blob: b7605ff60e2c2b6c861ad996f81c5f9b1dbb92a0 [file] [log] [blame]
/*
* (C) Copyright 2010
* NVIDIA Corporation <www.nvidia.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/tegra.h>
#include <asm/arch/display.h>
#include <asm/arch-tegra/dc.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/timer.h>
static struct fdt_disp_config config;
static void update_window(struct dc_ctlr *dc, struct disp_ctl_win *win)
{
unsigned h_dda, v_dda;
unsigned long val;
val = readl(&dc->cmd.disp_win_header);
val |= WINDOW_A_SELECT;
writel(val, &dc->cmd.disp_win_header);
writel(win->fmt, &dc->win.color_depth);
clrsetbits_le32(&dc->win.byte_swap, BYTE_SWAP_MASK,
BYTE_SWAP_NOSWAP << BYTE_SWAP_SHIFT);
val = win->out_x << H_POSITION_SHIFT;
val |= win->out_y << V_POSITION_SHIFT;
writel(val, &dc->win.pos);
val = win->out_w << H_SIZE_SHIFT;
val |= win->out_h << V_SIZE_SHIFT;
writel(val, &dc->win.size);
val = (win->w * win->bpp / 8) << H_PRESCALED_SIZE_SHIFT;
val |= win->h << V_PRESCALED_SIZE_SHIFT;
writel(val, &dc->win.prescaled_size);
writel(0, &dc->win.h_initial_dda);
writel(0, &dc->win.v_initial_dda);
h_dda = (win->w * 0x1000) / max(win->out_w - 1, 1U);
v_dda = (win->h * 0x1000) / max(win->out_h - 1, 1U);
val = h_dda << H_DDA_INC_SHIFT;
val |= v_dda << V_DDA_INC_SHIFT;
writel(val, &dc->win.dda_increment);
writel(win->stride, &dc->win.line_stride);
writel(0, &dc->win.buf_stride);
val = WIN_ENABLE;
if (win->bpp < 24)
val |= COLOR_EXPAND;
writel(val, &dc->win.win_opt);
writel((unsigned long)win->phys_addr, &dc->winbuf.start_addr);
writel(win->x, &dc->winbuf.addr_h_offset);
writel(win->y, &dc->winbuf.addr_v_offset);
writel(0xff00, &dc->win.blend_nokey);
writel(0xff00, &dc->win.blend_1win);
val = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
val |= GENERAL_UPDATE | WIN_A_UPDATE;
writel(val, &dc->cmd.state_ctrl);
}
static void write_pair(struct fdt_disp_config *config, int item, u32 *reg)
{
writel(config->horiz_timing[item] |
(config->vert_timing[item] << 16), reg);
}
static int update_display_mode(struct dc_disp_reg *disp,
struct fdt_disp_config *config)
{
unsigned long val;
unsigned long rate;
unsigned long div;
writel(0x0, &disp->disp_timing_opt);
write_pair(config, FDT_LCD_TIMING_REF_TO_SYNC, &disp->ref_to_sync);
write_pair(config, FDT_LCD_TIMING_SYNC_WIDTH, &disp->sync_width);
write_pair(config, FDT_LCD_TIMING_BACK_PORCH, &disp->back_porch);
write_pair(config, FDT_LCD_TIMING_FRONT_PORCH, &disp->front_porch);
writel(config->width | (config->height << 16), &disp->disp_active);
val = DE_SELECT_ACTIVE << DE_SELECT_SHIFT;
val |= DE_CONTROL_NORMAL << DE_CONTROL_SHIFT;
writel(val, &disp->data_enable_opt);
val = DATA_FORMAT_DF1P1C << DATA_FORMAT_SHIFT;
val |= DATA_ALIGNMENT_MSB << DATA_ALIGNMENT_SHIFT;
val |= DATA_ORDER_RED_BLUE << DATA_ORDER_SHIFT;
writel(val, &disp->disp_interface_ctrl);
/*
* The pixel clock divider is in 7.1 format (where the bottom bit
* represents 0.5). Here we calculate the divider needed to get from
* the display clock (typically 600MHz) to the pixel clock. We round
* up or down as requried.
