| /* |
| * Freescale i.MX28 timer driver |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * Based on code from LTIB: |
| * (C) Copyright 2009-2010 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/arch/sys_proto.h> |
| |
| /* Maximum fixed count */ |
| #if defined(CONFIG_MX23) |
| #define TIMER_LOAD_VAL 0xffff |
| #elif defined(CONFIG_MX28) |
| #define TIMER_LOAD_VAL 0xffffffff |
| #endif |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define timestamp (gd->arch.tbl) |
| #define lastdec (gd->arch.lastinc) |
| |
| /* |
| * This driver uses 1kHz clock source. |
| */ |
| #define MXS_INCREMENTER_HZ 1000 |
| |
| static inline unsigned long tick_to_time(unsigned long tick) |
| { |
| return tick / (MXS_INCREMENTER_HZ / CONFIG_SYS_HZ); |
| } |
| |
| static inline unsigned long time_to_tick(unsigned long time) |
| { |
| return time * (MXS_INCREMENTER_HZ / CONFIG_SYS_HZ); |
| } |
| |
| /* Calculate how many ticks happen in "us" microseconds */ |
| static inline unsigned long us_to_tick(unsigned long us) |
| { |
| return (us * MXS_INCREMENTER_HZ) / 1000000; |
| } |
| |
| int timer_init(void) |
| { |
| struct mxs_timrot_regs *timrot_regs = |
| (struct mxs_timrot_regs *)MXS_TIMROT_BASE; |
| |
| /* Reset Timers and Rotary Encoder module */ |
| mxs_reset_block(&timrot_regs->hw_timrot_rotctrl_reg); |
| |
| /* Set fixed_count to 0 */ |
| #if defined(CONFIG_MX23) |
| writel(0, &timrot_regs->hw_timrot_timcount0); |
| #elif defined(CONFIG_MX28) |
| writel(0, &timrot_regs->hw_timrot_fixed_count0); |
| #endif |
| |
| /* Set UPDATE bit and 1Khz frequency */ |
| writel(TIMROT_TIMCTRLn_UPDATE | TIMROT_TIMCTRLn_RELOAD | |
| TIMROT_TIMCTRLn_SELECT_1KHZ_XTAL, |
| &timrot_regs->hw_timrot_timctrl0); |
| |
| /* Set fixed_count to maximal value */ |
| #if defined(CONFIG_MX23) |
| writel(TIMER_LOAD_VAL - 1, &timrot_regs->hw_timrot_timcount0); |
| #elif defined(CONFIG_MX28) |
| writel(TIMER_LOAD_VAL, &timrot_regs->hw_timrot_fixed_count0); |
| #endif |
| |
| return 0; |
| } |
| |
| unsigned long long get_ticks(void) |
| { |
| struct mxs_timrot_regs *timrot_regs = |
| (struct mxs_timrot_regs *)MXS_TIMROT_BASE; |
| uint32_t now; |
| |
| /* Current tick value */ |
| #if defined(CONFIG_MX23) |
| /* Upper bits are the valid ones. */ |
| now = readl(&timrot_regs->hw_timrot_timcount0) >> |
| TIMROT_RUNNING_COUNTn_RUNNING_COUNT_OFFSET; |
| #elif defined(CONFIG_MX28) |
| now = readl(&timrot_regs->hw_timrot_running_count0); |
| #else |
| #error "Don't know how to read timrot_regs" |
| #endif |
| |
| if (lastdec >= now) { |
| /* |
| * normal mode (non roll) |
| * move stamp forward with absolut diff ticks |
| */ |
| timestamp += (lastdec - now); |
| } else { |
| /* we have rollover of decrementer */ |
| timestamp += (TIMER_LOAD_VAL - now) + lastdec; |
| |
| } |
| lastdec = now; |
| |
| return timestamp; |
| } |
| |
| ulong get_timer_masked(void) |
| { |
| return tick_to_time(get_ticks()); |
| } |
| |
| ulong get_timer(ulong base) |
| { |
| return get_timer_masked() - base; |
| } |
| |
| /* We use the HW_DIGCTL_MICROSECONDS register for sub-millisecond timer. */ |
| #define MXS_HW_DIGCTL_MICROSECONDS 0x8001c0c0 |
| |
| void __udelay(unsigned long usec) |
| { |
| uint32_t old, new, incr; |
| uint32_t counter = 0; |
| |
| old = readl(MXS_HW_DIGCTL_MICROSECONDS); |
| |
| while (counter < usec) { |
| new = readl(MXS_HW_DIGCTL_MICROSECONDS); |
| |
| /* Check if the timer wrapped. */ |
| if (new < old) { |
| incr = 0xffffffff - old; |
| incr += new; |
| } else { |
| incr = new - old; |
| } |
| |
| /* |
| * Check if we are close to the maximum time and the counter |
| * would wrap if incremented. If that's the case, break out |
| * from the loop as the requested delay time passed. |
| */ |
| if (counter + incr < counter) |
| break; |
| |
| counter += incr; |
| old = new; |
| } |
| } |
| |
| ulong get_tbclk(void) |
| { |
| return MXS_INCREMENTER_HZ; |
| } |