| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2018-2019 NXP |
| */ |
| |
| #include <errno.h> |
| #include <log.h> |
| #include <asm/io.h> |
| #include <asm/arch/ddr.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/sys_proto.h> |
| |
| static unsigned int g_cdd_rr_max[4]; |
| static unsigned int g_cdd_rw_max[4]; |
| static unsigned int g_cdd_wr_max[4]; |
| static unsigned int g_cdd_ww_max[4]; |
| |
| void ddr_cfg_umctl2(struct dram_cfg_param *ddrc_cfg, int num) |
| { |
| int i = 0; |
| |
| for (i = 0; i < num; i++) { |
| reg32_write(ddrc_cfg->reg, ddrc_cfg->val); |
| ddrc_cfg++; |
| } |
| } |
| |
| #ifdef CONFIG_IMX8M_DRAM_INLINE_ECC |
| void ddrc_inline_ecc_scrub(unsigned int start_address, |
| unsigned int range_address) |
| { |
| unsigned int tmp; |
| |
| /* Step1: Enable quasi-dynamic programming */ |
| reg32_write(DDRC_SWCTL(0), 0x00000000); |
| /* Step2: Set ECCCFG1.ecc_parity_region_lock to 1 */ |
| reg32setbit(DDRC_ECCCFG1(0), 0x4); |
| /* Step3: Block the AXI ports from taking the transaction */ |
| reg32_write(DDRC_PCTRL_0(0), 0x0); |
| /* Step4: Set scrub start address */ |
| reg32_write(DDRC_SBRSTART0(0), start_address); |
| /* Step5: Set scrub range address */ |
| reg32_write(DDRC_SBRRANGE0(0), range_address); |
| /* Step6: Set scrub_mode to write */ |
| reg32_write(DDRC_SBRCTL(0), 0x00000014); |
| /* Step7: Set the desired pattern through SBRWDATA0 registers */ |
| reg32_write(DDRC_SBRWDATA0(0), 0x55aa55aa); |
| /* Step8: Enable the SBR by programming SBRCTL.scrub_en=1 */ |
| reg32setbit(DDRC_SBRCTL(0), 0x0); |
| /* Step9: Poll SBRSTAT.scrub_done=1 */ |
| tmp = reg32_read(DDRC_SBRSTAT(0)); |
| while (tmp != 0x00000002) |
| tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x2; |
| /* Step10: Poll SBRSTAT.scrub_busy=0 */ |
| tmp = reg32_read(DDRC_SBRSTAT(0)); |
| while (tmp != 0x0) |
| tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x1; |
| /* Step11: Disable SBR by programming SBRCTL.scrub_en=0 */ |
| clrbits_le32(DDRC_SBRCTL(0), 0x1); |
| /* Step12: Prepare for normal scrub operation(Read) and set scrub_interval*/ |
| reg32_write(DDRC_SBRCTL(0), 0x100); |
| /* Step13: Enable the SBR by programming SBRCTL.scrub_en=1 */ |
| reg32_write(DDRC_SBRCTL(0), 0x101); |
| /* Step14: Enable AXI ports by programming */ |
| reg32_write(DDRC_PCTRL_0(0), 0x1); |
| /* Step15: Disable quasi-dynamic programming */ |
| reg32_write(DDRC_SWCTL(0), 0x00000001); |
| } |
| |
| void ddrc_inline_ecc_scrub_end(unsigned int start_address, |
| unsigned int range_address) |
| { |
| /* Step1: Enable quasi-dynamic programming */ |
| reg32_write(DDRC_SWCTL(0), 0x00000000); |
| /* Step2: Block the AXI ports from taking the transaction */ |
| reg32_write(DDRC_PCTRL_0(0), 0x0); |
| /* Step3: Set scrub start address */ |
| reg32_write(DDRC_SBRSTART0(0), start_address); |
| /* Step4: Set scrub range address */ |
| reg32_write(DDRC_SBRRANGE0(0), range_address); |
| /* Step5: Disable SBR by programming SBRCTL.scrub_en=0 */ |
| clrbits_le32(DDRC_SBRCTL(0), 0x1); |
| /* Step6: Prepare for normal scrub operation(Read) and set scrub_interval */ |
| reg32_write(DDRC_SBRCTL(0), 0x100); |
| /* Step7: Enable the SBR by programming SBRCTL.scrub_en=1 */ |
| reg32_write(DDRC_SBRCTL(0), 0x101); |
| /* Step8: Enable AXI ports by programming */ |
| reg32_write(DDRC_PCTRL_0(0), 0x1); |
| /* Step9: Disable quasi-dynamic programming */ |
| reg32_write(DDRC_SWCTL(0), 0x00000001); |
| } |
| #endif |
| |
| void __weak board_dram_ecc_scrub(void) |
| { |
| } |
| |
| void lpddr4_mr_write(unsigned int mr_rank, unsigned int mr_addr, |
| unsigned int mr_data) |
| { |
| unsigned int tmp; |
| /* |
| * 1. Poll MRSTAT.mr_wr_busy until it is 0. |
| * This checks that there is no outstanding MR transaction. |
| * No writes should be performed to MRCTRL0 and MRCTRL1 if |
| * MRSTAT.mr_wr_busy = 1. |
| */ |
| do { |
| tmp = reg32_read(DDRC_MRSTAT(0)); |
| } while (tmp & 0x1); |
| /* |
| * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank and |
| * (for MRWs) MRCTRL1.mr_data to define the MR transaction. |
| */ |
| reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4)); |
| reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data); |
| reg32setbit(DDRC_MRCTRL0(0), 31); |
| } |
| |
| unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr) |
| { |
| unsigned int tmp; |
| |
| reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x1); |
| do { |
| tmp = reg32_read(DDRC_MRSTAT(0)); |
| } while (tmp & 0x1); |
| |
| reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1); |
| reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8)); |
| reg32setbit(DDRC_MRCTRL0(0), 31); |
| do { |
| tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0)); |
| } while ((tmp & 0x8) == 0); |
| tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0)); |
| reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4); |
| while (tmp) { //try to find a significant byte in the word |
| if (tmp & 0xff) { |
| tmp &= 0xff; |
| break; |
| } |
| tmp >>= 8; |
| } |
| |
| return tmp; |
| } |
| |
| static unsigned int look_for_max(unsigned int data[], unsigned int addr_start, |
| unsigned int addr_end) |
| { |
| unsigned int i, imax = 0; |
| |
| for (i = addr_start; i <= addr_end; i++) { |
| if (((data[i] >> 7) == 0) && data[i] > imax) |
| imax = data[i]; |
| } |
| |
| return imax; |
| } |
| |
| void get_trained_CDD(u32 fsp) |
| { |
| unsigned int i, ddr_type, tmp; |
| unsigned int cdd_cha[12], cdd_chb[12]; |
| unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max; |
| unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max; |
| |
| ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f; |
| if (ddr_type == 0x20) { |
| for (i = 0; i < 6; i++) { |
| tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54013 + i) * 4); |
| cdd_cha[i * 2] = tmp & 0xff; |
| cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff; |
| } |
| |
| for (i = 0; i < 7; i++) { |
| tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x5402c + i) * 4); |
| if (i == 0) { |
| cdd_cha[0] = (tmp >> 8) & 0xff; |
| } else if (i == 6) { |
| cdd_cha[11] = tmp & 0xff; |
| } else { |
| cdd_chb[i * 2 - 1] = tmp & 0xff; |
| cdd_chb[i * 2] = (tmp >> 8) & 0xff; |
| } |
| } |
| |
| cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1); |
| cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5); |
| cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9); |
| cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11); |
| cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1); |
| cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5); |
| cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9); |
| cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11); |
| g_cdd_rr_max[fsp] = |
| cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max; |
| g_cdd_rw_max[fsp] = |
| cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max; |
| g_cdd_wr_max[fsp] = |
| cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max; |
| g_cdd_ww_max[fsp] = |
| cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max; |
| } else { |
| unsigned int ddr4_cdd[64]; |
| |
| for (i = 0; i < 29; i++) { |
| tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54012 + i) * 4); |
| ddr4_cdd[i * 2] = tmp & 0xff; |
| ddr4_cdd[i * 2 + 1] = (tmp >> 8) & 0xff; |
| } |
| |
| g_cdd_rr_max[fsp] = look_for_max(ddr4_cdd, 1, 12); |
| g_cdd_ww_max[fsp] = look_for_max(ddr4_cdd, 13, 24); |
| g_cdd_rw_max[fsp] = look_for_max(ddr4_cdd, 25, 40); |
| g_cdd_wr_max[fsp] = look_for_max(ddr4_cdd, 41, 56); |
| } |
| } |
| |
| void update_umctl2_rank_space_setting(unsigned int pstat_num) |
| { |
| unsigned int i, ddr_type; |
| unsigned int addr_slot, rdata, tmp, tmp_t; |
| unsigned int ddrc_w2r, ddrc_r2w, ddrc_wr_gap, ddrc_rd_gap; |
| |
| ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f; |
| for (i = 0; i < pstat_num; i++) { |
| addr_slot = i ? (i + 1) * 0x1000 : 0; |
| if (ddr_type == 0x20) { |
| /* update r2w:[13:8], w2r:[5:0] */ |
| rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot); |
| ddrc_w2r = rdata & 0x3f; |
| if (is_imx8mp()) |
| tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1); |
| else |
| tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1; |
| ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp; |
| |
| ddrc_r2w = (rdata >> 8) & 0x3f; |
| if (is_imx8mp()) |
| tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1); |
| else |
| tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1; |
| ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp; |
| |
| tmp_t = (rdata & 0xffffc0c0) | (ddrc_r2w << 8) | ddrc_w2r; |
| reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t); |
| } else { |
| /* update w2r:[5:0] */ |
| rdata = reg32_read(DDRC_DRAMTMG9(0) + addr_slot); |
| ddrc_w2r = rdata & 0x3f; |
| if (is_imx8mp()) |
| tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1); |
| else |
| tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1; |
| ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp; |
| tmp_t = (rdata & 0xffffffc0) | ddrc_w2r; |
| reg32_write((DDRC_DRAMTMG9(0) + addr_slot), tmp_t); |
| |
| /* update r2w:[13:8] */ |
| rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot); |
| ddrc_r2w = (rdata >> 8) & 0x3f; |
| if (is_imx8mp()) |
| tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1); |
| else |
| tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1; |
| ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp; |
| |
| tmp_t = (rdata & 0xffffc0ff) | (ddrc_r2w << 8); |
| reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t); |
| } |
| |
| if (!is_imx8mq()) { |
| /* |
| * update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) |
| */ |
| rdata = reg32_read(DDRC_RANKCTL(0) + addr_slot); |
| ddrc_wr_gap = (rdata >> 8) & 0xf; |
| if (is_imx8mp()) |
| tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1); |
| else |
| tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1) + 1; |
| ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp; |
| |
| ddrc_rd_gap = (rdata >> 4) & 0xf; |
| if (is_imx8mp()) |
| tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1); |
| else |
| tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1) + 1; |
| ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp; |
| |
| tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4); |
| reg32_write((DDRC_RANKCTL(0) + addr_slot), tmp_t); |
| } |
| } |
| |
| if (is_imx8mq()) { |
| /* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */ |
| rdata = reg32_read(DDRC_RANKCTL(0)); |
| ddrc_wr_gap = (rdata >> 8) & 0xf; |
| tmp = ddrc_wr_gap + (g_cdd_ww_max[0] >> 1) + 1; |
| ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp; |
| |
| ddrc_rd_gap = (rdata >> 4) & 0xf; |
| tmp = ddrc_rd_gap + (g_cdd_rr_max[0] >> 1) + 1; |
| ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp; |
| |
| tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4); |
| reg32_write(DDRC_RANKCTL(0), tmp_t); |
| } |
| } |
| |
| int ddr_init(struct dram_timing_info *dram_timing) |
| { |
| unsigned int tmp, initial_drate, target_freq; |
| int ret; |
| |
| debug("DDRINFO: start DRAM init\n"); |
| |
| /* Step1: Follow the power up procedure */ |
| if (is_imx8mq()) { |
| reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F00000F); |
| reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F); |
| reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F000000); |
| } else { |
| reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00001F); |
| reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F); |
| } |
| |
| debug("DDRINFO: cfg clk\n"); |
| /* change the clock source of dram_apb_clk_root: source 4 800MHz /4 = 200MHz */ |
| clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) | |
| CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV4)); |
| |
| /* disable iso */ |
| reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */ |
| reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */ |
| |
| initial_drate = dram_timing->fsp_msg[0].drate; |
| /* default to the frequency point 0 clock */ |
| ddrphy_init_set_dfi_clk(initial_drate); |
| |
| /* D-aasert the presetn */ |
| reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000006); |
| |
| /* Step2: Program the dwc_ddr_umctl2 registers */ |
| debug("DDRINFO: ddrc config start\n"); |
