blob: d91d58da45966d4dea826972b90d3c610a46bd14 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* ASPEED FMC/SPI Controller driver
*
* Copyright (c) 2022 ASPEED Corporation.
* Copyright (c) 2022 IBM Corporation.
*
* Author:
* Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>
* Cedric Le Goater <clg@kaod.org>
*/
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/mtd/spi-nor.h>
#include <linux/sizes.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#define ASPEED_SPI_MAX_CS 5
#define CTRL_IO_SINGLE_DATA 0
#define CTRL_IO_QUAD_DATA BIT(30)
#define CTRL_IO_DUAL_DATA BIT(29)
#define CTRL_IO_MODE_USER GENMASK(1, 0)
#define CTRL_IO_MODE_CMD_READ BIT(0)
#define CTRL_IO_MODE_CMD_WRITE BIT(1)
#define CTRL_STOP_ACTIVE BIT(2)
struct aspeed_spi_regs {
u32 conf; /* 0x00 CE Type Setting */
u32 ctrl; /* 0x04 CE Control */
u32 intr_ctrl; /* 0x08 Interrupt Control and Status */
u32 cmd_ctrl; /* 0x0c Command Control */
u32 ce_ctrl[ASPEED_SPI_MAX_CS]; /* 0x10 .. 0x20 CEx Control */
u32 _reserved0[3]; /* .. */
u32 segment_addr[ASPEED_SPI_MAX_CS]; /* 0x30 .. 0x40 Segment Address */
u32 _reserved1[3]; /* .. */
u32 soft_rst_cmd_ctrl; /* 0x50 Auto Soft-Reset Command Control */
u32 _reserved2[11]; /* .. */
u32 dma_ctrl; /* 0x80 DMA Control/Status */
u32 dma_flash_addr; /* 0x84 DMA Flash Side Address */
u32 dma_dram_addr; /* 0x88 DMA DRAM Side Address */
u32 dma_len; /* 0x8c DMA Length Register */
u32 dma_checksum; /* 0x90 Checksum Calculation Result */
u32 timings[ASPEED_SPI_MAX_CS]; /* 0x94 Read Timing Compensation */
};
struct aspeed_spi_plat {
u8 max_cs;
void __iomem *ahb_base; /* AHB address base for all flash devices. */
fdt_size_t ahb_sz; /* Overall AHB window size for all flash device. */
u32 hclk_rate; /* AHB clock rate */
};
struct aspeed_spi_flash {
void __iomem *ahb_base;
u32 ahb_decoded_sz;
u32 ce_ctrl_user;
u32 ce_ctrl_read;
u32 max_freq;
};
struct aspeed_spi_priv {
u32 num_cs;
struct aspeed_spi_regs *regs;
struct aspeed_spi_info *info;
struct aspeed_spi_flash flashes[ASPEED_SPI_MAX_CS];
bool fixed_decoded_range;
};
struct aspeed_spi_info {
u32 io_mode_mask;
u32 max_bus_width;
u32 min_decoded_sz;
u32 clk_ctrl_mask;
void (*set_4byte)(struct udevice *bus, u32 cs);
u32 (*segment_start)(struct udevice *bus, u32 reg);
u32 (*segment_end)(struct udevice *bus, u32 reg);
u32 (*segment_reg)(u32 start, u32 end);
int (*adjust_decoded_sz)(struct udevice *bus);
u32 (*get_clk_setting)(struct udevice *dev, uint hz);
};
struct aspeed_spi_decoded_range {
u32 cs;
u32 ahb_base;
u32 sz;
};
static const struct aspeed_spi_info ast2400_spi_info;
static const struct aspeed_spi_info ast2500_fmc_info;
static const struct aspeed_spi_info ast2500_spi_info;
static int aspeed_spi_decoded_range_config(struct udevice *bus);
static int aspeed_spi_trim_decoded_size(struct udevice *bus);
static u32 aspeed_spi_get_io_mode(u32 bus_width)
{
switch (bus_width) {
case 1:
return CTRL_IO_SINGLE_DATA;
case 2:
return CTRL_IO_DUAL_DATA;
case 4:
return CTRL_IO_QUAD_DATA;
default:
/* keep in default value */
return CTRL_IO_SINGLE_DATA;
}
}
static u32 ast2400_spi_segment_start(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 start_offset = ((reg >> 16) & 0xff) << 23;
if (start_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + start_offset;
