 | |
| 981 | /* Find the chip which is to be used and select it */ |
| 982 | mychip = &this->chips[shr(from, this->chipshift)]; |
| 983 | |
| 984 | if (this->curfloor != mychip->floor) { |
| 985 | DoC_SelectFloor(this, mychip->floor); |
| 986 | DoC_SelectChip(this, mychip->chip); |
| 987 | } else if (this->curchip != mychip->chip) { |
| 988 | DoC_SelectChip(this, mychip->chip); |
| 989 | } |
| 990 | |
| 991 | this->curfloor = mychip->floor; |
| 992 | this->curchip = mychip->chip; |
| 993 | |
| 994 | DoC_Command(this, |
| 995 | (!this->page256 |
| 996 | && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, |
| 997 | CDSN_CTRL_WP); |
| 998 | DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, |
| 999 | CDSN_CTRL_ECC_IO); |
| 1000 | |
| 1001 | if (eccbuf) { |
| 1002 | /* Prime the ECC engine */ |
| 1003 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| 1004 | WriteDOC(DOC_ECC_EN, docptr, ECCConf); |
| 1005 | } else { |
| 1006 | /* disable the ECC engine */ |
| 1007 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| 1008 | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| 1009 | } |
| 1010 | |
| 1011 | /* treat crossing 256-byte sector for 2M x 8bits devices */ |
| 1012 | if (this->page256 && from + len > (from | 0xff) + 1) { |
| 1013 | len256 = (from | 0xff) + 1 - from; |
| 1014 | DoC_ReadBuf(this, buf, len256); |
| 1015 | |
| 1016 | DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); |
| 1017 | DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, |
| 1018 | CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); |
| 1019 | } |
| 1020 | |
| 1021 | DoC_ReadBuf(this, &buf[len256], len - len256); |
| 1022 | |
| 1023 | /* Let the caller know we completed it */ |
| 1024 | *retlen = len; |
| 1025 | |
| 1026 | if (eccbuf) { |
| 1027 | /* Read the ECC data through the DiskOnChip ECC logic */ |
| 1028 | /* Note: this will work even with 2M x 8bit devices as */ |
| 1029 | /* they have 8 bytes of OOB per 256 page. mf. */ |
| 1030 | DoC_ReadBuf(this, eccbuf, 6); |
| 1031 | |
| 1032 | /* Flush the pipeline */ |
| 1033 | if (DoC_is_Millennium(this)) { |
| 1034 | dummy = ReadDOC(docptr, ECCConf); |
| 1035 | dummy = ReadDOC(docptr, ECCConf); |
| 1036 | i = ReadDOC(docptr, ECCConf); |
| 1037 | } else { |
| 1038 | dummy = ReadDOC(docptr, 2k_ECCStatus); |
| 1039 | dummy = ReadDOC(docptr, 2k_ECCStatus); |
| 1040 | i = ReadDOC(docptr, 2k_ECCStatus); |
| 1041 | } |
| 1042 | |
| 1043 | /* Check the ECC Status */ |
| 1044 | if (i & 0x80) { |
| 1045 | int nb_errors; |
| 1046 | /* There was an ECC error */ |
| 1047 | #ifdef ECC_DEBUG |
| 1048 | printf("DiskOnChip ECC Error: Read at %lx\n", (long)from); |
| 1049 | #endif |
| 1050 | /* Read the ECC syndrom through the DiskOnChip ECC logic. |
| 1051 | These syndrome will be all ZERO when there is no error */ |
| 1052 | for (i = 0; i < 6; i++) { |
| 1053 | syndrome[i] = |
| 1054 | ReadDOC(docptr, ECCSyndrome0 + i); |
| 1055 | } |
| 1056 | nb_errors = doc_decode_ecc(buf, syndrome); |
| 1057 | |
| 1058 | #ifdef ECC_DEBUG |
| 1059 | printf("Errors corrected: %x\n", nb_errors); |
| 1060 | #endif |
| 1061 | if (nb_errors < 0) { |
| 1062 | /* We return error, but have actually done the read. Not that |
| 1063 | this can be told to user-space, via sys_read(), but at least |
| 1064 | MTD-aware stuff can know about it by checking *retlen */ |
| 1065 | printf("ECC Errors at %lx\n", (long)from); |
| 1066 | ret = DOC_EECC; |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | #ifdef PSYCHO_DEBUG |
| 1071 | printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", |
