blob: eaf59134cb0e2797cfe08a70162c37db3f7e57be [file] [log] [blame]
/*-
* Copyright (c) 2007-2008, Juniper Networks, Inc.
* Copyright (c) 2008, Excito Elektronik i Skåne AB
* Copyright (c) 2008, Michael Trimarchi <trimarchimichael@yahoo.it>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <errno.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>
#include <usb.h>
#include <asm/io.h>
#include <malloc.h>
#include <watchdog.h>
#include <linux/compiler.h>
#include "ehci.h"
#ifndef CONFIG_USB_MAX_CONTROLLER_COUNT
#define CONFIG_USB_MAX_CONTROLLER_COUNT 1
#endif
/*
* EHCI spec page 20 says that the HC may take up to 16 uFrames (= 4ms) to halt.
* Let's time out after 8 to have a little safety margin on top of that.
*/
#define HCHALT_TIMEOUT (8 * 1000)
static struct ehci_ctrl ehcic[CONFIG_USB_MAX_CONTROLLER_COUNT];
#define ALIGN_END_ADDR(type, ptr, size) \
((uint32_t)(ptr) + roundup((size) * sizeof(type), USB_DMA_MINALIGN))
static struct descriptor {
struct usb_hub_descriptor hub;
struct usb_device_descriptor device;
struct usb_linux_config_descriptor config;
struct usb_linux_interface_descriptor interface;
struct usb_endpoint_descriptor endpoint;
} __attribute__ ((packed)) descriptor = {
{
0x8, /* bDescLength */
0x29, /* bDescriptorType: hub descriptor */
2, /* bNrPorts -- runtime modified */
0, /* wHubCharacteristics */
10, /* bPwrOn2PwrGood */
0, /* bHubCntrCurrent */
{}, /* Device removable */
{} /* at most 7 ports! XXX */
},
{
0x12, /* bLength */
1, /* bDescriptorType: UDESC_DEVICE */
cpu_to_le16(0x0200), /* bcdUSB: v2.0 */
9, /* bDeviceClass: UDCLASS_HUB */
0, /* bDeviceSubClass: UDSUBCLASS_HUB */
1, /* bDeviceProtocol: UDPROTO_HSHUBSTT */
64, /* bMaxPacketSize: 64 bytes */
0x0000, /* idVendor */
0x0000, /* idProduct */
cpu_to_le16(0x0100), /* bcdDevice */
1, /* iManufacturer */
2, /* iProduct */
0, /* iSerialNumber */
1 /* bNumConfigurations: 1 */
},
{
0x9,
2, /* bDescriptorType: UDESC_CONFIG */
cpu_to_le16(0x19),
1, /* bNumInterface */
1, /* bConfigurationValue */
0, /* iConfiguration */
0x40, /* bmAttributes: UC_SELF_POWER */
0 /* bMaxPower */
},
{
0x9, /* bLength */
4, /* bDescriptorType: UDESC_INTERFACE */
0, /* bInterfaceNumber */
0, /* bAlternateSetting */
1, /* bNumEndpoints */
9, /* bInterfaceClass: UICLASS_HUB */
0, /* bInterfaceSubClass: UISUBCLASS_HUB */
0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */
0 /* iInterface */
},
{
0x7, /* bLength */
5, /* bDescriptorType: UDESC_ENDPOINT */
0x81, /* bEndpointAddress:
* UE_DIR_IN | EHCI_INTR_ENDPT
*/
3, /* bmAttributes: UE_INTERRUPT */
8, /* wMaxPacketSize */
255 /* bInterval */
},
};
#if defined(CONFIG_EHCI_IS_TDI)
#define ehci_is_TDI() (1)
#else
#define ehci_is_TDI() (0)
#endif
int __ehci_get_port_speed(struct ehci_hcor *hcor, uint32_t reg)
{
return PORTSC_PSPD(reg);
}
int ehci_get_port_speed(struct ehci_hcor *hcor, uint32_t reg)
__attribute__((weak, alias("__ehci_get_port_speed")));
void __ehci_set_usbmode(int index)
{
uint32_t tmp;
uint32_t *reg_ptr;
reg_ptr = (uint32_t *)((u8 *)&ehcic[index].hcor->or_usbcmd + USBMODE);
tmp = ehci_readl(reg_ptr);
tmp |= USBMODE_CM_HC;
#if defined(CONFIG_EHCI_MMIO_BIG_ENDIAN)
tmp |= USBMODE_BE;
#endif
ehci_writel(reg_ptr, tmp);
}
void ehci_set_usbmode(int index)
__attribute__((weak, alias("__ehci_set_usbmode")));
void __ehci_powerup_fixup(uint32_t *status_reg, uint32_t *reg)
{
mdelay(50);
}
void ehci_powerup_fixup(uint32_t *status_reg, uint32_t *reg)
__attribute__((weak, alias("__ehci_powerup_fixup")));
static int handshake(uint32_t *ptr, uint32_t mask, uint32_t done, int usec)
{
uint32_t result;
do {
result = ehci_readl(ptr);
udelay(5);
if (result == ~(uint32_t)0)
return -1;
result &= mask;
if (result == done)
return 0;
usec--;
} while (usec > 0);
return -1;
}
static int ehci_reset(int index)
{
uint32_t cmd;
int ret = 0;
cmd = ehci_readl(&ehcic[index].hcor->or_usbcmd);
cmd = (cmd & ~CMD_RUN) | CMD_RESET;
ehci_writel(&ehcic[index].hcor->or_usbcmd, cmd);
ret = handshake((uint32_t *)&ehcic[index].hcor->or_usbcmd,
CMD_RESET, 0, 250 * 1000);
if (ret < 0) {
printf("EHCI fail to reset\n");
goto out;
}
if (ehci_is_TDI())
ehci_set_usbmode(index);
#ifdef CONFIG_USB_EHCI_TXFIFO_THRESH
cmd = ehci_readl(&ehcic[index].hcor->or_txfilltuning);
cmd &= ~TXFIFO_THRESH_MASK;
cmd |= TXFIFO_THRESH(CONFIG_USB_EHCI_TXFIFO_THRESH);