}
static u32 ast2400_spi_segment_end(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 end_offset = ((reg >> 24) & 0xff) << 23;
/* Meaningless end_offset, set to physical ahb base. */
if (end_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + end_offset;
}
static u32 ast2400_spi_segment_reg(u32 start, u32 end)
{
if (start == end)
return 0;
return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
}
static void ast2400_fmc_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 reg_val;
reg_val = readl(&priv->regs->ctrl);
reg_val |= 0x1 << cs;
writel(reg_val, &priv->regs->ctrl);
}
static void ast2400_spi_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct aspeed_spi_flash *flash = &priv->flashes[cs];
flash->ce_ctrl_read |= BIT(13);
writel(flash->ce_ctrl_read, &priv->regs->ctrl);
}
/* Transfer maximum clock frequency to register setting */
static u32 ast2400_get_clk_setting(struct udevice *dev, uint max_hz)
{
struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 hclk_clk = plat->hclk_rate;
u32 hclk_div = 0x0000; /* default value */
u32 i;
bool found = false;
/* HCLK/1 .. HCLK/16 */
u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
11, 3, 10, 2, 9, 1, 8, 0};
/* FMC/SPIR10[11:8] */
for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
if (hclk_clk / (i + 1) <= max_hz) {
found = true;
break;
}
}
if (found) {
hclk_div = hclk_masks[i] << 8;
priv->flashes[slave_plat->cs].max_freq = hclk_clk / (i + 1);
}
dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
hclk_clk, max_hz);
if (found) {
dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n",
i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
}
return hclk_div;
}
static u32 ast2500_spi_segment_start(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 start_offset = ((reg >> 16) & 0xff) << 23;
if (start_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + start_offset;
}
static u32 ast2500_spi_segment_end(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 end_offset = ((reg >> 24) & 0xff) << 23;
/* Meaningless end_offset, set to physical ahb base. */
if (end_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + end_offset;
}
static u32 ast2500_spi_segment_reg(u32 start, u32 end)
{
if (start == end)
return 0;
return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
}
static void ast2500_spi_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 reg_val;
reg_val = readl(&priv->regs->ctrl);
reg_val |= 0x1 << cs;
writel(reg_val, &priv->regs->ctrl);
}
/*
* For AST2500, the minimum address decoded size for each CS
* is 8MB instead of zero. This address decoded size is
* mandatory for each CS no matter whether it will be used.
* This is a HW limitation.
*/
static int ast2500_adjust_decoded_size(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct aspeed_spi_flash *flashes = &priv->flashes[0];
int ret;
int i;
int cs;
u32 pre_sz;
u32 lack_sz;
/* Assign min_decoded_sz to unused CS. */
for (cs = priv->num_cs; cs < plat->max_cs; cs++)
flashes[cs].ahb_decoded_sz = priv->info->min_decoded_sz;
/*
* If command mode or normal mode is used, the start address of a
* decoded range should be multiple of its related flash size.
* Namely, the total decoded size from flash 0 to flash N should
* be multiple of the size of flash (N + 1).
