blob: 3294a50b760cd2ee76802733dd30a4fa1db1d58c [file] [log] [blame]
/*
* Copyright (C) 2015 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*
* Based on code from the coreboot file of the same name
*/
#include <common.h>
#include <cpu.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <asm/atomic.h>
#include <asm/cpu.h>
#include <asm/interrupt.h>
#include <asm/lapic.h>
#include <asm/mp.h>
#include <asm/msr.h>
#include <asm/mtrr.h>
#include <asm/processor.h>
#include <asm/sipi.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <linux/linkage.h>
DECLARE_GLOBAL_DATA_PTR;
/* Total CPUs include BSP */
static int num_cpus;
/* This also needs to match the sipi.S assembly code for saved MSR encoding */
struct saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __packed;
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
static struct mp_flight_plan mp_info;
struct cpu_map {
struct udevice *dev;
int apic_id;
int err_code;
};
static inline void barrier_wait(atomic_t *b)
{
while (atomic_read(b) == 0)
asm("pause");
mfence();
}
static inline void release_barrier(atomic_t *b)
{
mfence();
atomic_set(b, 1);
}
static inline void stop_this_cpu(void)
{
/* Called by an AP when it is ready to halt and wait for a new task */
for (;;)
cpu_hlt();
}
/* Returns 1 if timeout waiting for APs. 0 if target APs found */
static int wait_for_aps(atomic_t *val, int target, int total_delay,
int delay_step)
{
int timeout = 0;
int delayed = 0;
while (atomic_read(val) != target) {
udelay(delay_step);
delayed += delay_step;
if (delayed >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static void ap_do_flight_plan(struct udevice *cpu)
{
int i;
for (i = 0; i < mp_info.num_records; i++) {
struct mp_flight_record *rec = &mp_info.records[i];
atomic_inc(&rec->cpus_entered);
barrier_wait(&rec->barrier);
if (rec->ap_call != NULL)
rec->ap_call(cpu, rec->ap_arg);
}
}
static int find_cpu_by_apid_id(int apic_id, struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
for (uclass_find_first_device(UCLASS_CPU, &dev);
dev;
uclass_find_next_device(&dev)) {
struct cpu_platdata *plat = dev_get_parent_platdata(dev);
if (plat->cpu_id == apic_id) {
*devp = dev;
return 0;
}
}
return -ENOENT;
}
/*
* By the time APs call ap_init() caching has been setup, and microcode has
* been loaded
*/
static void ap_init(unsigned int cpu_index)
{
struct udevice *dev;
int apic_id;
int ret;
/* Ensure the local apic is enabled */
enable_lapic();
apic_id = lapicid();
ret = find_cpu_by_apid_id(apic_id, &dev);
if (ret) {
debug("Unknown CPU apic_id %x\n", apic_id);
goto done;
}
debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
dev ? dev->name : "(apic_id not found)");
/* Walk the flight plan */
ap_do_flight_plan(dev);
/* Park the AP */
debug("parking\n");
done:
stop_this_cpu();
}
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
};
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
msr_t msr;
msr = msr_read(index);
entry->index = index;
entry->lo = msr.lo;
entry->hi = msr.hi;
/* Return the next entry */
entry++;
return entry;
}
static int save_bsp_msrs(char *start, int size)
{
int msr_count;
int num_var_mtrrs;
struct saved_msr *msr_entry;
int i;
msr_t msr;
/* Determine number of MTRRs need to be saved */
msr = msr_read(MTRR_CAP_MSR);
num_var_mtrrs = msr.lo & 0xff;
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
if ((msr_count * sizeof(struct saved_msr)) > size) {
printf("Cannot mirror all %d msrs.\n", msr_count);
return -ENOSPC;
}
msr_entry = (void *)start;
for (i = 0; i < NUM_FIXED_MTRRS; i++)
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
for (i = 0; i < num_var_mtrrs; i++) {
msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
}
msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
return msr_count;
}
static int load_sipi_vector(atomic_t **ap_countp)
{
struct sipi_params_16bit *params16;
struct sipi_params *params;
static char msr_save[512];
char *stack;
ulong addr;
int code_len;
int size;
int ret;
/* Copy in the code */
code_len = ap_start16_code_end - ap_start16;
debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
code_len);
memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
params16 = (struct sipi_params_16bit *)addr;
params16->ap_start = (uint32_t)ap_start;
params16->gdt = (uint32_t)gd->arch.gdt;
params16->gdt_limit = X86_GDT_SIZE - 1;
debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
params = (struct sipi_params *)sipi_params;
debug("SIPI 32-bit params at %p\n", params);
params->idt_ptr = (uint32_t)x86_get_idt();
params->stack_size = CONFIG_AP_STACK_SIZE;
size = params->stack_size * CONFIG_MAX_CPUS;
stack = memalign(size, 4096);
if (!stack)
return -ENOMEM;
params->stack_top = (u32)(stack + size);
params->microcode_ptr = 0;
params->msr_table_ptr = (u32)msr_save;
ret = save_bsp_msrs(msr_save, sizeof(msr_save));
if (ret < 0)
return ret;
params->msr_count = ret;
params->c_handler = (uint32_t)&ap_init;
*ap_countp = &params->ap_count;
