| /* |
| * Xilinx xps_ll_temac ethernet driver for u-boot |
| * |
| * SDMA sub-controller |
| * |
| * Copyright (C) 2011 - 2012 Stephan Linz <linz@li-pro.net> |
| * Copyright (C) 2008 - 2011 Michal Simek <monstr@monstr.eu> |
| * Copyright (C) 2008 - 2011 PetaLogix |
| * |
| * Based on Yoshio Kashiwagi kashiwagi@co-nss.co.jp driver |
| * Copyright (C) 2008 Nissin Systems Co.,Ltd. |
| * March 2008 created |
| * |
| * CREDITS: tsec driver |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| * |
| * [0]: http://www.xilinx.com/support/documentation |
| * |
| * [M]: [0]/ip_documentation/mpmc.pdf |
| * [S]: [0]/ip_documentation/xps_ll_temac.pdf |
| * [A]: [0]/application_notes/xapp1041.pdf |
| */ |
| |
| #include <config.h> |
| #include <common.h> |
| #include <net.h> |
| |
| #include <asm/types.h> |
| #include <asm/io.h> |
| |
| #include "xilinx_ll_temac.h" |
| #include "xilinx_ll_temac_sdma.h" |
| |
| #define TX_BUF_CNT 2 |
| |
| static unsigned int rx_idx; /* index of the current RX buffer */ |
| static unsigned int tx_idx; /* index of the current TX buffer */ |
| |
| struct rtx_cdmac_bd { |
| struct cdmac_bd rx[PKTBUFSRX]; |
| struct cdmac_bd tx[TX_BUF_CNT]; |
| }; |
| |
| /* |
| * DMA Buffer Descriptor alignment |
| * |
| * If the address contained in the Next Descriptor Pointer register is not |
| * 8-word aligned or reaches beyond the range of available memory, the SDMA |
| * halts processing and sets the CDMAC_BD_STCTRL_ERROR bit in the respective |
| * status register (tx_chnl_sts or rx_chnl_sts). |
| * |
| * [1]: [0]/ip_documentation/mpmc.pdf |
| * page 161, Next Descriptor Pointer |
| */ |
| static struct rtx_cdmac_bd cdmac_bd __aligned(32); |
| |
| #if defined(CONFIG_XILINX_440) || defined(CONFIG_XILINX_405) |
| |
| /* |
| * Indirect DCR access operations mi{ft}dcr_xilinx() espacialy |
| * for Xilinx PowerPC implementations on FPGA. |
| * |
| * FIXME: This part should go up to arch/powerpc -- but where? |
| */ |
| #include <asm/processor.h> |
| #define XILINX_INDIRECT_DCR_ADDRESS_REG 0 |
| #define XILINX_INDIRECT_DCR_ACCESS_REG 1 |
| inline unsigned mifdcr_xilinx(const unsigned dcrn) |
| { |
| mtdcr(XILINX_INDIRECT_DCR_ADDRESS_REG, dcrn); |
| return mfdcr(XILINX_INDIRECT_DCR_ACCESS_REG); |
| } |
| inline void mitdcr_xilinx(const unsigned dcrn, int val) |
| { |
| mtdcr(XILINX_INDIRECT_DCR_ADDRESS_REG, dcrn); |
| mtdcr(XILINX_INDIRECT_DCR_ACCESS_REG, val); |
| } |
| |
| /* Xilinx Device Control Register (DCR) in/out accessors */ |
| inline unsigned ll_temac_xldcr_in32(phys_addr_t addr) |
| { |
| return mifdcr_xilinx((const unsigned)addr); |
| } |
| inline void ll_temac_xldcr_out32(phys_addr_t addr, unsigned value) |
| { |
| mitdcr_xilinx((const unsigned)addr, value); |
| } |
| |
| void ll_temac_collect_xldcr_sdma_reg_addr(struct eth_device *dev) |
| { |
| struct ll_temac *ll_temac = dev->priv; |
| phys_addr_t dmac_ctrl = ll_temac->ctrladdr; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| ra[TX_NXTDESC_PTR] = dmac_ctrl + TX_NXTDESC_PTR; |