*/
for (cs = priv->num_cs - 1; cs >= 0; cs--) {
pre_sz = 0;
for (i = 0; i < cs; i++)
pre_sz += flashes[i].ahb_decoded_sz;
if (flashes[cs].ahb_decoded_sz != 0 &&
(pre_sz % flashes[cs].ahb_decoded_sz) != 0) {
lack_sz = flashes[cs].ahb_decoded_sz -
(pre_sz % flashes[cs].ahb_decoded_sz);
flashes[0].ahb_decoded_sz += lack_sz;
}
}
ret = aspeed_spi_trim_decoded_size(bus);
if (ret != 0)
return ret;
return 0;
}
static u32 ast2500_get_clk_setting(struct udevice *dev, uint max_hz)
{
struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 hclk_clk = plat->hclk_rate;
u32 hclk_div = 0x0000; /* default value */
u32 i;
bool found = false;
/* HCLK/1 .. HCLK/16 */
u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
11, 3, 10, 2, 9, 1, 8, 0};
/* FMC/SPIR10[11:8] */
for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
if (hclk_clk / (i + 1) <= max_hz) {
found = true;
priv->flashes[slave_plat->cs].max_freq =
hclk_clk / (i + 1);
break;
}
}
if (found) {
hclk_div = hclk_masks[i] << 8;
goto end;
}
for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
if (hclk_clk / ((i + 1) * 4) <= max_hz) {
found = true;
priv->flashes[slave_plat->cs].max_freq =
hclk_clk / ((i + 1) * 4);
break;
}
}
if (found)
hclk_div = BIT(13) | (hclk_masks[i] << 8);
end:
dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
hclk_clk, max_hz);
if (found) {
dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n",
i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
}
return hclk_div;
}
static u32 ast2600_spi_segment_start(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 start_offset = (reg << 16) & 0x0ff00000;
if (start_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + start_offset;
}
static u32 ast2600_spi_segment_end(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 end_offset = reg & 0x0ff00000;
/* Meaningless end_offset, set to physical ahb base. */
if (end_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + end_offset + 0x100000;
}
static u32 ast2600_spi_segment_reg(u32 start, u32 end)
{
if (start == end)
return 0;
return ((start & 0x0ff00000) >> 16) | ((end - 0x100000) & 0x0ff00000);
}
static void ast2600_spi_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 reg_val;
reg_val = readl(&priv->regs->ctrl);
reg_val |= 0x11 << cs;
writel(reg_val, &priv->regs->ctrl);
}
static int ast2600_adjust_decoded_size(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct aspeed_spi_flash *flashes = &priv->flashes[0];
int ret;
int i;
int cs;
u32 pre_sz;
u32 lack_sz;
/* Close unused CS. */
for (cs = priv->num_cs; cs < plat->max_cs; cs++)
flashes[cs].ahb_decoded_sz = 0;
/*
* If command mode or normal mode is used, the start address of a
* decoded range should be multiple of its related flash size.
* Namely, the total decoded size from flash 0 to flash N should
* be multiple of the size of flash (N + 1).
*/
for (cs = priv->num_cs - 1; cs >= 0; cs--) {
pre_sz = 0;
for (i = 0; i < cs; i++)
pre_sz += flashes[i].ahb_decoded_sz;
if (flashes[cs].ahb_decoded_sz != 0 &&
(pre_sz % flashes[cs].ahb_decoded_sz) != 0) {
lack_sz = flashes[cs].ahb_decoded_sz -
(pre_sz % flashes[cs].ahb_decoded_sz);
flashes[0].ahb_decoded_sz += lack_sz;
}
}
ret = aspeed_spi_trim_decoded_size(bus);
if (ret != 0)
return ret;
return 0;
}
static u32 ast2600_get_clk_setting(struct udevice *dev, uint max_hz)
{
struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 hclk_clk = plat->hclk_rate;
u32 hclk_div = 0x0400; /* default value */
u32 i, j;
bool found = false;
/* HCLK/1 .. HCLK/16 */
u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
11, 3, 10, 2, 9, 1, 8, 0};
/* FMC/SPIR10[27:24] */
for (j = 0; j < 0xf; j++) {
/* FMC/SPIR10[11:8] */
for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
if (i == 0 && j == 0)
continue;
if (hclk_clk / (i + 1 + (j * 16)) <= max_hz) {
found = true;
break;
}
}
if (found) {
hclk_div = ((j << 24) | hclk_masks[i] << 8);
priv->flashes[slave_plat->cs].max_freq =
hclk_clk / (i + 1 + j * 16);
break;
}
}
dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
hclk_clk, max_hz);
if (found) {
dev_dbg(dev, "base_clk: %d, h_div: %d (mask %x), speed: %d\n",
j, i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
}
return hclk_div;
}
/*
* As the flash size grows up, we need to trim some decoded
* size if needed for the sake of conforming the maximum
* decoded size. We trim the decoded size from the largest
* CS in order to avoid affecting the default boot up sequence
* from CS0 where command mode or normal mode is used.
* Notice, if a CS decoded size is trimmed, command mode may
* not work perfectly on that CS.
