| /* |
| * Copyright 2008-2012 Freescale Semiconductor, Inc. |
| * Dave Liu <daveliu@freescale.com> |
| * |
| * calculate the organization and timing parameter |
| * from ddr3 spd, please refer to the spec |
| * JEDEC standard No.21-C 4_01_02_11R18.pdf |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * Version 2 as published by the Free Software Foundation. |
| */ |
| |
| #include <common.h> |
| #include <fsl_ddr_sdram.h> |
| |
| #include <fsl_ddr.h> |
| |
| /* |
| * Calculate the Density of each Physical Rank. |
| * Returned size is in bytes. |
| * |
| * each rank size = |
| * sdram capacity(bit) / 8 * primary bus width / sdram width |
| * |
| * where: sdram capacity = spd byte4[3:0] |
| * primary bus width = spd byte8[2:0] |
| * sdram width = spd byte7[2:0] |
| * |
| * SPD byte4 - sdram density and banks |
| * bit[3:0] size(bit) size(byte) |
| * 0000 256Mb 32MB |
| * 0001 512Mb 64MB |
| * 0010 1Gb 128MB |
| * 0011 2Gb 256MB |
| * 0100 4Gb 512MB |
| * 0101 8Gb 1GB |
| * 0110 16Gb 2GB |
| * |
| * SPD byte8 - module memory bus width |
| * bit[2:0] primary bus width |
| * 000 8bits |
| * 001 16bits |
| * 010 32bits |
| * 011 64bits |
| * |
| * SPD byte7 - module organiztion |
| * bit[2:0] sdram device width |
| * 000 4bits |
| * 001 8bits |
| * 010 16bits |
| * 011 32bits |
| * |
| */ |
| static unsigned long long |
| compute_ranksize(const ddr3_spd_eeprom_t *spd) |
| { |
| unsigned long long bsize; |
| |
| int nbit_sdram_cap_bsize = 0; |
| int nbit_primary_bus_width = 0; |
| int nbit_sdram_width = 0; |
| |
| if ((spd->density_banks & 0xf) < 7) |
| nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28; |
| if ((spd->bus_width & 0x7) < 4) |
| nbit_primary_bus_width = (spd->bus_width & 0x7) + 3; |
| if ((spd->organization & 0x7) < 4) |
| nbit_sdram_width = (spd->organization & 0x7) + 2; |
| |
| bsize = 1ULL << (nbit_sdram_cap_bsize - 3 |
| + nbit_primary_bus_width - nbit_sdram_width); |
| |
| debug("DDR: DDR III rank density = 0x%16llx\n", bsize); |
| |
| return bsize; |
| } |
| |
| /* |
| * ddr_compute_dimm_parameters for DDR3 SPD |
| * |
| * Compute DIMM parameters based upon the SPD information in spd. |
| * Writes the results to the dimm_params_t structure pointed by pdimm. |
| * |
| */ |
| unsigned int |
| ddr_compute_dimm_parameters(const ddr3_spd_eeprom_t *spd, |
| dimm_params_t *pdimm, |
| unsigned int dimm_number) |
| { |
| unsigned int retval; |
| unsigned int mtb_ps; |
| int ftb_10th_ps; |
| int i; |
| |
| if (spd->mem_type) { |
| if (spd->mem_type != SPD_MEMTYPE_DDR3) { |
| printf("DIMM %u: is not a DDR3 SPD.\n", dimm_number); |
| return 1; |
| } |
| } else { |
| memset(pdimm, 0, sizeof(dimm_params_t)); |
| return 1; |
| } |
| |
| retval = ddr3_spd_check(spd); |
| if (retval) { |
| printf("DIMM %u: failed checksum\n", dimm_number); |
| return 2; |
| } |
| |
| /* |
| * The part name in ASCII in the SPD EEPROM is not null terminated. |
| * Guarantee null termination here by presetting all bytes to 0 |
| * and copying the part name in ASCII from the SPD onto it |
| */ |
| memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); |
| if ((spd->info_size_crc & 0xF) > 1) |
| memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); |
| |
| /* DIMM organization parameters */ |
| pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1; |