| ra[TX_CURBUF_ADDR] = dmac_ctrl + TX_CURBUF_ADDR; |
| ra[TX_CURBUF_LENGTH] = dmac_ctrl + TX_CURBUF_LENGTH; |
| ra[TX_CURDESC_PTR] = dmac_ctrl + TX_CURDESC_PTR; |
| ra[TX_TAILDESC_PTR] = dmac_ctrl + TX_TAILDESC_PTR; |
| ra[TX_CHNL_CTRL] = dmac_ctrl + TX_CHNL_CTRL; |
| ra[TX_IRQ_REG] = dmac_ctrl + TX_IRQ_REG; |
| ra[TX_CHNL_STS] = dmac_ctrl + TX_CHNL_STS; |
| ra[RX_NXTDESC_PTR] = dmac_ctrl + RX_NXTDESC_PTR; |
| ra[RX_CURBUF_ADDR] = dmac_ctrl + RX_CURBUF_ADDR; |
| ra[RX_CURBUF_LENGTH] = dmac_ctrl + RX_CURBUF_LENGTH; |
| ra[RX_CURDESC_PTR] = dmac_ctrl + RX_CURDESC_PTR; |
| ra[RX_TAILDESC_PTR] = dmac_ctrl + RX_TAILDESC_PTR; |
| ra[RX_CHNL_CTRL] = dmac_ctrl + RX_CHNL_CTRL; |
| ra[RX_IRQ_REG] = dmac_ctrl + RX_IRQ_REG; |
| ra[RX_CHNL_STS] = dmac_ctrl + RX_CHNL_STS; |
| ra[DMA_CONTROL_REG] = dmac_ctrl + DMA_CONTROL_REG; |
| } |
| |
| #endif /* CONFIG_XILINX_440 || ONFIG_XILINX_405 */ |
| |
| /* Xilinx Processor Local Bus (PLB) in/out accessors */ |
| inline unsigned ll_temac_xlplb_in32(phys_addr_t addr) |
| { |
| return in_be32((void *)addr); |
| } |
| inline void ll_temac_xlplb_out32(phys_addr_t addr, unsigned value) |
| { |
| out_be32((void *)addr, value); |
| } |
| |
| /* collect all register addresses for Xilinx PLB in/out accessors */ |
| void ll_temac_collect_xlplb_sdma_reg_addr(struct eth_device *dev) |
| { |
| struct ll_temac *ll_temac = dev->priv; |
| struct sdma_ctrl *sdma_ctrl = (void *)ll_temac->ctrladdr; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| ra[TX_NXTDESC_PTR] = (phys_addr_t)&sdma_ctrl->tx_nxtdesc_ptr; |
| ra[TX_CURBUF_ADDR] = (phys_addr_t)&sdma_ctrl->tx_curbuf_addr; |
| ra[TX_CURBUF_LENGTH] = (phys_addr_t)&sdma_ctrl->tx_curbuf_length; |
| ra[TX_CURDESC_PTR] = (phys_addr_t)&sdma_ctrl->tx_curdesc_ptr; |
| ra[TX_TAILDESC_PTR] = (phys_addr_t)&sdma_ctrl->tx_taildesc_ptr; |
| ra[TX_CHNL_CTRL] = (phys_addr_t)&sdma_ctrl->tx_chnl_ctrl; |
| ra[TX_IRQ_REG] = (phys_addr_t)&sdma_ctrl->tx_irq_reg; |
| ra[TX_CHNL_STS] = (phys_addr_t)&sdma_ctrl->tx_chnl_sts; |
| ra[RX_NXTDESC_PTR] = (phys_addr_t)&sdma_ctrl->rx_nxtdesc_ptr; |
| ra[RX_CURBUF_ADDR] = (phys_addr_t)&sdma_ctrl->rx_curbuf_addr; |
| ra[RX_CURBUF_LENGTH] = (phys_addr_t)&sdma_ctrl->rx_curbuf_length; |
| ra[RX_CURDESC_PTR] = (phys_addr_t)&sdma_ctrl->rx_curdesc_ptr; |
| ra[RX_TAILDESC_PTR] = (phys_addr_t)&sdma_ctrl->rx_taildesc_ptr; |
| ra[RX_CHNL_CTRL] = (phys_addr_t)&sdma_ctrl->rx_chnl_ctrl; |
| ra[RX_IRQ_REG] = (phys_addr_t)&sdma_ctrl->rx_irq_reg; |
| ra[RX_CHNL_STS] = (phys_addr_t)&sdma_ctrl->rx_chnl_sts; |
| ra[DMA_CONTROL_REG] = (phys_addr_t)&sdma_ctrl->dma_control_reg; |
| } |
| |
| /* Check for TX and RX channel errors. */ |
| static inline int ll_temac_sdma_error(struct eth_device *dev) |
| { |
| int err; |
| struct ll_temac *ll_temac = dev->priv; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| err = ll_temac->in32(ra[TX_CHNL_STS]) & CHNL_STS_ERROR; |
| err |= ll_temac->in32(ra[RX_CHNL_STS]) & CHNL_STS_ERROR; |
| |
| return err; |
| } |
| |