*/
static int aspeed_spi_trim_decoded_size(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct aspeed_spi_flash *flashes = &priv->flashes[0];
u32 total_sz;
int cs = plat->max_cs - 1;
u32 i;
do {
total_sz = 0;
for (i = 0; i < plat->max_cs; i++)
total_sz += flashes[i].ahb_decoded_sz;
if (flashes[cs].ahb_decoded_sz <= priv->info->min_decoded_sz)
cs--;
if (cs < 0)
return -ENOMEM;
if (total_sz > plat->ahb_sz) {
flashes[cs].ahb_decoded_sz -=
priv->info->min_decoded_sz;
total_sz -= priv->info->min_decoded_sz;
}
} while (total_sz > plat->ahb_sz);
return 0;
}
static int aspeed_spi_read_from_ahb(void __iomem *ahb_base, void *buf,
size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
readsl(ahb_base, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
readsb(ahb_base, (u8 *)buf + offset, len);
return 0;
}
static int aspeed_spi_write_to_ahb(void __iomem *ahb_base, const void *buf,
size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
writesl(ahb_base, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
writesb(ahb_base, (u8 *)buf + offset, len);
return 0;
}
/*
* Currently, only support 1-1-1, 1-1-2 or 1-1-4
* SPI NOR flash operation format.
*/
static bool aspeed_spi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *bus = slave->dev->parent;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
if (op->cmd.buswidth > 1)
return false;
if (op->addr.nbytes != 0) {
if (op->addr.buswidth > 1)
return false;
if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
return false;
}
if (op->dummy.nbytes != 0) {
if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
return false;
}
if (op->data.nbytes != 0 &&
op->data.buswidth > priv->info->max_bus_width)
return false;
if (!spi_mem_default_supports_op(slave, op))
return false;
return true;
}
static int aspeed_spi_exec_op_user_mode(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *dev = slave->dev;
struct udevice *bus = dev->parent;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
u32 cs = slave_plat->cs;
u32 ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
u32 ce_ctrl_val;
struct aspeed_spi_flash *flash = &priv->flashes[cs];
u8 dummy_data[16] = {0};
u8 addr[4] = {0};
int i;
dev_dbg(dev, "cmd:%x(%d),addr:%llx(%d),dummy:%d(%d),data_len:0x%x(%d)\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.val,
op->addr.buswidth, op->dummy.nbytes, op->dummy.buswidth,
op->data.nbytes, op->data.buswidth);
if (priv->info == &ast2400_spi_info)
ce_ctrl_reg = (u32)&priv->regs->ctrl;
/*
* Set controller to 4-byte address mode
* if flash is in 4-byte address mode.
*/
if (op->cmd.opcode == SPINOR_OP_EN4B)
priv->info->set_4byte(bus, cs);
/* Start user mode */
ce_ctrl_val = flash->ce_ctrl_user;
writel(ce_ctrl_val, ce_ctrl_reg);
ce_ctrl_val &= (~CTRL_STOP_ACTIVE);
writel(ce_ctrl_val, ce_ctrl_reg);
/* Send command */
aspeed_spi_write_to_ahb(flash->ahb_base, &op->cmd.opcode, 1);
/* Send address */
for (i = op->addr.nbytes; i > 0; i--) {
addr[op->addr.nbytes - i] =
((u32)op->addr.val >> ((i - 1) * 8)) & 0xff;
}
/* Change io_mode */
ce_ctrl_val &= ~priv->info->io_mode_mask;
ce_ctrl_val |= aspeed_spi_get_io_mode(op->addr.buswidth);
writel(ce_ctrl_val, ce_ctrl_reg);
aspeed_spi_write_to_ahb(flash->ahb_base, addr, op->addr.nbytes);
/* Send dummy cycles */
aspeed_spi_write_to_ahb(flash->ahb_base, dummy_data, op->dummy.nbytes);
/* Change io_mode */
ce_ctrl_val &= ~priv->info->io_mode_mask;
ce_ctrl_val |= aspeed_spi_get_io_mode(op->data.buswidth);
writel(ce_ctrl_val, ce_ctrl_reg);
/* Send data */
if (op->data.dir == SPI_MEM_DATA_OUT) {
aspeed_spi_write_to_ahb(flash->ahb_base, op->data.buf.out,
op->data.nbytes);
} else {
aspeed_spi_read_from_ahb(flash->ahb_base, op->data.buf.in,
op->data.nbytes);
}
ce_ctrl_val |= CTRL_STOP_ACTIVE;
writel(ce_ctrl_val, ce_ctrl_reg);
/* Restore controller setting. */
writel(flash->ce_ctrl_read, ce_ctrl_reg);
return 0;
}
static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
int ret = 0;
struct udevice *dev = desc->slave->dev;
struct udevice *bus = dev->parent;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
const struct aspeed_spi_info *info = priv->info;
struct spi_mem_op op_tmpl = desc->info.op_tmpl;
u32 i;
u32 cs = slave_plat->cs;
u32 cmd_io_conf;
u32 ce_ctrl_reg;
if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) {
/*
* dirmap_write is not supported currently due to a HW
* limitation for command write mode: The written data
* length should be multiple of 4-byte.