| pdimm->rank_density = compute_ranksize(spd); |
| pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; |
| pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7)); |
| if ((spd->bus_width >> 3) & 0x3) |
| pdimm->ec_sdram_width = 8; |
| else |
| pdimm->ec_sdram_width = 0; |
| pdimm->data_width = pdimm->primary_sdram_width |
| + pdimm->ec_sdram_width; |
| pdimm->device_width = 1 << ((spd->organization & 0x7) + 2); |
| |
| /* These are the types defined by the JEDEC DDR3 SPD spec */ |
| pdimm->mirrored_dimm = 0; |
| pdimm->registered_dimm = 0; |
| switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) { |
| case DDR3_SPD_MODULETYPE_RDIMM: |
| case DDR3_SPD_MODULETYPE_MINI_RDIMM: |
| case DDR3_SPD_MODULETYPE_72B_SO_RDIMM: |
| /* Registered/buffered DIMMs */ |
| pdimm->registered_dimm = 1; |
| for (i = 0; i < 16; i += 2) { |
| u8 rcw = spd->mod_section.registered.rcw[i/2]; |
| pdimm->rcw[i] = (rcw >> 0) & 0x0F; |
| pdimm->rcw[i+1] = (rcw >> 4) & 0x0F; |
| } |
| break; |
| |
| case DDR3_SPD_MODULETYPE_UDIMM: |
| case DDR3_SPD_MODULETYPE_SO_DIMM: |
| case DDR3_SPD_MODULETYPE_MICRO_DIMM: |
| case DDR3_SPD_MODULETYPE_MINI_UDIMM: |
| case DDR3_SPD_MODULETYPE_MINI_CDIMM: |
| case DDR3_SPD_MODULETYPE_72B_SO_UDIMM: |
| case DDR3_SPD_MODULETYPE_72B_SO_CDIMM: |
| case DDR3_SPD_MODULETYPE_LRDIMM: |
| case DDR3_SPD_MODULETYPE_16B_SO_DIMM: |
| case DDR3_SPD_MODULETYPE_32B_SO_DIMM: |
| /* Unbuffered DIMMs */ |
| if (spd->mod_section.unbuffered.addr_mapping & 0x1) |
| pdimm->mirrored_dimm = 1; |
| break; |
| |
| default: |
| printf("unknown module_type 0x%02X\n", spd->module_type); |
| return 1; |
| } |
| |
| /* SDRAM device parameters */ |
| pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12; |
| pdimm->n_col_addr = (spd->addressing & 0x7) + 9; |
| pdimm->n_banks_per_sdram_device = 8 << ((spd->density_banks >> 4) & 0x7); |
| |
| /* |
| * The SPD spec has not the ECC bit, |
| * We consider the DIMM as ECC capability |
| * when the extension bus exist |
| */ |
| if (pdimm->ec_sdram_width) |
| pdimm->edc_config = 0x02; |
| else |
| pdimm->edc_config = 0x00; |
| |
| /* |
| * The SPD spec has not the burst length byte |
| * but DDR3 spec has nature BL8 and BC4, |
| * BL8 -bit3, BC4 -bit2 |
| */ |
| pdimm->burst_lengths_bitmask = 0x0c; |
| pdimm->row_density = __ilog2(pdimm->rank_density); |
| |
| /* MTB - medium timebase |
| * The unit in the SPD spec is ns, |
| * We convert it to ps. |
| * eg: MTB = 0.125ns (125ps) |
| */ |
| mtb_ps = (spd->mtb_dividend * 1000) /spd->mtb_divisor; |
| pdimm->mtb_ps = mtb_ps; |
| |
| /* |
| * FTB - fine timebase |
| * use 1/10th of ps as our unit to avoid floating point |
| * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps |
| */ |
| ftb_10th_ps = |
| ((spd->ftb_div & 0xf0) >> 4) * 10 / (spd->ftb_div & 0x0f); |
| pdimm->ftb_10th_ps = ftb_10th_ps; |
| /* |
| * sdram minimum cycle time |
| * we assume the MTB is 0.125ns |
| * eg: |
| * tck_min=15 MTB (1.875ns) ->DDR3-1066 |
| * =12 MTB (1.5ns) ->DDR3-1333 |
| * =10 MTB (1.25ns) ->DDR3-1600 |
| */ |
| pdimm->tckmin_x_ps = spd->tck_min * mtb_ps + |
| (spd->fine_tck_min * ftb_10th_ps) / 10; |
| |
| /* |
| * CAS latency supported |
| * bit4 - CL4 |
| * bit5 - CL5 |
| * bit18 - CL18 |
| */ |