| 1072 | (long)from, eccbuf[0], eccbuf[1], eccbuf[2], |
| 1073 | eccbuf[3], eccbuf[4], eccbuf[5]); |
| 1074 | #endif |
| 1075 | |
| 1076 | /* disable the ECC engine */ |
| 1077 | WriteDOC(DOC_ECC_DIS, docptr , ECCConf); |
| 1078 | } |
| 1079 | |
| 1080 | /* according to 11.4.1, we need to wait for the busy line |
| 1081 | * drop if we read to the end of the page. */ |
| 1082 | if(0 == ((from + *retlen) & 0x1ff)) |
| 1083 | { |
| 1084 | DoC_WaitReady(this); |
| 1085 | } |
| 1086 | |
| 1087 | return ret; |
| 1088 | } |
| 1089 | |
| 1090 | int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len, |
| 1091 | size_t * retlen, const u_char * buf, |
| 1092 | u_char * eccbuf) |
| 1093 | { |
| 1094 | int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ |
| 1095 | unsigned long docptr; |
| 1096 | volatile char dummy; |
| 1097 | int len256 = 0; |
| 1098 | struct Nand *mychip; |
| 1099 | |
| 1100 | docptr = this->virtadr; |
| 1101 | |
| 1102 | /* Don't allow write past end of device */ |
| 1103 | if (to >= this->totlen) { |
| 1104 | puts ("Out of flash\n"); |
| 1105 | return DOC_EINVAL; |
| 1106 | } |
| 1107 | |
| 1108 | /* Don't allow a single write to cross a 512-byte block boundary */ |
| 1109 | if (to + len > ((to | 0x1ff) + 1)) |
| 1110 | len = ((to | 0x1ff) + 1) - to; |
| 1111 | |
| 1112 | /* The ECC will not be calculated correctly if less than 512 is written */ |
| 1113 | if (len != 0x200 && eccbuf) |
| 1114 | printf("ECC needs a full sector write (adr: %lx size %lx)\n", |
| 1115 | (long) to, (long) len); |
| 1116 | |
| 1117 | /* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ |
| 1118 | |
| 1119 | /* Find the chip which is to be used and select it */ |
| 1120 | mychip = &this->chips[shr(to, this->chipshift)]; |
| 1121 | |
| 1122 | if (this->curfloor != mychip->floor) { |
| 1123 | DoC_SelectFloor(this, mychip->floor); |
| 1124 | DoC_SelectChip(this, mychip->chip); |
| 1125 | } else if (this->curchip != mychip->chip) { |
| 1126 | DoC_SelectChip(this, mychip->chip); |
| 1127 | } |
| 1128 | |
| 1129 | this->curfloor = mychip->floor; |
| 1130 | this->curchip = mychip->chip; |
| 1131 | |
| 1132 | /* Set device to main plane of flash */ |
| 1133 | DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); |
| 1134 | DoC_Command(this, |
| 1135 | (!this->page256 |
| 1136 | && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, |
| 1137 | CDSN_CTRL_WP); |
| 1138 | |
| 1139 | DoC_Command(this, NAND_CMD_SEQIN, 0); |
| 1140 | DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); |
| 1141 | |
| 1142 | if (eccbuf) { |
| 1143 | /* Prime the ECC engine */ |
| 1144 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| 1145 | WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); |
| 1146 | } else { |
| 1147 | /* disable the ECC engine */ |
| 1148 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| 1149 | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| 1150 | } |
| 1151 | |
| 1152 | /* treat crossing 256-byte sector for 2M x 8bits devices */ |
| 1153 | if (this->page256 && to + len > (to | 0xff) + 1) { |
| 1154 | len256 = (to | 0xff) + 1 - to; |
| 1155 | DoC_WriteBuf(this, buf, len256); |
| 1156 | |
| 1157 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| 1158 | |
| 1159 | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| 1160 | /* There's an implicit DoC_WaitReady() in DoC_Command */ |
| 1161 | |
| 1162 | dummy = ReadDOC(docptr, CDSNSlowIO); |
| 1163 | DoC_Delay(this, 2); |
| 1164 | |
| 1165 | if (ReadDOC_(docptr, this->ioreg) & 1) { |
