blob: 6aa243723bec1a0116ac0ea182d2b34cc6a816d6 [file] [log] [blame]
Simon Glasse761ecd2013-04-17 16:13:36 +00001/*
2 * Copyright (c) 2012 The Chromium OS Authors.
3 *
Bin Meng076bb442014-11-09 22:19:13 +08004 * TSC calibration codes are adapted from Linux kernel
5 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02007 * SPDX-License-Identifier: GPL-2.0+
Simon Glasse761ecd2013-04-17 16:13:36 +00008 */
9
10#include <common.h>
Bin Meng4e51fc22015-11-13 00:11:21 -080011#include <dm.h>
Simon Glasse761ecd2013-04-17 16:13:36 +000012#include <malloc.h>
Bin Meng4e51fc22015-11-13 00:11:21 -080013#include <timer.h>
Simon Glasse761ecd2013-04-17 16:13:36 +000014#include <asm/io.h>
15#include <asm/i8254.h>
16#include <asm/ibmpc.h>
17#include <asm/msr.h>
18#include <asm/u-boot-x86.h>
19
Bin Meng076bb442014-11-09 22:19:13 +080020/* CPU reference clock frequency: in KHz */
21#define FREQ_83 83200
22#define FREQ_100 99840
23#define FREQ_133 133200
24#define FREQ_166 166400
25
26#define MAX_NUM_FREQS 8
27
Simon Glasse761ecd2013-04-17 16:13:36 +000028DECLARE_GLOBAL_DATA_PTR;
29
Bin Meng076bb442014-11-09 22:19:13 +080030/*
31 * According to Intel 64 and IA-32 System Programming Guide,
32 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
33 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
34 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
35 * so we need manually differentiate SoC families. This is what the
36 * field msr_plat does.
37 */
38struct freq_desc {
39 u8 x86_family; /* CPU family */
40 u8 x86_model; /* model */
Simon Glass5c1b6852014-11-12 22:42:04 -070041 /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
42 u8 msr_plat;
Bin Meng076bb442014-11-09 22:19:13 +080043 u32 freqs[MAX_NUM_FREQS];
44};
45
46static struct freq_desc freq_desc_tables[] = {
47 /* PNW */
48 { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
49 /* CLV+ */
50 { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
51 /* TNG */
52 { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
53 /* VLV2 */
54 { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
Simon Glass5c1b6852014-11-12 22:42:04 -070055 /* Ivybridge */
56 { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
Bin Meng076bb442014-11-09 22:19:13 +080057 /* ANN */
58 { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
59};
60
61static int match_cpu(u8 family, u8 model)
62{
63 int i;
64
65 for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
66 if ((family == freq_desc_tables[i].x86_family) &&
67 (model == freq_desc_tables[i].x86_model))
68 return i;
69 }
70
71 return -1;
72}
73
74/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
75#define id_to_freq(cpu_index, freq_id) \
76 (freq_desc_tables[cpu_index].freqs[freq_id])
77
78/*
79 * Do MSR calibration only for known/supported CPUs.
80 *
81 * Returns the calibration value or 0 if MSR calibration failed.
82 */
Bin Meng3ba6a0f2015-01-06 22:14:14 +080083static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
Bin Meng076bb442014-11-09 22:19:13 +080084{
85 u32 lo, hi, ratio, freq_id, freq;
86 unsigned long res;
87 int cpu_index;
88
89 cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
90 if (cpu_index < 0)
91 return 0;
92
93 if (freq_desc_tables[cpu_index].msr_plat) {
94 rdmsr(MSR_PLATFORM_INFO, lo, hi);
95 ratio = (lo >> 8) & 0x1f;
96 } else {
97 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
98 ratio = (hi >> 8) & 0x1f;
99 }
100 debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
101
102 if (!ratio)
103 goto fail;
104
Simon Glass5c1b6852014-11-12 22:42:04 -0700105 if (freq_desc_tables[cpu_index].msr_plat == 2) {
106 /* TODO: Figure out how best to deal with this */
107 freq = FREQ_100;
108 debug("Using frequency: %u KHz\n", freq);
109 } else {
110 /* Get FSB FREQ ID */
111 rdmsr(MSR_FSB_FREQ, lo, hi);
112 freq_id = lo & 0x7;
113 freq = id_to_freq(cpu_index, freq_id);
114 debug("Resolved frequency ID: %u, frequency: %u KHz\n",
115 freq_id, freq);
116 }
Bin Meng076bb442014-11-09 22:19:13 +0800117 if (!freq)
118 goto fail;
119
120 /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
121 res = freq * ratio / 1000;
122 debug("TSC runs at %lu MHz\n", res);
123
124 return res;
125
126fail:
127 debug("Fast TSC calibration using MSR failed\n");
128 return 0;
129}
130
Bin Meng80de0492014-11-09 22:19:25 +0800131/*
132 * This reads the current MSB of the PIT counter, and
133 * checks if we are running on sufficiently fast and
134 * non-virtualized hardware.