ehci_writel(&ehcic[index].hcor->or_txfilltuning, cmd);
#endif
out:
return ret;
}
static int ehci_shutdown(struct ehci_ctrl *ctrl)
{
int i, ret = 0;
uint32_t cmd, reg;
if (!ctrl || !ctrl->hcor)
return -EINVAL;
cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
cmd &= ~(CMD_PSE | CMD_ASE);
ehci_writel(&ctrl->hcor->or_usbcmd, cmd);
ret = handshake(&ctrl->hcor->or_usbsts, STS_ASS | STS_PSS, 0,
100 * 1000);
if (!ret) {
for (i = 0; i < CONFIG_SYS_USB_EHCI_MAX_ROOT_PORTS; i++) {
reg = ehci_readl(&ctrl->hcor->or_portsc[i]);
reg |= EHCI_PS_SUSP;
ehci_writel(&ctrl->hcor->or_portsc[i], reg);
}
cmd &= ~CMD_RUN;
ehci_writel(&ctrl->hcor->or_usbcmd, cmd);
ret = handshake(&ctrl->hcor->or_usbsts, STS_HALT, STS_HALT,
HCHALT_TIMEOUT);
}
if (ret)
puts("EHCI failed to shut down host controller.\n");
return ret;
}
static int ehci_td_buffer(struct qTD *td, void *buf, size_t sz)
{
uint32_t delta, next;
uint32_t addr = (uint32_t)buf;
int idx;
if (addr != ALIGN(addr, ARCH_DMA_MINALIGN))
debug("EHCI-HCD: Misaligned buffer address (%p)\n", buf);
flush_dcache_range(addr, ALIGN(addr + sz, ARCH_DMA_MINALIGN));
idx = 0;
while (idx < QT_BUFFER_CNT) {
td->qt_buffer[idx] = cpu_to_hc32(addr);
td->qt_buffer_hi[idx] = 0;
next = (addr + EHCI_PAGE_SIZE) & ~(EHCI_PAGE_SIZE - 1);
delta = next - addr;
if (delta >= sz)
break;
sz -= delta;
addr = next;
idx++;
}
if (idx == QT_BUFFER_CNT) {
printf("out of buffer pointers (%u bytes left)\n", sz);
return -1;
}
return 0;
}
static inline u8 ehci_encode_speed(enum usb_device_speed speed)
{
#define QH_HIGH_SPEED 2
#define QH_FULL_SPEED 0
#define QH_LOW_SPEED 1
if (speed == USB_SPEED_HIGH)
return QH_HIGH_SPEED;
if (speed == USB_SPEED_LOW)
return QH_LOW_SPEED;
return QH_FULL_SPEED;
}
static int
ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer,
int length, struct devrequest *req)
{
ALLOC_ALIGN_BUFFER(struct QH, qh, 1, USB_DMA_MINALIGN);
struct qTD *qtd;
int qtd_count = 0;
int qtd_counter = 0;
volatile struct qTD *vtd;
unsigned long ts;
uint32_t *tdp;
uint32_t endpt, maxpacket, token, usbsts;
uint32_t c, toggle;
uint32_t cmd;
int timeout;
int ret = 0;
struct ehci_ctrl *ctrl = dev->controller;
debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe,
buffer, length, req);
if (req != NULL)
debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n",
req->request, req->request,
req->requesttype, req->requesttype,
le16_to_cpu(req->value), le16_to_cpu(req->value),
le16_to_cpu(req->index));
#define PKT_ALIGN 512
/*
* The USB transfer is split into qTD transfers. Eeach qTD transfer is
* described by a transfer descriptor (the qTD). The qTDs form a linked
* list with a queue head (QH).
*
* Each qTD transfer starts with a new USB packet, i.e. a packet cannot
* have its beginning in a qTD transfer and its end in the following
* one, so the qTD transfer lengths have to be chosen accordingly.
*
* Each qTD transfer uses up to QT_BUFFER_CNT data buffers, mapped to
* single pages. The first data buffer can start at any offset within a
* page (not considering the cache-line alignment issues), while the
* following buffers must be page-aligned. There is no alignment
* constraint on the size of a qTD transfer.
*/
if (req != NULL)
/* 1 qTD will be needed for SETUP, and 1 for ACK. */
qtd_count += 1 + 1;
if (length > 0 || req == NULL) {
/*
* Determine the qTD transfer size that will be used for the
* data payload (not considering the first qTD transfer, which
* may be longer or shorter, and the final one, which may be
* shorter).
*
* In order to keep each packet within a qTD transfer, the qTD
* transfer size is aligned to PKT_ALIGN, which is a multiple of
* wMaxPacketSize (except in some cases for interrupt transfers,
* see comment in submit_int_msg()).
*
* By default, i.e. if the input buffer is aligned to PKT_ALIGN,
* QT_BUFFER_CNT full pages will be used.
*/
int xfr_sz = QT_BUFFER_CNT;
/*
* However, if the input buffer is not aligned to PKT_ALIGN, the
* qTD transfer size will be one page shorter, and the first qTD
* data buffer of each transfer will be page-unaligned.
*/
if ((uint32_t)buffer & (PKT_ALIGN - 1))
xfr_sz--;
/* Convert the qTD transfer size to bytes. */
xfr_sz *= EHCI_PAGE_SIZE;
/*
* Approximate by excess the number of qTDs that will be
* required for the data payload. The exact formula is way more
* complicated and saves at most 2 qTDs, i.e. a total of 128
* bytes.