| 1166 | puts ("Error programming flash\n"); |
| 1167 | /* Error in programming */ |
| 1168 | *retlen = 0; |
| 1169 | return DOC_EIO; |
| 1170 | } |
| 1171 | |
| 1172 | DoC_Command(this, NAND_CMD_SEQIN, 0); |
| 1173 | DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, |
| 1174 | CDSN_CTRL_ECC_IO); |
| 1175 | } |
| 1176 | |
| 1177 | DoC_WriteBuf(this, &buf[len256], len - len256); |
| 1178 | |
| 1179 | if (eccbuf) { |
| 1180 | WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, |
| 1181 | CDSNControl); |
| 1182 | |
| 1183 | if (DoC_is_Millennium(this)) { |
| 1184 | WriteDOC(0, docptr, NOP); |
| 1185 | WriteDOC(0, docptr, NOP); |
| 1186 | WriteDOC(0, docptr, NOP); |
| 1187 | } else { |
| 1188 | WriteDOC_(0, docptr, this->ioreg); |
| 1189 | WriteDOC_(0, docptr, this->ioreg); |
| 1190 | WriteDOC_(0, docptr, this->ioreg); |
| 1191 | } |
| 1192 | |
| 1193 | /* Read the ECC data through the DiskOnChip ECC logic */ |
| 1194 | for (di = 0; di < 6; di++) { |
| 1195 | eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); |
| 1196 | } |
| 1197 | |
| 1198 | /* Reset the ECC engine */ |
| 1199 | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| 1200 | |
| 1201 | #ifdef PSYCHO_DEBUG |
| 1202 | printf |
| 1203 | ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", |
| 1204 | (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], |
| 1205 | eccbuf[4], eccbuf[5]); |
| 1206 | #endif |
| 1207 | } |
| 1208 | |
| 1209 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| 1210 | |
| 1211 | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| 1212 | /* There's an implicit DoC_WaitReady() in DoC_Command */ |
| 1213 | |
| 1214 | dummy = ReadDOC(docptr, CDSNSlowIO); |
| 1215 | DoC_Delay(this, 2); |
| 1216 | |
| 1217 | if (ReadDOC_(docptr, this->ioreg) & 1) { |
| 1218 | puts ("Error programming flash\n"); |
| 1219 | /* Error in programming */ |
| 1220 | *retlen = 0; |
| 1221 | return DOC_EIO; |
| 1222 | } |
| 1223 | |
| 1224 | /* Let the caller know we completed it */ |
| 1225 | *retlen = len; |
| 1226 | |
| 1227 | if (eccbuf) { |
| 1228 | unsigned char x[8]; |
| 1229 | size_t dummy; |
| 1230 | int ret; |
| 1231 | |
| 1232 | /* Write the ECC data to flash */ |
| 1233 | for (di=0; di<6; di++) |
| 1234 | x[di] = eccbuf[di]; |
| 1235 | |
| 1236 | x[6]=0x55; |
| 1237 | x[7]=0x55; |
| 1238 | |
| 1239 | ret = doc_write_oob(this, to, 8, &dummy, x); |
| 1240 | return ret; |
| 1241 | } |
| 1242 | return 0; |
| 1243 | } |
| 1244 | |
| 1245 | int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len, |
| 1246 | size_t * retlen, u_char * buf) |
| 1247 | { |
| 1248 | int len256 = 0, ret; |
| 1249 | unsigned long docptr; |
| 1250 | struct Nand *mychip; |
| 1251 | |
| 1252 | docptr = this->virtadr; |
| 1253 | |
| 1254 | mychip = &this->chips[shr(ofs, this->chipshift)]; |
| 1255 | |
| 1256 | if (this->curfloor != mychip->floor) { |
| 1257 | DoC_SelectFloor(this, mychip->floor); |
| 1258 | DoC_SelectChip(this, mychip->chip); |
| 1259 | } else if (this->curchip != mychip->chip) { |
| 1260 | DoC_SelectChip(this, mychip->chip); |
| 1261 | } |
| 1262 | this->curfloor = mychip->floor; |
| 1263 | this->curchip = mychip->chip; |
| 1264 | |
| 1265 | /* update address for 2M x 8bit devices. OOB starts on the second */ |
| 1266 | /* page to maintain compatibility with doc_read_ecc. */ |
| 1267 | if (this->page256) { |
| 1268 | if (!(ofs & 0x8)) |
| 1269 | ofs += 0x100; |
| 1270 | else |
| 1271 | ofs -= 0x8; |
| 1272 | } |
| 1273 | |