*/
return -EOPNOTSUPP;
}
ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
if (info == &ast2400_spi_info)
ce_ctrl_reg = (u32)&priv->regs->ctrl;
if (desc->info.length > 0x1000000)
priv->info->set_4byte(bus, cs);
/* AST2400 SPI1 doesn't have decoded address segment register. */
if (info != &ast2400_spi_info) {
priv->flashes[cs].ahb_decoded_sz = desc->info.length;
for (i = 0; i < priv->num_cs; i++) {
dev_dbg(dev, "cs: %d, sz: 0x%x\n", i,
priv->flashes[cs].ahb_decoded_sz);
}
ret = aspeed_spi_decoded_range_config(bus);
if (ret)
return ret;
}
cmd_io_conf = aspeed_spi_get_io_mode(op_tmpl.data.buswidth) |
op_tmpl.cmd.opcode << 16 |
((op_tmpl.dummy.nbytes) & 0x3) << 6 |
((op_tmpl.dummy.nbytes) & 0x4) << 14 |
CTRL_IO_MODE_CMD_READ;
priv->flashes[cs].ce_ctrl_read &= priv->info->clk_ctrl_mask;
priv->flashes[cs].ce_ctrl_read |= cmd_io_conf;
writel(priv->flashes[cs].ce_ctrl_read, ce_ctrl_reg);
dev_dbg(dev, "read bus width: %d ce_ctrl_val: 0x%08x\n",
op_tmpl.data.buswidth, priv->flashes[cs].ce_ctrl_read);
return ret;
}
static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct udevice *dev = desc->slave->dev;
struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 cs = slave_plat->cs;
int ret;
dev_dbg(dev, "read op:0x%x, addr:0x%llx, len:0x%x\n",
desc->info.op_tmpl.cmd.opcode, offs, len);
if (priv->flashes[cs].ahb_decoded_sz < offs + len ||
(offs % 4) != 0) {
ret = aspeed_spi_exec_op_user_mode(desc->slave,
&desc->info.op_tmpl);
if (ret != 0)
return 0;
} else {
memcpy_fromio(buf, priv->flashes[cs].ahb_base + offs, len);
}
return len;
}
static struct aspeed_spi_flash *aspeed_spi_get_flash(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs = slave_plat->cs;
if (cs >= plat->max_cs) {
dev_err(dev, "invalid CS %u\n", cs);
return NULL;
}
return &priv->flashes[cs];
}
static void aspeed_spi_decoded_base_calculate(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs;
if (priv->fixed_decoded_range)
return;
priv->flashes[0].ahb_base = plat->ahb_base;
for (cs = 1; cs < plat->max_cs; cs++) {
priv->flashes[cs].ahb_base =
priv->flashes[cs - 1].ahb_base +
priv->flashes[cs - 1].ahb_decoded_sz;
}
}
static void aspeed_spi_decoded_range_set(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 decoded_reg_val;
u32 start_addr, end_addr;
u32 cs;
for (cs = 0; cs < plat->max_cs; cs++) {
start_addr = (u32)priv->flashes[cs].ahb_base;
end_addr = (u32)priv->flashes[cs].ahb_base +
priv->flashes[cs].ahb_decoded_sz;
decoded_reg_val = priv->info->segment_reg(start_addr, end_addr);
writel(decoded_reg_val, &priv->regs->segment_addr[cs]);
dev_dbg(bus, "cs: %d, decoded_reg: 0x%x, start: 0x%x, end: 0x%x\n",
cs, decoded_reg_val, start_addr, end_addr);
}
}
static int aspeed_spi_decoded_range_config(struct udevice *bus)
{
int ret = 0;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
if (priv->info->adjust_decoded_sz &&
!priv->fixed_decoded_range) {
ret = priv->info->adjust_decoded_sz(bus);
if (ret != 0)
return ret;
}
aspeed_spi_decoded_base_calculate(bus);
aspeed_spi_decoded_range_set(bus);
return ret;
}
static int aspeed_spi_decoded_ranges_sanity(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs;
u32 total_sz = 0;
/* Check overall size. */
for (cs = 0; cs < plat->max_cs; cs++)
total_sz += priv->flashes[cs].ahb_decoded_sz;
if (total_sz > plat->ahb_sz) {
dev_err(bus, "invalid total size 0x%08x\n", total_sz);
return -EINVAL;
}
/* Check each decoded range size for AST2500. */
if (priv->info == &ast2500_fmc_info ||
priv->info == &ast2500_spi_info) {
for (cs = 0; cs < plat->max_cs; cs++) {
if (priv->flashes[cs].ahb_decoded_sz <
priv->info->min_decoded_sz) {
dev_err(bus, "insufficient decoded range.\n");
return -EINVAL;
}
}
}
/*
* Check overlay. Here, we assume the deccded ranges and
* address base are monotonic increasing with CE#.