*/
qtd_count += 2 + length / xfr_sz;
}
/*
* Threshold value based on the worst-case total size of the allocated qTDs for
* a mass-storage transfer of 65535 blocks of 512 bytes.
*/
#if CONFIG_SYS_MALLOC_LEN <= 64 + 128 * 1024
#warning CONFIG_SYS_MALLOC_LEN may be too small for EHCI
#endif
qtd = memalign(USB_DMA_MINALIGN, qtd_count * sizeof(struct qTD));
if (qtd == NULL) {
printf("unable to allocate TDs\n");
return -1;
}
memset(qh, 0, sizeof(struct QH));
memset(qtd, 0, qtd_count * sizeof(*qtd));
toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));
/*
* Setup QH (3.6 in ehci-r10.pdf)
*
* qh_link ................. 03-00 H
* qh_endpt1 ............... 07-04 H
* qh_endpt2 ............... 0B-08 H
* - qh_curtd
* qh_overlay.qt_next ...... 13-10 H
* - qh_overlay.qt_altnext
*/
qh->qh_link = cpu_to_hc32((uint32_t)&ctrl->qh_list | QH_LINK_TYPE_QH);
c = (dev->speed != USB_SPEED_HIGH) && !usb_pipeendpoint(pipe);
maxpacket = usb_maxpacket(dev, pipe);
endpt = QH_ENDPT1_RL(8) | QH_ENDPT1_C(c) |
QH_ENDPT1_MAXPKTLEN(maxpacket) | QH_ENDPT1_H(0) |
QH_ENDPT1_DTC(QH_ENDPT1_DTC_DT_FROM_QTD) |
QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) |
QH_ENDPT1_ENDPT(usb_pipeendpoint(pipe)) | QH_ENDPT1_I(0) |
QH_ENDPT1_DEVADDR(usb_pipedevice(pipe));
qh->qh_endpt1 = cpu_to_hc32(endpt);
endpt = QH_ENDPT2_MULT(1) | QH_ENDPT2_PORTNUM(dev->portnr) |
QH_ENDPT2_HUBADDR(dev->parent->devnum) |
QH_ENDPT2_UFCMASK(0) | QH_ENDPT2_UFSMASK(0);
qh->qh_endpt2 = cpu_to_hc32(endpt);
qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
qh->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
tdp = &qh->qh_overlay.qt_next;
if (req != NULL) {
/*
* Setup request qTD (3.5 in ehci-r10.pdf)
*
* qt_next ................ 03-00 H
* qt_altnext ............. 07-04 H
* qt_token ............... 0B-08 H
*
* [ buffer, buffer_hi ] loaded with "req".
*/
qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
token = QT_TOKEN_DT(0) | QT_TOKEN_TOTALBYTES(sizeof(*req)) |
QT_TOKEN_IOC(0) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) |
QT_TOKEN_PID(QT_TOKEN_PID_SETUP) |
QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
qtd[qtd_counter].qt_token = cpu_to_hc32(token);
if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req))) {
printf("unable to construct SETUP TD\n");
goto fail;
}
/* Update previous qTD! */
*tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
tdp = &qtd[qtd_counter++].qt_next;
toggle = 1;
}
if (length > 0 || req == NULL) {
uint8_t *buf_ptr = buffer;
int left_length = length;
do {
/*
* Determine the size of this qTD transfer. By default,
* QT_BUFFER_CNT full pages can be used.
*/
int xfr_bytes = QT_BUFFER_CNT * EHCI_PAGE_SIZE;
/*
* However, if the input buffer is not page-aligned, the
* portion of the first page before the buffer start
* offset within that page is unusable.
*/
xfr_bytes -= (uint32_t)buf_ptr & (EHCI_PAGE_SIZE - 1);
/*
* In order to keep each packet within a qTD transfer,
* align the qTD transfer size to PKT_ALIGN.
*/
xfr_bytes &= ~(PKT_ALIGN - 1);
/*
* This transfer may be shorter than the available qTD
* transfer size that has just been computed.
*/
xfr_bytes = min(xfr_bytes, left_length);
/*
* Setup request qTD (3.5 in ehci-r10.pdf)
*
* qt_next ................ 03-00 H
* qt_altnext ............. 07-04 H
* qt_token ............... 0B-08 H
*
* [ buffer, buffer_hi ] loaded with "buffer".
*/
qtd[qtd_counter].qt_next =
cpu_to_hc32(QT_NEXT_TERMINATE);
qtd[qtd_counter].qt_altnext =
cpu_to_hc32(QT_NEXT_TERMINATE);
token = QT_TOKEN_DT(toggle) |
QT_TOKEN_TOTALBYTES(xfr_bytes) |
QT_TOKEN_IOC(req == NULL) | QT_TOKEN_CPAGE(0) |
QT_TOKEN_CERR(3) |
QT_TOKEN_PID(usb_pipein(pipe) ?
QT_TOKEN_PID_IN : QT_TOKEN_PID_OUT) |
QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
qtd[qtd_counter].qt_token = cpu_to_hc32(token);
if (ehci_td_buffer(&qtd[qtd_counter], buf_ptr,
xfr_bytes)) {
printf("unable to construct DATA TD\n");
goto fail;
}
/* Update previous qTD! */
*tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
tdp = &qtd[qtd_counter++].qt_next;
/*
* Data toggle has to be adjusted since the qTD transfer
* size is not always an even multiple of
* wMaxPacketSize.
*/
if ((xfr_bytes / maxpacket) & 1)
toggle ^= 1;
buf_ptr += xfr_bytes;
left_length -= xfr_bytes;
} while (left_length > 0);
}
if (req != NULL) {
/*
* Setup request qTD (3.5 in ehci-r10.pdf)
*
* qt_next ................ 03-00 H
* qt_altnext ............. 07-04 H
* qt_token ............... 0B-08 H
*/
qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
token = QT_TOKEN_DT(1) | QT_TOKEN_TOTALBYTES(0) |
QT_TOKEN_IOC(1) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) |
QT_TOKEN_PID(usb_pipein(pipe) ?