| 1274 | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| 1275 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); |
| 1276 | |
| 1277 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| 1278 | /* Note: datasheet says it should automaticaly wrap to the */ |
| 1279 | /* next OOB block, but it didn't work here. mf. */ |
| 1280 | if (this->page256 && ofs + len > (ofs | 0x7) + 1) { |
| 1281 | len256 = (ofs | 0x7) + 1 - ofs; |
| 1282 | DoC_ReadBuf(this, buf, len256); |
| 1283 | |
| 1284 | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| 1285 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), |
| 1286 | CDSN_CTRL_WP, 0); |
| 1287 | } |
| 1288 | |
| 1289 | DoC_ReadBuf(this, &buf[len256], len - len256); |
| 1290 | |
| 1291 | *retlen = len; |
| 1292 | /* Reading the full OOB data drops us off of the end of the page, |
| 1293 | * causing the flash device to go into busy mode, so we need |
| 1294 | * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ |
| 1295 | |
| 1296 | ret = DoC_WaitReady(this); |
| 1297 | |
| 1298 | return ret; |
| 1299 | |
| 1300 | } |
| 1301 | |
| 1302 | int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len, |
| 1303 | size_t * retlen, const u_char * buf) |
| 1304 | { |
| 1305 | int len256 = 0; |
| 1306 | unsigned long docptr = this->virtadr; |
| 1307 | struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)]; |
| 1308 | volatile int dummy; |
| 1309 | |
| 1310 | #ifdef PSYCHO_DEBUG |
| 1311 | printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", |
| 1312 | (long)ofs, len, buf[0], buf[1], buf[2], buf[3], |
| 1313 | buf[8], buf[9], buf[14],buf[15]); |
| 1314 | #endif |
| 1315 | |
| 1316 | /* Find the chip which is to be used and select it */ |
| 1317 | if (this->curfloor != mychip->floor) { |
| 1318 | DoC_SelectFloor(this, mychip->floor); |
| 1319 | DoC_SelectChip(this, mychip->chip); |
| 1320 | } else if (this->curchip != mychip->chip) { |
| 1321 | DoC_SelectChip(this, mychip->chip); |
| 1322 | } |
| 1323 | this->curfloor = mychip->floor; |
| 1324 | this->curchip = mychip->chip; |
| 1325 | |
| 1326 | /* disable the ECC engine */ |
| 1327 | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); |
| 1328 | WriteDOC (DOC_ECC_DIS, docptr, ECCConf); |
| 1329 | |
| 1330 | /* Reset the chip, see Software Requirement 11.4 item 1. */ |
| 1331 | DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); |
| 1332 | |
| 1333 | /* issue the Read2 command to set the pointer to the Spare Data Area. */ |
| 1334 | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| 1335 | |
| 1336 | /* update address for 2M x 8bit devices. OOB starts on the second */ |
| 1337 | /* page to maintain compatibility with doc_read_ecc. */ |
| 1338 | if (this->page256) { |
| 1339 | if (!(ofs & 0x8)) |
| 1340 | ofs += 0x100; |
| 1341 | else |
| 1342 | ofs -= 0x8; |
| 1343 | } |
| 1344 | |
| 1345 | /* issue the Serial Data In command to initial the Page Program process */ |
| 1346 | DoC_Command(this, NAND_CMD_SEQIN, 0); |
| 1347 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); |
| 1348 | |
| 1349 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| 1350 | /* Note: datasheet says it should automaticaly wrap to the */ |
| 1351 | /* next OOB block, but it didn't work here. mf. */ |
| 1352 | if (this->page256 && ofs + len > (ofs | 0x7) + 1) { |
| 1353 | len256 = (ofs | 0x7) + 1 - ofs; |
| 1354 | DoC_WriteBuf(this, buf, len256); |
| 1355 | |
| 1356 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| 1357 | DoC_Command(this, NAND_CMD_STATUS, 0); |
| 1358 | /* DoC_WaitReady() is implicit in DoC_Command */ |