135 *
136 * Our expectations are:
137 *
138 * - the PIT is running at roughly 1.19MHz
139 *
140 * - each IO is going to take about 1us on real hardware,
141 * but we allow it to be much faster (by a factor of 10) or
142 * _slightly_ slower (ie we allow up to a 2us read+counter
143 * update - anything else implies a unacceptably slow CPU
144 * or PIT for the fast calibration to work.
145 *
146 * - with 256 PIT ticks to read the value, we have 214us to
147 * see the same MSB (and overhead like doing a single TSC
148 * read per MSB value etc).
149 *
150 * - We're doing 2 reads per loop (LSB, MSB), and we expect
151 * them each to take about a microsecond on real hardware.
152 * So we expect a count value of around 100. But we'll be
153 * generous, and accept anything over 50.
154 *
155 * - if the PIT is stuck, and we see *many* more reads, we
156 * return early (and the next caller of pit_expect_msb()
157 * then consider it a failure when they don't see the
158 * next expected value).
159 *
160 * These expectations mean that we know that we have seen the
161 * transition from one expected value to another with a fairly
162 * high accuracy, and we didn't miss any events. We can thus
163 * use the TSC value at the transitions to calculate a pretty
164 * good value for the TSC frequencty.
165 */
166static inline int pit_verify_msb(unsigned char val)
167{
168 /* Ignore LSB */
169 inb(0x42);
170 return inb(0x42) == val;
171}
172
173static inline int pit_expect_msb(unsigned char val, u64 *tscp,
174 unsigned long *deltap)
175{
176 int count;
177 u64 tsc = 0, prev_tsc = 0;
178
179 for (count = 0; count < 50000; count++) {
180 if (!pit_verify_msb(val))
181 break;
182 prev_tsc = tsc;
183 tsc = rdtsc();
184 }
185 *deltap = rdtsc() - prev_tsc;
186 *tscp = tsc;
187
188 /*
189 * We require _some_ success, but the quality control
190 * will be based on the error terms on the TSC values.
191 */
192 return count > 5;
193}
194
195/*
196 * How many MSB values do we want to see? We aim for
197 * a maximum error rate of 500ppm (in practice the
198 * real error is much smaller), but refuse to spend
199 * more than 50ms on it.
200 */
201#define MAX_QUICK_PIT_MS 50
202#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
203
Bin Meng3ba6a0f2015-01-06 22:14:14 +0800204static unsigned long __maybe_unused quick_pit_calibrate(void)
Bin Meng80de0492014-11-09 22:19:25 +0800205{
206 int i;
207 u64 tsc, delta;
208 unsigned long d1, d2;
209
210 /* Set the Gate high, disable speaker */
211 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
212
213 /*
214 * Counter 2, mode 0 (one-shot), binary count
215 *
216 * NOTE! Mode 2 decrements by two (and then the
217 * output is flipped each time, giving the same
218 * final output frequency as a decrement-by-one),
219 * so mode 0 is much better when looking at the
220 * individual counts.
221 */
222 outb(0xb0, 0x43);
223
224 /* Start at 0xffff */
225 outb(0xff, 0x42);
226 outb(0xff, 0x42);
227
228 /*
229 * The PIT starts counting at the next edge, so we
230 * need to delay for a microsecond. The easiest way
231 * to do that is to just read back the 16-bit counter
232 * once from the PIT.
233 */
234 pit_verify_msb(0);
235
236 if (pit_expect_msb(0xff, &tsc, &d1)) {
237 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
238 if (!pit_expect_msb(0xff-i, &delta, &d2))
239 break;
240
241 /*
242 * Iterate until the error is less than 500 ppm
243 */
244 delta -= tsc;
245 if (d1+d2 >= delta >> 11)
246 continue;
247
248 /*
249 * Check the PIT one more time to verify that
250 * all TSC reads were stable wrt the PIT.
251 *
252 * This also guarantees serialization of the
253 * last cycle read ('d2') in pit_expect_msb.