QT_TOKEN_PID_OUT : QT_TOKEN_PID_IN) |
QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
qtd[qtd_counter].qt_token = cpu_to_hc32(token);
/* Update previous qTD! */
*tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
tdp = &qtd[qtd_counter++].qt_next;
}
ctrl->qh_list.qh_link = cpu_to_hc32((uint32_t)qh | QH_LINK_TYPE_QH);
/* Flush dcache */
flush_dcache_range((uint32_t)&ctrl->qh_list,
ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1));
flush_dcache_range((uint32_t)qh, ALIGN_END_ADDR(struct QH, qh, 1));
flush_dcache_range((uint32_t)qtd,
ALIGN_END_ADDR(struct qTD, qtd, qtd_count));
/* Set async. queue head pointer. */
ehci_writel(&ctrl->hcor->or_asynclistaddr, (uint32_t)&ctrl->qh_list);
usbsts = ehci_readl(&ctrl->hcor->or_usbsts);
ehci_writel(&ctrl->hcor->or_usbsts, (usbsts & 0x3f));
/* Enable async. schedule. */
cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
cmd |= CMD_ASE;
ehci_writel(&ctrl->hcor->or_usbcmd, cmd);
ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, STS_ASS,
100 * 1000);
if (ret < 0) {
printf("EHCI fail timeout STS_ASS set\n");
goto fail;
}
/* Wait for TDs to be processed. */
ts = get_timer(0);
vtd = &qtd[qtd_counter - 1];
timeout = USB_TIMEOUT_MS(pipe);
do {
/* Invalidate dcache */
invalidate_dcache_range((uint32_t)&ctrl->qh_list,
ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1));
invalidate_dcache_range((uint32_t)qh,
ALIGN_END_ADDR(struct QH, qh, 1));
invalidate_dcache_range((uint32_t)qtd,
ALIGN_END_ADDR(struct qTD, qtd, qtd_count));
token = hc32_to_cpu(vtd->qt_token);
if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE))
break;
WATCHDOG_RESET();
} while (get_timer(ts) < timeout);
/*
* Invalidate the memory area occupied by buffer
* Don't try to fix the buffer alignment, if it isn't properly
* aligned it's upper layer's fault so let invalidate_dcache_range()
* vow about it. But we have to fix the length as it's actual
* transfer length and can be unaligned. This is potentially
* dangerous operation, it's responsibility of the calling
* code to make sure enough space is reserved.
*/
invalidate_dcache_range((uint32_t)buffer,
ALIGN((uint32_t)buffer + length, ARCH_DMA_MINALIGN));
/* Check that the TD processing happened */
if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)
printf("EHCI timed out on TD - token=%#x\n", token);
/* Disable async schedule. */
cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
cmd &= ~CMD_ASE;
ehci_writel(&ctrl->hcor->or_usbcmd, cmd);
ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, 0,
100 * 1000);
if (ret < 0) {
printf("EHCI fail timeout STS_ASS reset\n");
goto fail;
}
token = hc32_to_cpu(qh->qh_overlay.qt_token);
if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) {
debug("TOKEN=%#x\n", token);
switch (QT_TOKEN_GET_STATUS(token) &
~(QT_TOKEN_STATUS_SPLITXSTATE | QT_TOKEN_STATUS_PERR)) {
case 0:
toggle = QT_TOKEN_GET_DT(token);
usb_settoggle(dev, usb_pipeendpoint(pipe),
usb_pipeout(pipe), toggle);
dev->status = 0;
break;
case QT_TOKEN_STATUS_HALTED:
dev->status = USB_ST_STALLED;
break;
case QT_TOKEN_STATUS_ACTIVE | QT_TOKEN_STATUS_DATBUFERR:
case QT_TOKEN_STATUS_DATBUFERR:
dev->status = USB_ST_BUF_ERR;
break;
case QT_TOKEN_STATUS_HALTED | QT_TOKEN_STATUS_BABBLEDET:
case QT_TOKEN_STATUS_BABBLEDET:
dev->status = USB_ST_BABBLE_DET;
break;
default:
dev->status = USB_ST_CRC_ERR;
if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_HALTED)
dev->status |= USB_ST_STALLED;
break;
}
dev->act_len = length - QT_TOKEN_GET_TOTALBYTES(token);
} else {
dev->act_len = 0;
#ifndef CONFIG_USB_EHCI_FARADAY
debug("dev=%u, usbsts=%#x, p[1]=%#x, p[2]=%#x\n",
dev->devnum, ehci_readl(&ctrl->hcor->or_usbsts),
ehci_readl(&ctrl->hcor->or_portsc[0]),
ehci_readl(&ctrl->hcor->or_portsc[1]));
#endif
}
free(qtd);
return (dev->status != USB_ST_NOT_PROC) ? 0 : -1;
fail:
free(qtd);
return -1;
}
__weak uint32_t *ehci_get_portsc_register(struct ehci_hcor *hcor, int port)
{
if (port < 0 || port >= CONFIG_SYS_USB_EHCI_MAX_ROOT_PORTS) {
/* Printing the message would cause a scan failure! */
debug("The request port(%u) is not configured\n", port);
return NULL;
}
return (uint32_t *)&hcor->or_portsc[port];
}
int
ehci_submit_root(struct usb_device *dev, unsigned long pipe, void *buffer,