| 1359 | |
| 1360 | dummy = ReadDOC(docptr, CDSNSlowIO); |
| 1361 | DoC_Delay(this, 2); |
| 1362 | |
| 1363 | if (ReadDOC_(docptr, this->ioreg) & 1) { |
| 1364 | puts ("Error programming oob data\n"); |
| 1365 | /* There was an error */ |
| 1366 | *retlen = 0; |
| 1367 | return DOC_EIO; |
| 1368 | } |
| 1369 | DoC_Command(this, NAND_CMD_SEQIN, 0); |
| 1370 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); |
| 1371 | } |
| 1372 | |
| 1373 | DoC_WriteBuf(this, &buf[len256], len - len256); |
| 1374 | |
| 1375 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| 1376 | DoC_Command(this, NAND_CMD_STATUS, 0); |
| 1377 | /* DoC_WaitReady() is implicit in DoC_Command */ |
| 1378 | |
| 1379 | dummy = ReadDOC(docptr, CDSNSlowIO); |
| 1380 | DoC_Delay(this, 2); |
| 1381 | |
| 1382 | if (ReadDOC_(docptr, this->ioreg) & 1) { |
| 1383 | puts ("Error programming oob data\n"); |
| 1384 | /* There was an error */ |
| 1385 | *retlen = 0; |
| 1386 | return DOC_EIO; |
| 1387 | } |
| 1388 | |
| 1389 | *retlen = len; |
| 1390 | return 0; |
| 1391 | |
| 1392 | } |
| 1393 | |
| 1394 | int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len) |
| 1395 | { |
| 1396 | volatile int dummy; |
| 1397 | unsigned long docptr; |
| 1398 | struct Nand *mychip; |
| 1399 | |
| 1400 | if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) { |
| 1401 | puts ("Offset and size must be sector aligned\n"); |
| 1402 | return DOC_EINVAL; |
| 1403 | } |
| 1404 | |
| 1405 | docptr = this->virtadr; |
| 1406 | |
| 1407 | /* FIXME: Do this in the background. Use timers or schedule_task() */ |
| 1408 | while(len) { |
| 1409 | mychip = &this->chips[shr(ofs, this->chipshift)]; |
| 1410 | |
| 1411 | if (this->curfloor != mychip->floor) { |
| 1412 | DoC_SelectFloor(this, mychip->floor); |
| 1413 | DoC_SelectChip(this, mychip->chip); |
| 1414 | } else if (this->curchip != mychip->chip) { |
| 1415 | DoC_SelectChip(this, mychip->chip); |
| 1416 | } |
| 1417 | this->curfloor = mychip->floor; |
| 1418 | this->curchip = mychip->chip; |
| 1419 | |
| 1420 | DoC_Command(this, NAND_CMD_ERASE1, 0); |
| 1421 | DoC_Address(this, ADDR_PAGE, ofs, 0, 0); |
| 1422 | DoC_Command(this, NAND_CMD_ERASE2, 0); |
| 1423 | |
| 1424 | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| 1425 | |
| 1426 | dummy = ReadDOC(docptr, CDSNSlowIO); |
| 1427 | DoC_Delay(this, 2); |
| 1428 | |
| 1429 | if (ReadDOC_(docptr, this->ioreg) & 1) { |
| 1430 | printf("Error erasing at 0x%lx\n", (long)ofs); |
| 1431 | /* There was an error */ |
| 1432 | goto callback; |
| 1433 | } |
| 1434 | ofs += this->erasesize; |
| 1435 | len -= this->erasesize; |
| 1436 | } |
| 1437 | |
| 1438 | callback: |
| 1439 | return 0; |
| 1440 | } |
| 1441 | |
| 1442 | static inline int doccheck(unsigned long potential, unsigned long physadr) |
| 1443 | { |
| 1444 | unsigned long window=potential; |
| 1445 | unsigned char tmp, ChipID; |
| 1446 | #ifndef DOC_PASSIVE_PROBE |
| 1447 | unsigned char tmp2; |
| 1448 | #endif |
| 1449 | |
| 1450 | /* Routine copied from the Linux DOC driver */ |
| 1451 | |
| 1452 | #ifdef CFG_DOCPROBE_55AA |
| 1453 | /* Check for 0x55 0xAA signature at beginning of window, |
| 1454 | this is no longer true once we remove the IPL (for Millennium */ |
| 1455 | if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) |
| 1456 | return 0; |
| 1457 | #endif /* CFG_DOCPROBE_55AA */ |
| 1458 | |
| 1459 | #ifndef DOC_PASSIVE_PROBE |
| 1460 | /* It's not possible to cleanly detect the DiskOnChip - the |
| 1461 | * bootup procedure will put the device into reset mode, and |