atomic_set(*ap_countp, 0);
debug("SIPI vector is ready\n");
return 0;
}
static int check_cpu_devices(int expected_cpus)
{
int i;
for (i = 0; i < expected_cpus; i++) {
struct udevice *dev;
int ret;
ret = uclass_find_device(UCLASS_CPU, i, &dev);
if (ret) {
debug("Cannot find CPU %d in device tree\n", i);
return ret;
}
}
return 0;
}
/* Returns 1 for timeout. 0 on success */
static int apic_wait_timeout(int total_delay, int delay_step)
{
int total = 0;
int timeout = 0;
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
udelay(delay_step);
total += delay_step;
if (total >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static int start_aps(int ap_count, atomic_t *num_aps)
{
int sipi_vector;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
return 0;
/* The vector is sent as a 4k aligned address in one byte */
sipi_vector = AP_DEFAULT_BASE >> 12;
if (sipi_vector > max_vector_loc) {
printf("SIPI vector too large! 0x%08x\n",
sipi_vector);
return -1;
}
debug("Attempting to start %d APs\n", ap_count);
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
debug("Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000, 50)) {
debug("timed out. Aborting.\n");
return -1;
} else {
debug("done.\n");
}
}
/* Send INIT IPI to all but self */
lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_INIT);
debug("Waiting for 10ms after sending INIT.\n");
mdelay(10);
/* Send 1st SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
debug("Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000, 50)) {
debug("timed out. Aborting.\n");
return -1;
} else {
debug("done.\n");
}
}
lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
debug("Waiting for 1st SIPI to complete...");
if (apic_wait_timeout(10000, 50)) {
debug("timed out.\n");
return -1;
} else {
debug("done.\n");
}
/* Wait for CPUs to check in up to 200 us */
wait_for_aps(num_aps, ap_count, 200, 15);
/* Send 2nd SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
debug("Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000, 50)) {
debug("timed out. Aborting.\n");
return -1;
} else {
debug("done.\n");
}
}
lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
debug("Waiting for 2nd SIPI to complete...");
if (apic_wait_timeout(10000, 50)) {
debug("timed out.\n");
return -1;
} else {
debug("done.\n");
}
/* Wait for CPUs to check in */
if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
debug("Not all APs checked in: %d/%d.\n",
atomic_read(num_aps), ap_count);
return -1;
}
return 0;
}
static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
{
int i;
int ret = 0;
const int timeout_us = 100000;
const int step_us = 100;
int num_aps = num_cpus - 1;
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
/* Wait for APs if the record is not released */
if (atomic_read(&rec->barrier) == 0) {
/* Wait for the APs to check in */
if (wait_for_aps(&rec->cpus_entered, num_aps,
timeout_us, step_us)) {
debug("MP record %d timeout.\n", i);
ret = -1;
}
}
if (rec->bsp_call != NULL)
rec->bsp_call(cpu, rec->bsp_arg);
release_barrier(&rec->barrier);
}
return ret;
}
static int init_bsp(struct udevice **devp)
{
char processor_name[CPU_MAX_NAME_LEN];
int apic_id;
int ret;
cpu_get_name(processor_name);
debug("CPU: %s.\n", processor_name);
lapic_setup();
apic_id = lapicid();
ret = find_cpu_by_apid_id(apic_id, devp);
if (ret) {
printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
return ret;
}
return 0;
}
int mp_init(struct mp_params *p)
{
int num_aps;
atomic_t *ap_count;
struct udevice *cpu;
int ret;
/* This will cause the CPUs devices to be bound */
struct uclass *uc;
ret = uclass_get(UCLASS_CPU, &uc);
if (ret)
return ret;
ret = init_bsp(&cpu);
if (ret) {
debug("Cannot init boot CPU: err=%d\n", ret);
return ret;
}
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printf("Invalid MP parameters\n");
return -1;
}
num_cpus = cpu_get_count(cpu);
if (num_cpus < 0) {
debug("Cannot get number of CPUs: err=%d\n", num_cpus);
return num_cpus;
}
if (num_cpus < 2)
debug("Warning: Only 1 CPU is detected\n");
ret = check_cpu_devices(num_cpus);
if (ret)
debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
/* Copy needed parameters so that APs have a reference to the plan */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
/* Load the SIPI vector */
ret = load_sipi_vector(&ap_count);
if (ap_count == NULL)
return -1;
/*
* Make sure SIPI data hits RAM so the APs that come up will see
* the startup code even if the caches are disabled
*/
wbinvd();
/* Start the APs providing number of APs and the cpus_entered field */
num_aps = num_cpus - 1;
ret = start_aps(num_aps, ap_count);
if (ret) {
mdelay(1000);
debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
num_aps);
return ret;
}
/* Walk the flight plan for the BSP */
ret = bsp_do_flight_plan(cpu, p);
if (ret) {
debug("CPU init failed: err=%d\n", ret);
return ret;
}
return 0;
}
int mp_init_cpu(struct udevice *cpu, void *unused)
{
return device_probe(cpu);
}