int length, struct devrequest *req)
{
uint8_t tmpbuf[4];
u16 typeReq;
void *srcptr = NULL;
int len, srclen;
uint32_t reg;
uint32_t *status_reg;
int port = le16_to_cpu(req->index) & 0xff;
struct ehci_ctrl *ctrl = dev->controller;
srclen = 0;
debug("req=%u (%#x), type=%u (%#x), value=%u, index=%u\n",
req->request, req->request,
req->requesttype, req->requesttype,
le16_to_cpu(req->value), le16_to_cpu(req->index));
typeReq = req->request | req->requesttype << 8;
switch (typeReq) {
case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
status_reg = ehci_get_portsc_register(ctrl->hcor, port - 1);
if (!status_reg)
return -1;
break;
default:
status_reg = NULL;
break;
}
switch (typeReq) {
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
switch (le16_to_cpu(req->value) >> 8) {
case USB_DT_DEVICE:
debug("USB_DT_DEVICE request\n");
srcptr = &descriptor.device;
srclen = descriptor.device.bLength;
break;
case USB_DT_CONFIG:
debug("USB_DT_CONFIG config\n");
srcptr = &descriptor.config;
srclen = descriptor.config.bLength +
descriptor.interface.bLength +
descriptor.endpoint.bLength;
break;
case USB_DT_STRING:
debug("USB_DT_STRING config\n");
switch (le16_to_cpu(req->value) & 0xff) {
case 0: /* Language */
srcptr = "\4\3\1\0";
srclen = 4;
break;
case 1: /* Vendor */
srcptr = "\16\3u\0-\0b\0o\0o\0t\0";
srclen = 14;
break;
case 2: /* Product */
srcptr = "\52\3E\0H\0C\0I\0 "
"\0H\0o\0s\0t\0 "
"\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
srclen = 42;
break;
default:
debug("unknown value DT_STRING %x\n",
le16_to_cpu(req->value));
goto unknown;
}
break;
default:
debug("unknown value %x\n", le16_to_cpu(req->value));
goto unknown;
}
break;
case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
switch (le16_to_cpu(req->value) >> 8) {
case USB_DT_HUB:
debug("USB_DT_HUB config\n");
srcptr = &descriptor.hub;
srclen = descriptor.hub.bLength;
break;
default:
debug("unknown value %x\n", le16_to_cpu(req->value));
goto unknown;
}
break;
case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
debug("USB_REQ_SET_ADDRESS\n");
ctrl->rootdev = le16_to_cpu(req->value);
break;
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
debug("USB_REQ_SET_CONFIGURATION\n");
/* Nothing to do */
break;
case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */
tmpbuf[1] = 0;
srcptr = tmpbuf;
srclen = 2;
break;
case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
memset(tmpbuf, 0, 4);
reg = ehci_readl(status_reg);
if (reg & EHCI_PS_CS)
tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
if (reg & EHCI_PS_PE)
tmpbuf[0] |= USB_PORT_STAT_ENABLE;
if (reg & EHCI_PS_SUSP)
tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
if (reg & EHCI_PS_OCA)
tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
if (reg & EHCI_PS_PR)
tmpbuf[0] |= USB_PORT_STAT_RESET;
if (reg & EHCI_PS_PP)
tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
if (ehci_is_TDI()) {
switch (ehci_get_port_speed(ctrl->hcor, reg)) {
case PORTSC_PSPD_FS:
break;
case PORTSC_PSPD_LS:
tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
break;
case PORTSC_PSPD_HS:
default:
tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
break;
}
} else {
tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
}
if (reg & EHCI_PS_CSC)
tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
if (reg & EHCI_PS_PEC)
tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
if (reg & EHCI_PS_OCC)
tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
if (ctrl->portreset & (1 << port))
tmpbuf[2] |= USB_PORT_STAT_C_RESET;
srcptr = tmpbuf;
srclen = 4;
break;
case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
reg = ehci_readl(status_reg);
reg &= ~EHCI_PS_CLEAR;
switch (le16_to_cpu(req->value)) {
case USB_PORT_FEAT_ENABLE:
reg |= EHCI_PS_PE;
ehci_writel(status_reg, reg);
break;
case USB_PORT_FEAT_POWER:
if (HCS_PPC(ehci_readl(&ctrl->hccr->cr_hcsparams))) {
reg |= EHCI_PS_PP;
ehci_writel(status_reg, reg);
}
break;
case USB_PORT_FEAT_RESET:
if ((reg & (EHCI_PS_PE | EHCI_PS_CS)) == EHCI_PS_CS &&
!ehci_is_TDI() &&
EHCI_PS_IS_LOWSPEED(reg)) {
/* Low speed device, give up ownership. */
debug("port %d low speed --> companion\n",
port - 1);
reg |= EHCI_PS_PO;
ehci_writel(status_reg, reg);
break;
} else {
int ret;
reg |= EHCI_PS_PR;