*/
rate = clock_get_periph_rate(PERIPH_ID_DISP1, CLOCK_ID_CGENERAL);
div = ((rate * 2 + config->pixel_clock / 2) / config->pixel_clock) - 2;
debug("Display clock %lu, divider %lu\n", rate, div);
writel(0x00010001, &disp->shift_clk_opt);
val = PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT;
val |= div << SHIFT_CLK_DIVIDER_SHIFT;
writel(val, &disp->disp_clk_ctrl);
return 0;
}
/* Start up the display and turn on power to PWMs */
static void basic_init(struct dc_cmd_reg *cmd)
{
u32 val;
writel(0x00000100, &cmd->gen_incr_syncpt_ctrl);
writel(0x0000011a, &cmd->cont_syncpt_vsync);
writel(0x00000000, &cmd->int_type);
writel(0x00000000, &cmd->int_polarity);
writel(0x00000000, &cmd->int_mask);
writel(0x00000000, &cmd->int_enb);
val = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE;
val |= PW3_ENABLE | PW4_ENABLE | PM0_ENABLE;
val |= PM1_ENABLE;
writel(val, &cmd->disp_pow_ctrl);
val = readl(&cmd->disp_cmd);
val |= CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT;
writel(val, &cmd->disp_cmd);
}
static void basic_init_timer(struct dc_disp_reg *disp)
{
writel(0x00000020, &disp->mem_high_pri);
writel(0x00000001, &disp->mem_high_pri_timer);
}
static const u32 rgb_enb_tab[PIN_REG_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
};
static const u32 rgb_polarity_tab[PIN_REG_COUNT] = {
0x00000000,
0x01000000,
0x00000000,
0x00000000,
};
static const u32 rgb_data_tab[PIN_REG_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
};
static const u32 rgb_sel_tab[PIN_OUTPUT_SEL_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00210222,
0x00002200,
0x00020000,
};
static void rgb_enable(struct dc_com_reg *com)
{
int i;
for (i = 0; i < PIN_REG_COUNT; i++) {
writel(rgb_enb_tab[i], &com->pin_output_enb[i]);
writel(rgb_polarity_tab[i], &com->pin_output_polarity[i]);
writel(rgb_data_tab[i], &com->pin_output_data[i]);
}
for (i = 0; i < PIN_OUTPUT_SEL_COUNT; i++)
writel(rgb_sel_tab[i], &com->pin_output_sel[i]);
}
static int setup_window(struct disp_ctl_win *win,
struct fdt_disp_config *config)
{
win->x = 0;
win->y = 0;
win->w = config->width;
win->h = config->height;
win->out_x = 0;
win->out_y = 0;
win->out_w = config->width;
win->out_h = config->height;
win->phys_addr = config->frame_buffer;
win->stride = config->width * (1 << config->log2_bpp) / 8;
debug("%s: depth = %d\n", __func__, config->log2_bpp);
switch (config->log2_bpp) {
case 5:
case 24:
win->fmt = COLOR_DEPTH_R8G8B8A8;
win->bpp = 32;
break;
case 4:
win->fmt = COLOR_DEPTH_B5G6R5;
win->bpp = 16;
break;
default:
debug("Unsupported LCD bit depth");
return -1;
}
return 0;
}
struct fdt_disp_config *tegra_display_get_config(void)
{
return config.valid ? &config : NULL;
}
static void debug_timing(const char *name, unsigned int timing[])
{
#ifdef DEBUG
int i;
debug("%s timing: ", name);
for (i = 0; i < FDT_LCD_TIMING_COUNT; i++)
debug("%d ", timing[i]);
debug("\n");
#endif
}
/**
* Decode panel information from the fdt, according to a standard binding
*
* @param blob fdt blob
* @param node offset of fdt node to read from
* @param config structure to store fdt config into
* @return 0 if ok, -ve on error
*/
static int tegra_decode_panel(const void *blob, int node,
struct fdt_disp_config *config)
{
int front, back, ref;
config->width = fdtdec_get_int(blob, node, "xres", -1);
config->height = fdtdec_get_int(blob, node, "yres", -1);
config->pixel_clock = fdtdec_get_int(blob, node, "clock", 0);
if (!config->pixel_clock || config->width == -1 ||
config->height == -1) {