| pdimm->caslat_x = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4; |
| |
| /* |
| * min CAS latency time |
| * eg: taa_min = |
| * DDR3-800D 100 MTB (12.5ns) |
| * DDR3-1066F 105 MTB (13.125ns) |
| * DDR3-1333H 108 MTB (13.5ns) |
| * DDR3-1600H 90 MTB (11.25ns) |
| */ |
| pdimm->taa_ps = spd->taa_min * mtb_ps + |
| (spd->fine_taa_min * ftb_10th_ps) / 10; |
| |
| /* |
| * min write recovery time |
| * eg: |
| * twr_min = 120 MTB (15ns) -> all speed grades. |
| */ |
| pdimm->twr_ps = spd->twr_min * mtb_ps; |
| |
| /* |
| * min RAS to CAS delay time |
| * eg: trcd_min = |
| * DDR3-800 100 MTB (12.5ns) |
| * DDR3-1066F 105 MTB (13.125ns) |
| * DDR3-1333H 108 MTB (13.5ns) |
| * DDR3-1600H 90 MTB (11.25) |
| */ |
| pdimm->trcd_ps = spd->trcd_min * mtb_ps + |
| (spd->fine_trcd_min * ftb_10th_ps) / 10; |
| |
| /* |
| * min row active to row active delay time |
| * eg: trrd_min = |
| * DDR3-800(1KB page) 80 MTB (10ns) |
| * DDR3-1333(1KB page) 48 MTB (6ns) |
| */ |
| pdimm->trrd_ps = spd->trrd_min * mtb_ps; |
| |
| /* |
| * min row precharge delay time |
| * eg: trp_min = |
| * DDR3-800D 100 MTB (12.5ns) |
| * DDR3-1066F 105 MTB (13.125ns) |
| * DDR3-1333H 108 MTB (13.5ns) |
| * DDR3-1600H 90 MTB (11.25ns) |
| */ |
| pdimm->trp_ps = spd->trp_min * mtb_ps + |
| (spd->fine_trp_min * ftb_10th_ps) / 10; |
| |
| /* min active to precharge delay time |
| * eg: tRAS_min = |
| * DDR3-800D 300 MTB (37.5ns) |
| * DDR3-1066F 300 MTB (37.5ns) |
| * DDR3-1333H 288 MTB (36ns) |
| * DDR3-1600H 280 MTB (35ns) |
| */ |
| pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb) |
| * mtb_ps; |
| /* |
| * min active to actice/refresh delay time |
| * eg: tRC_min = |
| * DDR3-800D 400 MTB (50ns) |
| * DDR3-1066F 405 MTB (50.625ns) |
| * DDR3-1333H 396 MTB (49.5ns) |
| * DDR3-1600H 370 MTB (46.25ns) |
| */ |
| pdimm->trc_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb) |
| * mtb_ps + (spd->fine_trc_min * ftb_10th_ps) / 10; |
| /* |
| * min refresh recovery delay time |
| * eg: tRFC_min = |
| * 512Mb 720 MTB (90ns) |
| * 1Gb 880 MTB (110ns) |
| * 2Gb 1280 MTB (160ns) |
| */ |
| pdimm->trfc_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb) |
| * mtb_ps; |
| /* |
| * min internal write to read command delay time |
| * eg: twtr_min = 40 MTB (7.5ns) - all speed bins. |
| * tWRT is at least 4 mclk independent of operating freq. |
| */ |
| pdimm->twtr_ps = spd->twtr_min * mtb_ps; |
| |
| /* |
| * min internal read to precharge command delay time |
| * eg: trtp_min = 40 MTB (7.5ns) - all speed bins. |
| * tRTP is at least 4 mclk independent of operating freq. |
| */ |
| pdimm->trtp_ps = spd->trtp_min * mtb_ps; |
| |
| /* |
| * Average periodic refresh interval |
| * tREFI = 7.8 us at normal temperature range |
| * = 3.9 us at ext temperature range |
| */ |
| pdimm->refresh_rate_ps = 7800000; |
| if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) { |
| pdimm->refresh_rate_ps = 3900000; |
| pdimm->extended_op_srt = 1; |
| } |
| |
| /* |
| * min four active window delay time |
| * eg: tfaw_min = |
| * DDR3-800(1KB page) 320 MTB (40ns) |
| * DDR3-1066(1KB page) 300 MTB (37.5ns) |
| * DDR3-1333(1KB page) 240 MTB (30ns) |
| * DDR3-1600(1KB page) 240 MTB (30ns) |
| */ |
| pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) |
| * mtb_ps; |
| |
| return 0; |
| } |