reg &= ~EHCI_PS_PE;
ehci_writel(status_reg, reg);
/*
* caller must wait, then call GetPortStatus
* usb 2.0 specification say 50 ms resets on
* root
*/
ehci_powerup_fixup(status_reg, &reg);
ehci_writel(status_reg, reg & ~EHCI_PS_PR);
/*
* A host controller must terminate the reset
* and stabilize the state of the port within
* 2 milliseconds
*/
ret = handshake(status_reg, EHCI_PS_PR, 0,
2 * 1000);
if (!ret)
ctrl->portreset |= 1 << port;
else
printf("port(%d) reset error\n",
port - 1);
}
break;
case USB_PORT_FEAT_TEST:
ehci_shutdown(ctrl);
reg &= ~(0xf << 16);
reg |= ((le16_to_cpu(req->index) >> 8) & 0xf) << 16;
ehci_writel(status_reg, reg);
break;
default:
debug("unknown feature %x\n", le16_to_cpu(req->value));
goto unknown;
}
/* unblock posted writes */
(void) ehci_readl(&ctrl->hcor->or_usbcmd);
break;
case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
reg = ehci_readl(status_reg);
reg &= ~EHCI_PS_CLEAR;
switch (le16_to_cpu(req->value)) {
case USB_PORT_FEAT_ENABLE:
reg &= ~EHCI_PS_PE;
break;
case USB_PORT_FEAT_C_ENABLE:
reg |= EHCI_PS_PE;
break;
case USB_PORT_FEAT_POWER:
if (HCS_PPC(ehci_readl(&ctrl->hccr->cr_hcsparams)))
reg &= ~EHCI_PS_PP;
break;
case USB_PORT_FEAT_C_CONNECTION:
reg |= EHCI_PS_CSC;
break;
case USB_PORT_FEAT_OVER_CURRENT:
reg |= EHCI_PS_OCC;
break;
case USB_PORT_FEAT_C_RESET:
ctrl->portreset &= ~(1 << port);
break;
default:
debug("unknown feature %x\n", le16_to_cpu(req->value));
goto unknown;
}
ehci_writel(status_reg, reg);
/* unblock posted write */
(void) ehci_readl(&ctrl->hcor->or_usbcmd);
break;
default:
debug("Unknown request\n");
goto unknown;
}
mdelay(1);
len = min3(srclen, le16_to_cpu(req->length), length);
if (srcptr != NULL && len > 0)
memcpy(buffer, srcptr, len);
else
debug("Len is 0\n");
dev->act_len = len;
dev->status = 0;
return 0;
unknown:
debug("requesttype=%x, request=%x, value=%x, index=%x, length=%x\n",
req->requesttype, req->request, le16_to_cpu(req->value),
le16_to_cpu(req->index), le16_to_cpu(req->length));
dev->act_len = 0;
dev->status = USB_ST_STALLED;
return -1;
}
int usb_lowlevel_stop(int index)
{
ehci_shutdown(&ehcic[index]);
return ehci_hcd_stop(index);
}
int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
{
uint32_t reg;
uint32_t cmd;
struct QH *qh_list;
struct QH *periodic;
int i;
int rc;
rc = ehci_hcd_init(index, init, &ehcic[index].hccr, &ehcic[index].hcor);
if (rc)
return rc;
if (init == USB_INIT_DEVICE)
goto done;
/* EHCI spec section 4.1 */
if (ehci_reset(index))
return -1;
#if defined(CONFIG_EHCI_HCD_INIT_AFTER_RESET)
rc = ehci_hcd_init(index, init, &ehcic[index].hccr, &ehcic[index].hcor);
if (rc)
return rc;
#endif
/* Set the high address word (aka segment) for 64-bit controller */
if (ehci_readl(&ehcic[index].hccr->cr_hccparams) & 1)
ehci_writel(&ehcic[index].hcor->or_ctrldssegment, 0);
qh_list = &ehcic[index].qh_list;
/* Set head of reclaim list */
memset(qh_list, 0, sizeof(*qh_list));
qh_list->qh_link = cpu_to_hc32((uint32_t)qh_list | QH_LINK_TYPE_QH);
qh_list->qh_endpt1 = cpu_to_hc32(QH_ENDPT1_H(1) |
QH_ENDPT1_EPS(USB_SPEED_HIGH));
qh_list->qh_curtd = cpu_to_hc32(QT_NEXT_TERMINATE);
qh_list->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
qh_list->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
qh_list->qh_overlay.qt_token =
cpu_to_hc32(QT_TOKEN_STATUS(QT_TOKEN_STATUS_HALTED));
flush_dcache_range((uint32_t)qh_list,
ALIGN_END_ADDR(struct QH, qh_list, 1));
/* Set async. queue head pointer. */
ehci_writel(&ehcic[index].hcor->or_asynclistaddr, (uint32_t)qh_list);
/*
* Set up periodic list
* Step 1: Parent QH for all periodic transfers.
*/
periodic = &ehcic[index].periodic_queue;
memset(periodic, 0, sizeof(*periodic));
periodic->qh_link = cpu_to_hc32(QH_LINK_TERMINATE);
periodic->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
periodic->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
flush_dcache_range((uint32_t)periodic,
ALIGN_END_ADDR(struct QH, periodic, 1));
/*
* Step 2: Setup frame-list: Every microframe, USB tries the same list.
* In particular, device specifications on polling frequency
* are disregarded. Keyboards seem to send NAK/NYet reliably
* when polled with an empty buffer.
*
* Split Transactions will be spread across microframes using
* S-mask and C-mask.