*/
for (cs = plat->max_cs - 1; cs > 0; cs--) {
if ((u32)priv->flashes[cs].ahb_base != 0 &&
(u32)priv->flashes[cs].ahb_base <
(u32)priv->flashes[cs - 1].ahb_base +
priv->flashes[cs - 1].ahb_decoded_sz) {
dev_err(bus, "decoded range overlay 0x%08x 0x%08x\n",
(u32)priv->flashes[cs].ahb_base,
(u32)priv->flashes[cs - 1].ahb_base);
return -EINVAL;
}
}
return 0;
}
static int aspeed_spi_read_fixed_decoded_ranges(struct udevice *bus)
{
int ret = 0;
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
const char *range_prop = "decoded-ranges";
struct aspeed_spi_decoded_range ranges[ASPEED_SPI_MAX_CS];
const struct property *prop;
u32 prop_sz;
u32 count;
u32 i;
priv->fixed_decoded_range = false;
prop = dev_read_prop(bus, range_prop, &prop_sz);
if (!prop)
return 0;
count = prop_sz / sizeof(struct aspeed_spi_decoded_range);
if (count > plat->max_cs || count < priv->num_cs) {
dev_err(bus, "invalid '%s' property %d %d\n",
range_prop, count, priv->num_cs);
return -EINVAL;
}
ret = dev_read_u32_array(bus, range_prop, (u32 *)ranges, count * 3);
if (ret)
return ret;
for (i = 0; i < count; i++) {
priv->flashes[ranges[i].cs].ahb_base =
(void __iomem *)ranges[i].ahb_base;
priv->flashes[ranges[i].cs].ahb_decoded_sz =
ranges[i].sz;
}
for (i = 0; i < plat->max_cs; i++) {
dev_dbg(bus, "ahb_base: 0x%p, size: 0x%08x\n",
priv->flashes[i].ahb_base,
priv->flashes[i].ahb_decoded_sz);
}
ret = aspeed_spi_decoded_ranges_sanity(bus);
if (ret != 0)
return ret;
priv->fixed_decoded_range = true;
return 0;
}
/*
* Initialize SPI controller for each chip select.
* Here, only the minimum decode range is configured
* in order to get device (SPI NOR flash) information
* at the early stage.
*/
static int aspeed_spi_ctrl_init(struct udevice *bus)
{
int ret;
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs;
u32 reg_val;
u32 decoded_sz;
/* Enable write capability for all CS. */
reg_val = readl(&priv->regs->conf);
if (priv->info == &ast2400_spi_info) {
writel(reg_val | BIT(0), &priv->regs->conf);
} else {
writel(reg_val | (GENMASK(plat->max_cs - 1, 0) << 16),
&priv->regs->conf);
}
memset(priv->flashes, 0x0,
sizeof(struct aspeed_spi_flash) * ASPEED_SPI_MAX_CS);
/* Initial user mode. */
for (cs = 0; cs < priv->num_cs; cs++) {
priv->flashes[cs].ce_ctrl_user &= priv->info->clk_ctrl_mask;
priv->flashes[cs].ce_ctrl_user |=
(CTRL_STOP_ACTIVE | CTRL_IO_MODE_USER);
}
/*
* SPI1 on AST2400 only supports CS0.
* It is unnecessary to configure segment address register.