debug("%s: Pixel parameters missing\n", __func__);
return -FDT_ERR_NOTFOUND;
}
back = fdtdec_get_int(blob, node, "left-margin", -1);
front = fdtdec_get_int(blob, node, "right-margin", -1);
ref = fdtdec_get_int(blob, node, "hsync-len", -1);
if ((back | front | ref) == -1) {
debug("%s: Horizontal parameters missing\n", __func__);
return -FDT_ERR_NOTFOUND;
}
/* Use a ref-to-sync of 1 always, and take this from the front porch */
config->horiz_timing[FDT_LCD_TIMING_REF_TO_SYNC] = 1;
config->horiz_timing[FDT_LCD_TIMING_SYNC_WIDTH] = ref;
config->horiz_timing[FDT_LCD_TIMING_BACK_PORCH] = back;
config->horiz_timing[FDT_LCD_TIMING_FRONT_PORCH] = front -
config->horiz_timing[FDT_LCD_TIMING_REF_TO_SYNC];
debug_timing("horiz", config->horiz_timing);
back = fdtdec_get_int(blob, node, "upper-margin", -1);
front = fdtdec_get_int(blob, node, "lower-margin", -1);
ref = fdtdec_get_int(blob, node, "vsync-len", -1);
if ((back | front | ref) == -1) {
debug("%s: Vertical parameters missing\n", __func__);
return -FDT_ERR_NOTFOUND;
}
config->vert_timing[FDT_LCD_TIMING_REF_TO_SYNC] = 1;
config->vert_timing[FDT_LCD_TIMING_SYNC_WIDTH] = ref;
config->vert_timing[FDT_LCD_TIMING_BACK_PORCH] = back;
config->vert_timing[FDT_LCD_TIMING_FRONT_PORCH] = front -
config->vert_timing[FDT_LCD_TIMING_REF_TO_SYNC];
debug_timing("vert", config->vert_timing);
return 0;
}
/**
* Decode the display controller information from the fdt.
*
* @param blob fdt blob
* @param config structure to store fdt config into
* @return 0 if ok, -ve on error
*/
static int tegra_display_decode_config(const void *blob,
struct fdt_disp_config *config)
{
int node, rgb;
int bpp, bit;
/* TODO: Support multiple controllers */
node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA20_DC);
if (node < 0) {
debug("%s: Cannot find display controller node in fdt\n",
__func__);
return node;
}
config->disp = (struct disp_ctlr *)fdtdec_get_addr(blob, node, "reg");
if (!config->disp) {
debug("%s: No display controller address\n", __func__);
return -1;
}
rgb = fdt_subnode_offset(blob, node, "rgb");
config->panel_node = fdtdec_lookup_phandle(blob, rgb, "nvidia,panel");
if (config->panel_node < 0) {
debug("%s: Cannot find panel information\n", __func__);
return -1;
}
if (tegra_decode_panel(blob, config->panel_node, config)) {
debug("%s: Failed to decode panel information\n", __func__);
return -1;
}
bpp = fdtdec_get_int(blob, config->panel_node, "nvidia,bits-per-pixel",
-1);
bit = ffs(bpp) - 1;
if (bpp == (1 << bit))
config->log2_bpp = bit;
else
config->log2_bpp = bpp;
if (bpp == -1) {
debug("%s: Pixel bpp parameters missing\n", __func__);
return -FDT_ERR_NOTFOUND;
}
config->bpp = bpp;
config->valid = 1; /* we have a valid configuration */
return 0;
}
int tegra_display_probe(const void *blob, void *default_lcd_base)
{
struct disp_ctl_win window;
struct dc_ctlr *dc;
if (tegra_display_decode_config(blob, &config))
return -1;
config.frame_buffer = (u32)default_lcd_base;
dc = (struct dc_ctlr *)config.disp;
/*
* A header file for clock constants was NAKed upstream.
* TODO: Put this into the FDT and fdt_lcd struct when we have clock
* support there
*/
clock_start_periph_pll(PERIPH_ID_HOST1X, CLOCK_ID_PERIPH,
144 * 1000000);
clock_start_periph_pll(PERIPH_ID_DISP1, CLOCK_ID_CGENERAL,
600 * 1000000);
basic_init(&dc->cmd);
basic_init_timer(&dc->disp);
rgb_enable(&dc->com);
if (config.pixel_clock)
update_display_mode(&dc->disp, &config);
if (setup_window(&window, &config))
return -1;
update_window(dc, &window);
return 0;
}