blob: 34688e9bef43231caac3f709a9f5a5f4165ae721 [file] [log] [blame]
/*
* Overview:
* Platform independend driver for NDFC (NanD Flash Controller)
* integrated into IBM/AMCC PPC4xx cores
*
* (C) Copyright 2006-2009
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* Based on original work by
* Thomas Gleixner
* Copyright 2006 IBM
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
#include <linux/mtd/ndfc.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/ppc4xx.h>
#ifndef CONFIG_SYS_NAND_BCR
#define CONFIG_SYS_NAND_BCR 0x80002222
#endif
#ifndef CONFIG_SYS_NDFC_EBC0_CFG
#define CONFIG_SYS_NDFC_EBC0_CFG 0xb8400000
#endif
/*
* We need to store the info, which chip-select (CS) is used for the
* chip number. For example on Sequoia NAND chip #0 uses
* CS #3.
*/
static int ndfc_cs[NDFC_MAX_BANKS];
static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
out_8((u8 *)(base + NDFC_CMD), cmd & 0xFF);
else
out_8((u8 *)(base + NDFC_ALE), cmd & 0xFF);
}
static int ndfc_dev_ready(struct mtd_info *mtdinfo)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
return (in_be32((u32 *)(base + NDFC_STAT)) & NDFC_STAT_IS_READY);
}
static void ndfc_enable_hwecc(struct mtd_info *mtdinfo, int mode)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
u32 ccr;
ccr = in_be32((u32 *)(base + NDFC_CCR));
ccr |= NDFC_CCR_RESET_ECC;
out_be32((u32 *)(base + NDFC_CCR), ccr);
}
static int ndfc_calculate_ecc(struct mtd_info *mtdinfo,
const u_char *dat, u_char *ecc_code)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
u32 ecc;
u8 *p = (u8 *)&ecc;
ecc = in_be32((u32 *)(base + NDFC_ECC));
/* The NDFC uses Smart Media (SMC) bytes order
*/
ecc_code[0] = p[1];
ecc_code[1] = p[2];
ecc_code[2] = p[3];
return 0;
}
/*
* Speedups for buffer read/write/verify
*
* NDFC allows 32bit read/write of data. So we can speed up the buffer
* functions. No further checking, as nand_base will always read/write
* page aligned.
*/
static void ndfc_read_buf(struct mtd_info *mtdinfo, uint8_t *buf, int len)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
uint32_t *p = (uint32_t *) buf;
for (;len > 0; len -= 4)
*p++ = in_be32((u32 *)(base + NDFC_DATA));
}
#ifndef CONFIG_NAND_SPL
/*
* Don't use these speedup functions in NAND boot image, since the image
* has to fit into 4kByte.
*/
static void ndfc_write_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
uint32_t *p = (uint32_t *) buf;
for (; len > 0; len -= 4)
out_be32((u32 *)(base + NDFC_DATA), *p++);
}
static int ndfc_verify_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xffffff00;
uint32_t *p = (uint32_t *) buf;
for (; len > 0; len -= 4)
if (*p++ != in_be32((u32 *)(base + NDFC_DATA)))
return -1;
return 0;
}
/*
* Read a byte from the NDFC.
*/
static uint8_t ndfc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
return (uint8_t) readw(chip->IO_ADDR_R);
#else
return readb(chip->IO_ADDR_R);
#endif
}
#endif /* #ifndef CONFIG_NAND_SPL */
void board_nand_select_device(struct nand_chip *nand, int chip)
{
/*
* Don't use "chip" to address the NAND device,
* generate the cs from the address where it is encoded.
*/
ulong base = (ulong)nand->IO_ADDR_W & 0xffffff00;
int cs = ndfc_cs[chip];
/* Set NandFlash Core Configuration Register */
/* 1 col x 2 rows */
out_be32((u32 *)(base + NDFC_CCR), 0x00000000 | (cs << 24));
out_be32((u32 *)(base + NDFC_BCFG0 + (cs << 2)), CONFIG_SYS_NAND_BCR);
}
static void ndfc_select_chip(struct mtd_info *mtd, int chip)
{
/*
* Nothing to do here!
*/
}
int board_nand_init(struct nand_chip *nand)
{
int cs = (ulong)nand->IO_ADDR_W & 0x00000003;
ulong base = (ulong)nand->IO_ADDR_W & 0xffffff00;
static int chip = 0;
/*
* Save chip-select for this chip #
*/
ndfc_cs[chip] = cs;
/*
* Select required NAND chip in NDFC
*/
board_nand_select_device(nand, chip);
nand->IO_ADDR_R = (void __iomem *)(base + NDFC_DATA);
nand->IO_ADDR_W = (void __iomem *)(base + NDFC_DATA);
nand->cmd_ctrl = ndfc_hwcontrol;
nand->chip_delay = 50;
nand->read_buf = ndfc_read_buf;
nand->dev_ready = ndfc_dev_ready;
nand->ecc.correct = nand_correct_data;
nand->ecc.hwctl = ndfc_enable_hwecc;
nand->ecc.calculate = ndfc_calculate_ecc;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = 256;
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
nand->select_chip = ndfc_select_chip;
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
nand->options |= NAND_BUSWIDTH_16;
#endif
#ifndef CONFIG_NAND_SPL
nand->write_buf = ndfc_write_buf;
nand->verify_buf = ndfc_verify_buf;
nand->read_byte = ndfc_read_byte;
chip++;
#else
/*
* Setup EBC (CS0 only right now)
*/
mtebc(EBC0_CFG, CONFIG_SYS_NDFC_EBC0_CFG);
mtebc(PB0CR, CONFIG_SYS_EBC_PB0CR);
mtebc(PB0AP, CONFIG_SYS_EBC_PB0AP);
#endif
return 0;
}