*/
if (ehcic[index].periodic_list == NULL)
ehcic[index].periodic_list = memalign(4096, 1024 * 4);
if (!ehcic[index].periodic_list)
return -ENOMEM;
for (i = 0; i < 1024; i++) {
ehcic[index].periodic_list[i] = cpu_to_hc32((uint32_t)periodic
| QH_LINK_TYPE_QH);
}
flush_dcache_range((uint32_t)ehcic[index].periodic_list,
ALIGN_END_ADDR(uint32_t, ehcic[index].periodic_list,
1024));
/* Set periodic list base address */
ehci_writel(&ehcic[index].hcor->or_periodiclistbase,
(uint32_t)ehcic[index].periodic_list);
reg = ehci_readl(&ehcic[index].hccr->cr_hcsparams);
descriptor.hub.bNbrPorts = HCS_N_PORTS(reg);
debug("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
/* Port Indicators */
if (HCS_INDICATOR(reg))
put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
| 0x80, &descriptor.hub.wHubCharacteristics);
/* Port Power Control */
if (HCS_PPC(reg))
put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
| 0x01, &descriptor.hub.wHubCharacteristics);
/* Start the host controller. */
cmd = ehci_readl(&ehcic[index].hcor->or_usbcmd);
/*
* Philips, Intel, and maybe others need CMD_RUN before the
* root hub will detect new devices (why?); NEC doesn't
*/
cmd &= ~(CMD_LRESET|CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
cmd |= CMD_RUN;
ehci_writel(&ehcic[index].hcor->or_usbcmd, cmd);
#ifndef CONFIG_USB_EHCI_FARADAY
/* take control over the ports */
cmd = ehci_readl(&ehcic[index].hcor->or_configflag);
cmd |= FLAG_CF;
ehci_writel(&ehcic[index].hcor->or_configflag, cmd);
#endif
/* unblock posted write */
cmd = ehci_readl(&ehcic[index].hcor->or_usbcmd);
mdelay(5);
reg = HC_VERSION(ehci_readl(&ehcic[index].hccr->cr_capbase));
printf("USB EHCI %x.%02x\n", reg >> 8, reg & 0xff);
ehcic[index].rootdev = 0;
done:
*controller = &ehcic[index];
return 0;
}
int
submit_bulk_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int length)
{
if (usb_pipetype(pipe) != PIPE_BULK) {
debug("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
return -1;
}
return ehci_submit_async(dev, pipe, buffer, length, NULL);
}
int
submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int length, struct devrequest *setup)
{
struct ehci_ctrl *ctrl = dev->controller;
if (usb_pipetype(pipe) != PIPE_CONTROL) {
debug("non-control pipe (type=%lu)", usb_pipetype(pipe));
return -1;
}
if (usb_pipedevice(pipe) == ctrl->rootdev) {
if (!ctrl->rootdev)
dev->speed = USB_SPEED_HIGH;
return ehci_submit_root(dev, pipe, buffer, length, setup);
}
return ehci_submit_async(dev, pipe, buffer, length, setup);
}
struct int_queue {
struct QH *first;
struct QH *current;
struct QH *last;
struct qTD *tds;
};
#define NEXT_QH(qh) (struct QH *)(hc32_to_cpu((qh)->qh_link) & ~0x1f)
static int
enable_periodic(struct ehci_ctrl *ctrl)
{
uint32_t cmd;
struct ehci_hcor *hcor = ctrl->hcor;
int ret;
cmd = ehci_readl(&hcor->or_usbcmd);
cmd |= CMD_PSE;
ehci_writel(&hcor->or_usbcmd, cmd);
ret = handshake((uint32_t *)&hcor->or_usbsts,
STS_PSS, STS_PSS, 100 * 1000);
if (ret < 0) {
printf("EHCI failed: timeout when enabling periodic list\n");
return -ETIMEDOUT;
}
udelay(1000);
return 0;
}
static int
disable_periodic(struct ehci_ctrl *ctrl)
{
uint32_t cmd;
struct ehci_hcor *hcor = ctrl->hcor;
int ret;
cmd = ehci_readl(&hcor->or_usbcmd);
cmd &= ~CMD_PSE;
ehci_writel(&hcor->or_usbcmd, cmd);
ret = handshake((uint32_t *)&hcor->or_usbsts,
STS_PSS, 0, 100 * 1000);
if (ret < 0) {
printf("EHCI failed: timeout when disabling periodic list\n");
return -ETIMEDOUT;
}
return 0;
}
static int periodic_schedules;
struct int_queue *
create_int_queue(struct usb_device *dev, unsigned long pipe, int queuesize,
int elementsize, void *buffer)
{
struct ehci_ctrl *ctrl = dev->controller;
struct int_queue *result = NULL;
int i;
debug("Enter create_int_queue\n");
if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
debug("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
return NULL;
}
/* limit to 4 full pages worth of data -
* we can safely fit them in a single TD,
* no matter the alignment
*/
if (elementsize >= 16384) {
debug("too large elements for interrupt transfers\n");
return NULL;
}
result = malloc(sizeof(*result));
if (!result) {
debug("ehci intr queue: out of memory\n");
goto fail1;
}
result->first = memalign(USB_DMA_MINALIGN,
sizeof(struct QH) * queuesize);
if (!result->first) {
debug("ehci intr queue: out of memory\n");
goto fail2;
}
result->current = result->first;
result->last = result->first + queuesize - 1;
result->tds = memalign(USB_DMA_MINALIGN,
sizeof(struct qTD) * queuesize);
if (!result->tds) {
debug("ehci intr queue: out of memory\n");
goto fail3;
}
memset(result->first, 0, sizeof(struct QH) * queuesize);
memset(result->tds, 0, sizeof(struct qTD) * queuesize);
for (i = 0; i < queuesize; i++) {
struct QH *qh = result->first + i;
struct qTD *td = result->tds + i;
void **buf = &qh->buffer;
qh->qh_link = cpu_to_hc32((uint32_t)(qh+1) | QH_LINK_TYPE_QH);
if (i == queuesize - 1)
qh->qh_link = cpu_to_hc32(QH_LINK_TERMINATE);
qh->qh_overlay.qt_next = cpu_to_hc32((uint32_t)td);
qh->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
qh->qh_endpt1 =
cpu_to_hc32((0 << 28) | /* No NAK reload (ehci 4.9) */
(usb_maxpacket(dev, pipe) << 16) | /* MPS */
(1 << 14) |
QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) |
(usb_pipeendpoint(pipe) << 8) | /* Endpoint Number */
(usb_pipedevice(pipe) << 0));