*/
if (priv->info == &ast2400_spi_info) {
priv->flashes[cs].ahb_base = plat->ahb_base;
priv->flashes[cs].ahb_decoded_sz = 0x10000000;
return 0;
}
ret = aspeed_spi_read_fixed_decoded_ranges(bus);
if (ret != 0)
return ret;
if (!priv->fixed_decoded_range) {
/* Assign basic AHB decoded size for each CS. */
for (cs = 0; cs < plat->max_cs; cs++) {
reg_val = readl(&priv->regs->segment_addr[cs]);
decoded_sz = priv->info->segment_end(bus, reg_val) -
priv->info->segment_start(bus, reg_val);
if (decoded_sz < priv->info->min_decoded_sz)
decoded_sz = priv->info->min_decoded_sz;
priv->flashes[cs].ahb_decoded_sz = decoded_sz;
}
}
ret = aspeed_spi_decoded_range_config(bus);
return ret;
}
static const struct aspeed_spi_info ast2400_fmc_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.clk_ctrl_mask = 0x00002f00,
.set_4byte = ast2400_fmc_chip_set_4byte,
.segment_start = ast2400_spi_segment_start,
.segment_end = ast2400_spi_segment_end,
.segment_reg = ast2400_spi_segment_reg,
.get_clk_setting = ast2400_get_clk_setting,
};
static const struct aspeed_spi_info ast2400_spi_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.clk_ctrl_mask = 0x00000f00,
.set_4byte = ast2400_spi_chip_set_4byte,
.segment_start = ast2400_spi_segment_start,
.segment_end = ast2400_spi_segment_end,
.segment_reg = ast2400_spi_segment_reg,
.get_clk_setting = ast2400_get_clk_setting,
};
static const struct aspeed_spi_info ast2500_fmc_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.clk_ctrl_mask = 0x00002f00,
.set_4byte = ast2500_spi_chip_set_4byte,
.segment_start = ast2500_spi_segment_start,
.segment_end = ast2500_spi_segment_end,
.segment_reg = ast2500_spi_segment_reg,
.adjust_decoded_sz = ast2500_adjust_decoded_size,
.get_clk_setting = ast2500_get_clk_setting,
};
/*
* There are some different between FMC and SPI controllers.
* For example, DMA operation, but this isn't implemented currently.
*/
static const struct aspeed_spi_info ast2500_spi_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.clk_ctrl_mask = 0x00002f00,
.set_4byte = ast2500_spi_chip_set_4byte,
.segment_start = ast2500_spi_segment_start,
.segment_end = ast2500_spi_segment_end,
.segment_reg = ast2500_spi_segment_reg,
.adjust_decoded_sz = ast2500_adjust_decoded_size,
.get_clk_setting = ast2500_get_clk_setting,
};
static const struct aspeed_spi_info ast2600_fmc_info = {
.io_mode_mask = 0xf0000000,
.max_bus_width = 4,
.min_decoded_sz = 0x200000,
.clk_ctrl_mask = 0x0f000f00,
.set_4byte = ast2600_spi_chip_set_4byte,
.segment_start = ast2600_spi_segment_start,
.segment_end = ast2600_spi_segment_end,
.segment_reg = ast2600_spi_segment_reg,
.adjust_decoded_sz = ast2600_adjust_decoded_size,
.get_clk_setting = ast2600_get_clk_setting,
};
static const struct aspeed_spi_info ast2600_spi_info = {
.io_mode_mask = 0xf0000000,
.max_bus_width = 4,
.min_decoded_sz = 0x200000,
.clk_ctrl_mask = 0x0f000f00,
.set_4byte = ast2600_spi_chip_set_4byte,
.segment_start = ast2600_spi_segment_start,
.segment_end = ast2600_spi_segment_end,
.segment_reg = ast2600_spi_segment_reg,
.adjust_decoded_sz = ast2600_adjust_decoded_size,
.get_clk_setting = ast2600_get_clk_setting,
};
static int aspeed_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
struct aspeed_spi_flash *flash = &priv->flashes[slave_plat->cs];
u32 clk_setting;
dev_dbg(bus, "%s: claim bus CS%u\n", bus->name, slave_plat->cs);
if (flash->max_freq == 0) {
clk_setting = priv->info->get_clk_setting(dev, slave_plat->max_hz);
flash->ce_ctrl_user &= ~(priv->info->clk_ctrl_mask);
flash->ce_ctrl_user |= clk_setting;
flash->ce_ctrl_read &= ~(priv->info->clk_ctrl_mask);
flash->ce_ctrl_read |= clk_setting;
}
return 0;
}
static int aspeed_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
dev_dbg(bus, "%s: release bus CS%u\n", bus->name, slave_plat->cs);
if (!aspeed_spi_get_flash(dev))
return -ENODEV;
return 0;
}
static int aspeed_spi_set_mode(struct udevice *bus, uint mode)
{
dev_dbg(bus, "%s: setting mode to %x\n", bus->name, mode);
return 0;
}
static int aspeed_spi_set_speed(struct udevice *bus, uint hz)
{
dev_dbg(bus, "%s: setting speed to %u\n", bus->name, hz);
/*
* ASPEED SPI controller supports multiple CS with different
* clock frequency. We cannot distinguish which CS here.