| int ll_temac_init_sdma(struct eth_device *dev) |
| { |
| struct ll_temac *ll_temac = dev->priv; |
| struct cdmac_bd *rx_dp; |
| struct cdmac_bd *tx_dp; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| int i; |
| |
| printf("%s: SDMA: %d Rx buffers, %d Tx buffers\n", |
| dev->name, PKTBUFSRX, TX_BUF_CNT); |
| |
| /* Initialize the Rx Buffer descriptors */ |
| for (i = 0; i < PKTBUFSRX; i++) { |
| rx_dp = &cdmac_bd.rx[i]; |
| memset(rx_dp, 0, sizeof(*rx_dp)); |
| rx_dp->next_p = rx_dp; |
| rx_dp->buf_len = PKTSIZE_ALIGN; |
| rx_dp->phys_buf_p = (u8 *)net_rx_packets[i]; |
| flush_cache((u32)rx_dp->phys_buf_p, PKTSIZE_ALIGN); |
| } |
| flush_cache((u32)cdmac_bd.rx, sizeof(cdmac_bd.rx)); |
| |
| /* Initialize the TX Buffer Descriptors */ |
| for (i = 0; i < TX_BUF_CNT; i++) { |
| tx_dp = &cdmac_bd.tx[i]; |
| memset(tx_dp, 0, sizeof(*tx_dp)); |
| tx_dp->next_p = tx_dp; |
| } |
| flush_cache((u32)cdmac_bd.tx, sizeof(cdmac_bd.tx)); |
| |
| /* Reset index counter to the Rx and Tx Buffer descriptors */ |
| rx_idx = tx_idx = 0; |
| |
| /* initial Rx DMA start by writing to respective TAILDESC_PTR */ |
| ll_temac->out32(ra[RX_CURDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| ll_temac->out32(ra[RX_TAILDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| |
| return 0; |
| } |
| |
| int ll_temac_halt_sdma(struct eth_device *dev) |
| { |
| unsigned timeout = 50; /* 1usec * 50 = 50usec */ |
| struct ll_temac *ll_temac = dev->priv; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| /* |
| * Soft reset the DMA |
| * |
| * Quote from MPMC documentation: Writing a 1 to this field |
| * forces the DMA engine to shutdown and reset itself. After |
| * setting this bit, software must poll it until the bit is |
| * cleared by the DMA. This indicates that the reset process |
| * is done and the pipeline has been flushed. |
| */ |
| ll_temac->out32(ra[DMA_CONTROL_REG], DMA_CONTROL_RESET); |
| while (timeout && (ll_temac->in32(ra[DMA_CONTROL_REG]) |
| & DMA_CONTROL_RESET)) { |
| timeout--; |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| printf("%s: Timeout\n", __func__); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int ll_temac_reset_sdma(struct eth_device *dev) |
| { |
| u32 r; |
| struct ll_temac *ll_temac = dev->priv; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| /* Soft reset the DMA. */ |
| if (ll_temac_halt_sdma(dev)) |
| return -1; |
| |
| /* Now clear the interrupts. */ |
| r = ll_temac->in32(ra[TX_CHNL_CTRL]); |
| r &= ~CHNL_CTRL_IRQ_MASK; |
| ll_temac->out32(ra[TX_CHNL_CTRL], r); |
| |
| r = ll_temac->in32(ra[RX_CHNL_CTRL]); |
| r &= ~CHNL_CTRL_IRQ_MASK; |
| ll_temac->out32(ra[RX_CHNL_CTRL], r); |
| |
| /* Now ACK pending IRQs. */ |
| ll_temac->out32(ra[TX_IRQ_REG], IRQ_REG_IRQ_MASK); |
| ll_temac->out32(ra[RX_IRQ_REG], IRQ_REG_IRQ_MASK); |
| |
| /* Set tail-ptr mode, disable errors for both channels. */ |
| ll_temac->out32(ra[DMA_CONTROL_REG], |
| /* Enable use of tail pointer register */ |
| DMA_CONTROL_TPE | |