| 1462 | * it's not possible to talk to it without actually writing |
| 1463 | * to the DOCControl register. So we store the current contents |
| 1464 | * of the DOCControl register's location, in case we later decide |
| 1465 | * that it's not a DiskOnChip, and want to put it back how we |
| 1466 | * found it. |
| 1467 | */ |
| 1468 | tmp2 = ReadDOC(window, DOCControl); |
| 1469 | |
| 1470 | /* Reset the DiskOnChip ASIC */ |
| 1471 | WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, |
| 1472 | window, DOCControl); |
| 1473 | WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, |
| 1474 | window, DOCControl); |
| 1475 | |
| 1476 | /* Enable the DiskOnChip ASIC */ |
| 1477 | WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, |
| 1478 | window, DOCControl); |
| 1479 | WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, |
| 1480 | window, DOCControl); |
| 1481 | #endif /* !DOC_PASSIVE_PROBE */ |
| 1482 | |
| 1483 | ChipID = ReadDOC(window, ChipID); |
| 1484 | |
| 1485 | switch (ChipID) { |
| 1486 | case DOC_ChipID_Doc2k: |
| 1487 | /* Check the TOGGLE bit in the ECC register */ |
| 1488 | tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; |
| 1489 | if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp) |
| 1490 | return ChipID; |
| 1491 | break; |
| 1492 | |
| 1493 | case DOC_ChipID_DocMil: |
| 1494 | /* Check the TOGGLE bit in the ECC register */ |
| 1495 | tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; |
| 1496 | if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp) |
| 1497 | return ChipID; |
| 1498 | break; |
| 1499 | |
| 1500 | default: |
| 1501 | #ifndef CFG_DOCPROBE_55AA |
| 1502 | /* |
| 1503 | * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume |
| 1504 | * the DOC is missing |
| 1505 | */ |
| 1506 | # if 0 |
| 1507 | printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", |
| 1508 | ChipID, physadr); |
| 1509 | # endif |
| 1510 | #endif |
| 1511 | #ifndef DOC_PASSIVE_PROBE |
| 1512 | /* Put back the contents of the DOCControl register, in case it's not |
| 1513 | * actually a DiskOnChip. |
| 1514 | */ |
| 1515 | WriteDOC(tmp2, window, DOCControl); |
| 1516 | #endif |
| 1517 | return 0; |
| 1518 | } |
| 1519 | |
| 1520 | puts ("DiskOnChip failed TOGGLE test, dropping.\n"); |
| 1521 | |
| 1522 | #ifndef DOC_PASSIVE_PROBE |
| 1523 | /* Put back the contents of the DOCControl register: it's not a DiskOnChip */ |
| 1524 | WriteDOC(tmp2, window, DOCControl); |
| 1525 | #endif |
| 1526 | return 0; |
| 1527 | } |
| 1528 | |
| 1529 | void doc_probe(unsigned long physadr) |
| 1530 | { |
| 1531 | struct DiskOnChip *this = NULL; |
| 1532 | int i=0, ChipID; |
| 1533 | |
| 1534 | if ((ChipID = doccheck(physadr, physadr))) { |
| 1535 | |
| 1536 | for (i=0; i<CFG_MAX_DOC_DEVICE; i++) { |
| 1537 | if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) { |
| 1538 | this = doc_dev_desc + i; |
| 1539 | break; |
| 1540 | } |
| 1541 | } |
| 1542 | |
| 1543 | if (!this) { |
| 1544 | puts ("Cannot allocate memory for data structures.\n"); |
| 1545 | return; |
| 1546 | } |
| 1547 | |
| 1548 | if (curr_device == -1) |
| 1549 | curr_device = i; |
| 1550 | |
| 1551 | memset((char *)this, 0, sizeof(struct DiskOnChip)); |
| 1552 | |
| 1553 | this->virtadr = physadr; |
| 1554 | this->physadr = physadr; |
| 1555 | this->ChipID = ChipID; |
| 1556 | |
| 1557 | DoC2k_init(this); |
| 1558 | } else { |
| 1559 | puts ("No DiskOnChip found\n"); |
| 1560 | } |
| 1561 | } |
| 1562 | |
| 1563 | #endif /* (CONFIG_COMMANDS & CFG_CMD_DOC) */ |