254 */
255 if (!pit_verify_msb(0xfe - i))
256 break;
257 goto success;
258 }
259 }
260 debug("Fast TSC calibration failed\n");
261 return 0;
262
263success:
264 /*
265 * Ok, if we get here, then we've seen the
266 * MSB of the PIT decrement 'i' times, and the
267 * error has shrunk to less than 500 ppm.
268 *
269 * As a result, we can depend on there not being
270 * any odd delays anywhere, and the TSC reads are
271 * reliable (within the error).
272 *
273 * kHz = ticks / time-in-seconds / 1000;
274 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
275 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
276 */
277 delta *= PIT_TICK_RATE;
278 delta /= (i*256*1000);
279 debug("Fast TSC calibration using PIT\n");
280 return delta / 1000;
281}
282
Simon Glasse761ecd2013-04-17 16:13:36 +0000283/* Get the speed of the TSC timer in MHz */
Bin Meng2f80fc52015-11-13 00:11:20 -0800284unsigned notrace long get_tbclk_mhz(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000285{
Bin Meng4e51fc22015-11-13 00:11:21 -0800286 return get_tbclk() / 1000000;
Simon Glasse761ecd2013-04-17 16:13:36 +0000287}
288
Simon Glasse761ecd2013-04-17 16:13:36 +0000289static ulong get_ms_timer(void)
290{
291 return (get_ticks() * 1000) / get_tbclk();
292}
293
294ulong get_timer(ulong base)
295{
296 return get_ms_timer() - base;
297}
298
Bin Meng2f80fc52015-11-13 00:11:20 -0800299ulong notrace timer_get_us(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000300{
301 return get_ticks() / get_tbclk_mhz();
302}
303
304ulong timer_get_boot_us(void)
305{
306 return timer_get_us();
307}
308
309void __udelay(unsigned long usec)
310{
311 u64 now = get_ticks();
312 u64 stop;
313
314 stop = now + usec * get_tbclk_mhz();
315
316 while ((int64_t)(stop - get_ticks()) > 0)
Miao Yan417576c2015-07-27 19:16:07 +0800317#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
318 /*
319 * Add a 'pause' instruction on qemu target,
320 * to give other VCPUs a chance to run.
321 */
322 asm volatile("pause");
323#else
Simon Glasse761ecd2013-04-17 16:13:36 +0000324 ;
Miao Yan417576c2015-07-27 19:16:07 +0800325#endif
Simon Glasse761ecd2013-04-17 16:13:36 +0000326}
327
328int timer_init(void)
329{
Bin Mengda3fe242015-10-22 19:13:30 -0700330#ifdef CONFIG_I8254_TIMER
331 /* Set up the i8254 timer if required */
332 i8254_init();
Simon Glassd0b6f242013-04-17 16:13:39 +0000333#endif
334
Simon Glasse761ecd2013-04-17 16:13:36 +0000335 return 0;
336}
Bin Meng4e51fc22015-11-13 00:11:21 -0800337
Bin Meng4e51fc22015-11-13 00:11:21 -0800338static int tsc_timer_get_count(struct udevice *dev, u64 *count)
339{
340 u64 now_tick = rdtsc();
341
342 *count = now_tick - gd->arch.tsc_base;
343
344 return 0;
345}
346
347static int tsc_timer_probe(struct udevice *dev)
348{
349 struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
350
351 gd->arch.tsc_base = rdtsc();
352
353 /*
354 * If there is no clock frequency specified in the device tree,
355 * calibrate it by ourselves.
356 */
357 if (!uc_priv->clock_rate) {
358 unsigned long fast_calibrate;
359
360 fast_calibrate = try_msr_calibrate_tsc();
361 if (!fast_calibrate) {
362 fast_calibrate = quick_pit_calibrate();
363 if (!fast_calibrate)
364 panic("TSC frequency is ZERO");
365 }
366
367 uc_priv->clock_rate = fast_calibrate * 1000000;
368 }
369
370 return 0;
371}
372
373static const struct timer_ops tsc_timer_ops = {
374 .get_count = tsc_timer_get_count,
375};
376
377static const struct udevice_id tsc_timer_ids[] = {
378 { .compatible = "x86,tsc-timer", },
379 { }
380};
381
382U_BOOT_DRIVER(tsc_timer) = {
383 .name = "tsc_timer",
384 .id = UCLASS_TIMER,
385 .of_match = tsc_timer_ids,
386 .probe = tsc_timer_probe,
387 .ops = &tsc_timer_ops,
388 .flags = DM_FLAG_PRE_RELOC,
389};