* Thus, the related implementation is postponed to claim_bus.
*/
return 0;
}
static int apseed_spi_of_to_plat(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
int ret;
struct clk hclk;
priv->regs = devfdt_get_addr_index_ptr(bus, 0);
if (!priv->regs) {
dev_err(bus, "wrong ctrl base\n");
return -EINVAL;
}
plat->ahb_base = devfdt_get_addr_size_index_ptr(bus, 1, &plat->ahb_sz);
if (!plat->ahb_base) {
dev_err(bus, "wrong AHB base\n");
return -EINVAL;
}
plat->max_cs = dev_read_u32_default(bus, "num-cs", ASPEED_SPI_MAX_CS);
if (plat->max_cs > ASPEED_SPI_MAX_CS)
return -EINVAL;
ret = clk_get_by_index(bus, 0, &hclk);
if (ret < 0) {
dev_err(bus, "%s could not get clock: %d\n", bus->name, ret);
return ret;
}
plat->hclk_rate = clk_get_rate(&hclk);
dev_dbg(bus, "ctrl_base = 0x%x, ahb_base = 0x%p, size = 0x%llx\n",
(u32)priv->regs, plat->ahb_base, (fdt64_t)plat->ahb_sz);
dev_dbg(bus, "hclk = %dMHz, max_cs = %d\n",
plat->hclk_rate / 1000000, plat->max_cs);
return 0;
}
static int aspeed_spi_probe(struct udevice *bus)
{
int ret;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct udevice *dev;
priv->info = (struct aspeed_spi_info *)dev_get_driver_data(bus);
priv->num_cs = 0;
for (device_find_first_child(bus, &dev); dev;
device_find_next_child(&dev)) {
priv->num_cs++;
}
if (priv->num_cs > ASPEED_SPI_MAX_CS)
return -EINVAL;
ret = aspeed_spi_ctrl_init(bus);
return ret;
}
static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
.supports_op = aspeed_spi_supports_op,
.exec_op = aspeed_spi_exec_op_user_mode,
.dirmap_create = aspeed_spi_dirmap_create,
.dirmap_read = aspeed_spi_dirmap_read,
};
static const struct dm_spi_ops aspeed_spi_ops = {
.claim_bus = aspeed_spi_claim_bus,
.release_bus = aspeed_spi_release_bus,
.set_speed = aspeed_spi_set_speed,
.set_mode = aspeed_spi_set_mode,
.mem_ops = &aspeed_spi_mem_ops,
};
static const struct udevice_id aspeed_spi_ids[] = {
{ .compatible = "aspeed,ast2400-fmc", .data = (ulong)&ast2400_fmc_info, },
{ .compatible = "aspeed,ast2400-spi", .data = (ulong)&ast2400_spi_info, },
{ .compatible = "aspeed,ast2500-fmc", .data = (ulong)&ast2500_fmc_info, },
{ .compatible = "aspeed,ast2500-spi", .data = (ulong)&ast2500_spi_info, },
{ .compatible = "aspeed,ast2600-fmc", .data = (ulong)&ast2600_fmc_info, },
{ .compatible = "aspeed,ast2600-spi", .data = (ulong)&ast2600_spi_info, },
{ }
};
U_BOOT_DRIVER(aspeed_spi) = {
.name = "aspeed_spi_smc",
.id = UCLASS_SPI,
.of_match = aspeed_spi_ids,
.ops = &aspeed_spi_ops,
.of_to_plat = apseed_spi_of_to_plat,
.plat_auto = sizeof(struct aspeed_spi_plat),
.priv_auto = sizeof(struct aspeed_spi_priv),
.probe = aspeed_spi_probe,
};