qh->qh_endpt2 = cpu_to_hc32((1 << 30) | /* 1 Tx per mframe */
(1 << 0)); /* S-mask: microframe 0 */
if (dev->speed == USB_SPEED_LOW ||
dev->speed == USB_SPEED_FULL) {
debug("TT: port: %d, hub address: %d\n",
dev->portnr, dev->parent->devnum);
qh->qh_endpt2 |= cpu_to_hc32((dev->portnr << 23) |
(dev->parent->devnum << 16) |
(0x1c << 8)); /* C-mask: microframes 2-4 */
}
td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
debug("communication direction is '%s'\n",
usb_pipein(pipe) ? "in" : "out");
td->qt_token = cpu_to_hc32((elementsize << 16) |
((usb_pipein(pipe) ? 1 : 0) << 8) | /* IN/OUT token */
0x80); /* active */
td->qt_buffer[0] =
cpu_to_hc32((uint32_t)buffer + i * elementsize);
td->qt_buffer[1] =
cpu_to_hc32((td->qt_buffer[0] + 0x1000) & ~0xfff);
td->qt_buffer[2] =
cpu_to_hc32((td->qt_buffer[0] + 0x2000) & ~0xfff);
td->qt_buffer[3] =
cpu_to_hc32((td->qt_buffer[0] + 0x3000) & ~0xfff);
td->qt_buffer[4] =
cpu_to_hc32((td->qt_buffer[0] + 0x4000) & ~0xfff);
*buf = buffer + i * elementsize;
}
flush_dcache_range((uint32_t)buffer,
ALIGN_END_ADDR(char, buffer,
queuesize * elementsize));
flush_dcache_range((uint32_t)result->first,
ALIGN_END_ADDR(struct QH, result->first,
queuesize));
flush_dcache_range((uint32_t)result->tds,
ALIGN_END_ADDR(struct qTD, result->tds,
queuesize));
if (disable_periodic(ctrl) < 0) {
debug("FATAL: periodic should never fail, but did");
goto fail3;
}
/* hook up to periodic list */
struct QH *list = &ctrl->periodic_queue;
result->last->qh_link = list->qh_link;
list->qh_link = cpu_to_hc32((uint32_t)result->first | QH_LINK_TYPE_QH);
flush_dcache_range((uint32_t)result->last,
ALIGN_END_ADDR(struct QH, result->last, 1));
flush_dcache_range((uint32_t)list,
ALIGN_END_ADDR(struct QH, list, 1));
if (enable_periodic(ctrl) < 0) {
debug("FATAL: periodic should never fail, but did");
goto fail3;
}
periodic_schedules++;
debug("Exit create_int_queue\n");
return result;
fail3:
if (result->tds)
free(result->tds);
fail2:
if (result->first)
free(result->first);
if (result)
free(result);
fail1:
return NULL;
}
void *poll_int_queue(struct usb_device *dev, struct int_queue *queue)
{
struct QH *cur = queue->current;
/* depleted queue */
if (cur == NULL) {
debug("Exit poll_int_queue with completed queue\n");
return NULL;
}
/* still active */
invalidate_dcache_range((uint32_t)cur,
ALIGN_END_ADDR(struct QH, cur, 1));
if (cur->qh_overlay.qt_token & cpu_to_hc32(0x80)) {
debug("Exit poll_int_queue with no completed intr transfer. "
"token is %x\n", cur->qh_overlay.qt_token);
return NULL;
}
if (!(cur->qh_link & QH_LINK_TERMINATE))
queue->current++;
else
queue->current = NULL;
debug("Exit poll_int_queue with completed intr transfer. "
"token is %x at %p (first at %p)\n", cur->qh_overlay.qt_token,
&cur->qh_overlay.qt_token, queue->first);
return cur->buffer;
}
/* Do not free buffers associated with QHs, they're owned by someone else */
int
destroy_int_queue(struct usb_device *dev, struct int_queue *queue)
{
struct ehci_ctrl *ctrl = dev->controller;
int result = -1;
unsigned long timeout;
if (disable_periodic(ctrl) < 0) {
debug("FATAL: periodic should never fail, but did");
goto out;
}
periodic_schedules--;
struct QH *cur = &ctrl->periodic_queue;
timeout = get_timer(0) + 500; /* abort after 500ms */
while (!(cur->qh_link & cpu_to_hc32(QH_LINK_TERMINATE))) {
debug("considering %p, with qh_link %x\n", cur, cur->qh_link);
if (NEXT_QH(cur) == queue->first) {
debug("found candidate. removing from chain\n");
cur->qh_link = queue->last->qh_link;
result = 0;
break;
}
cur = NEXT_QH(cur);
if (get_timer(0) > timeout) {
printf("Timeout destroying interrupt endpoint queue\n");
result = -1;
goto out;
}
}
if (periodic_schedules > 0) {
result = enable_periodic(ctrl);
if (result < 0)
debug("FATAL: periodic should never fail, but did");
}
out:
free(queue->tds);
free(queue->first);
free(queue);
return result;
}
int
submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int length, int interval)
{
void *backbuffer;
struct int_queue *queue;
unsigned long timeout;
int result = 0, ret;
debug("dev=%p, pipe=%lu, buffer=%p, length=%d, interval=%d",
dev, pipe, buffer, length, interval);
/*
* Interrupt transfers requiring several transactions are not supported
* because bInterval is ignored.
*
* Also, ehci_submit_async() relies on wMaxPacketSize being a power of 2
* <= PKT_ALIGN if several qTDs are required, while the USB
* specification does not constrain this for interrupt transfers. That
* means that ehci_submit_async() would support interrupt transfers
* requiring several transactions only as long as the transfer size does
* not require more than a single qTD.
*/
if (length > usb_maxpacket(dev, pipe)) {
printf("%s: Interrupt transfers requiring several "
"transactions are not supported.\n", __func__);
return -1;
}
queue = create_int_queue(dev, pipe, 1, length, buffer);
timeout = get_timer(0) + USB_TIMEOUT_MS(pipe);
while ((backbuffer = poll_int_queue(dev, queue)) == NULL)
if (get_timer(0) > timeout) {
printf("Timeout poll on interrupt endpoint\n");
result = -ETIMEDOUT;
break;
}
if (backbuffer != buffer) {
debug("got wrong buffer back (%x instead of %x)\n",
(uint32_t)backbuffer, (uint32_t)buffer);
return -EINVAL;
}
invalidate_dcache_range((uint32_t)buffer,
ALIGN_END_ADDR(char, buffer, length));
ret = destroy_int_queue(dev, queue);
if (ret < 0)
return ret;
/* everything worked out fine */
return result;
}