| /* Disable error when 2 or 4 bit coalesce cnt overfl */ |
| DMA_CONTROL_RXOCEID | |
| /* Disable error when 2 or 4 bit coalesce cnt overfl */ |
| DMA_CONTROL_TXOCEID); |
| |
| return 0; |
| } |
| |
| int ll_temac_recv_sdma(struct eth_device *dev) |
| { |
| int length, pb_idx; |
| struct cdmac_bd *rx_dp = &cdmac_bd.rx[rx_idx]; |
| struct ll_temac *ll_temac = dev->priv; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| if (ll_temac_sdma_error(dev)) { |
| |
| if (ll_temac_reset_sdma(dev)) |
| return -1; |
| |
| ll_temac_init_sdma(dev); |
| } |
| |
| flush_cache((u32)rx_dp, sizeof(*rx_dp)); |
| |
| if (!(rx_dp->sca.stctrl & CDMAC_BD_STCTRL_COMPLETED)) |
| return 0; |
| |
| if (rx_dp->sca.stctrl & (CDMAC_BD_STCTRL_SOP | CDMAC_BD_STCTRL_EOP)) { |
| pb_idx = rx_idx; |
| length = rx_dp->sca.app[4] & CDMAC_BD_APP4_RXBYTECNT_MASK; |
| } else { |
| pb_idx = -1; |
| length = 0; |
| printf("%s: Got part of package, unsupported (%x)\n", |
| __func__, rx_dp->sca.stctrl); |
| } |
| |
| /* flip the buffer */ |
| flush_cache((u32)rx_dp->phys_buf_p, length); |
| |
| /* reset the current descriptor */ |
| rx_dp->sca.stctrl = 0; |
| rx_dp->sca.app[4] = 0; |
| flush_cache((u32)rx_dp, sizeof(*rx_dp)); |
| |
| /* Find next empty buffer descriptor, preparation for next iteration */ |
| rx_idx = (rx_idx + 1) % PKTBUFSRX; |
| rx_dp = &cdmac_bd.rx[rx_idx]; |
| flush_cache((u32)rx_dp, sizeof(*rx_dp)); |
| |
| /* DMA start by writing to respective TAILDESC_PTR */ |
| ll_temac->out32(ra[RX_CURDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| ll_temac->out32(ra[RX_TAILDESC_PTR], (int)&cdmac_bd.rx[rx_idx]); |
| |
| if (length > 0 && pb_idx != -1) |
| net_process_received_packet(net_rx_packets[pb_idx], length); |
| |
| return 0; |
| } |
| |
| int ll_temac_send_sdma(struct eth_device *dev, void *packet, int length) |
| { |
| unsigned timeout = 50; /* 1usec * 50 = 50usec */ |
| struct cdmac_bd *tx_dp = &cdmac_bd.tx[tx_idx]; |
| struct ll_temac *ll_temac = dev->priv; |
| phys_addr_t *ra = ll_temac->sdma_reg_addr; |
| |
| if (ll_temac_sdma_error(dev)) { |
| |
| if (ll_temac_reset_sdma(dev)) |
| return -1; |
| |
| ll_temac_init_sdma(dev); |
| } |
| |
| tx_dp->phys_buf_p = (u8 *)packet; |
| tx_dp->buf_len = length; |
| tx_dp->sca.stctrl = CDMAC_BD_STCTRL_SOP | CDMAC_BD_STCTRL_EOP | |
| CDMAC_BD_STCTRL_STOP_ON_END; |
| |
| flush_cache((u32)packet, length); |
| flush_cache((u32)tx_dp, sizeof(*tx_dp)); |
| |
| /* DMA start by writing to respective TAILDESC_PTR */ |
| ll_temac->out32(ra[TX_CURDESC_PTR], (int)tx_dp); |
| ll_temac->out32(ra[TX_TAILDESC_PTR], (int)tx_dp); |
| |
| /* Find next empty buffer descriptor, preparation for next iteration */ |
| tx_idx = (tx_idx + 1) % TX_BUF_CNT; |
| tx_dp = &cdmac_bd.tx[tx_idx]; |
| |
| do { |
| flush_cache((u32)tx_dp, sizeof(*tx_dp)); |
| udelay(1); |
| } while (timeout-- && !(tx_dp->sca.stctrl & CDMAC_BD_STCTRL_COMPLETED)); |
| |
| if (!timeout) { |
| printf("%s: Timeout\n", __func__); |
| return -1; |
| } |
| |
| return 0; |
| } |