| ddr_cfg_umctl2(dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num); |
| debug("DDRINFO: ddrc config done\n"); |
| |
| /* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */ |
| reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000004); |
| reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000000); |
| |
| /* |
| * Step4: Disable auto-refreshes, self-refresh, powerdown, and |
| * assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1, |
| * PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0, PWRCTL.en_dfi_dram_clk_disable = 0 |
| */ |
| reg32_write(DDRC_DBG1(0), 0x00000000); |
| reg32_write(DDRC_RFSHCTL3(0), 0x0000001); |
| reg32_write(DDRC_PWRCTL(0), 0xa0); |
| |
| /* if ddr type is LPDDR4, do it */ |
| tmp = reg32_read(DDRC_MSTR(0)); |
| if (tmp & (0x1 << 5) && !is_imx8mn()) |
| reg32_write(DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */ |
| |
| /* determine the initial boot frequency */ |
| target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3; |
| target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0; |
| |
| /* Step5: Set SWCT.sw_done to 0 */ |
| reg32_write(DDRC_SWCTL(0), 0x00000000); |
| |
| /* Set the default boot frequency point */ |
| clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8); |
| /* Step6: Set DFIMISC.dfi_init_complete_en to 0 */ |
| clrbits_le32(DDRC_DFIMISC(0), 0x1); |
| |
| /* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */ |
| reg32_write(DDRC_SWCTL(0), 0x00000001); |
| do { |
| tmp = reg32_read(DDRC_SWSTAT(0)); |
| } while ((tmp & 0x1) == 0x0); |
| |
| /* |
| * Step8 ~ Step13: Start PHY initialization and training by |
| * accessing relevant PUB registers |
| */ |
| debug("DDRINFO:ddrphy config start\n"); |
| |
| ret = ddr_cfg_phy(dram_timing); |
| if (ret) |
| return ret; |
| |
| debug("DDRINFO: ddrphy config done\n"); |
| |
| /* |
| * step14 CalBusy.0 =1, indicates the calibrator is actively |
| * calibrating. Wait Calibrating done. |
| */ |
| do { |
| tmp = reg32_read(DDRPHY_CalBusy(0)); |
| } while ((tmp & 0x1)); |
| |
| debug("DDRINFO:ddrphy calibration done\n"); |
| |
| /* Step15: Set SWCTL.sw_done to 0 */ |
| reg32_write(DDRC_SWCTL(0), 0x00000000); |
| |
| /* Apply rank-to-rank workaround */ |
| update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1); |
| |
| /* Step16: Set DFIMISC.dfi_init_start to 1 */ |
| setbits_le32(DDRC_DFIMISC(0), (0x1 << 5)); |
| |
| /* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */ |
| reg32_write(DDRC_SWCTL(0), 0x00000001); |
| do { |
| tmp = reg32_read(DDRC_SWSTAT(0)); |
| } while ((tmp & 0x1) == 0x0); |
| |
| /* Step18: Polling DFISTAT.dfi_init_complete = 1 */ |
| do { |
| tmp = reg32_read(DDRC_DFISTAT(0)); |
| } while ((tmp & 0x1) == 0x0); |
| |
| /* Step19: Set SWCTL.sw_done to 0 */ |
| reg32_write(DDRC_SWCTL(0), 0x00000000); |
| |
| /* Step20: Set DFIMISC.dfi_init_start to 0 */ |
| clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5)); |
| |
| /* Step21: optional */ |
| |
| /* Step22: Set DFIMISC.dfi_init_complete_en to 1 */ |
| setbits_le32(DDRC_DFIMISC(0), 0x1); |
| |
| /* Step23: Set PWRCTL.selfref_sw to 0 */ |
| clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5)); |
| |
| /* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */ |
| reg32_write(DDRC_SWCTL(0), 0x00000001); |
| do { |
| tmp = reg32_read(DDRC_SWSTAT(0)); |
| } while ((tmp & 0x1) == 0x0); |
| |
| /* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring |
| * STAT.operating_mode signal */ |
| do { |
| tmp = reg32_read(DDRC_STAT(0)); |
| } while ((tmp & 0x3) != 0x1); |
| |
| /* Step26: Set back register in Step4 to the original values if desired */ |
| reg32_write(DDRC_RFSHCTL3(0), 0x0000000); |
| |
| /* enable port 0 */ |
| reg32_write(DDRC_PCTRL_0(0), 0x00000001); |
| debug("DDRINFO: ddrmix config done\n"); |
| |
| board_dram_ecc_scrub(); |
| |
| /* enable selfref_en by default */ |
| setbits_le32(DDRC_PWRCTL(0), 0x1); |
| |
| /* save the dram timing config into memory */ |
| dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE); |
| |
| return 0; |
| } |
| |
| ulong ddrphy_addr_remap(uint32_t paddr_apb_from_ctlr) |
| { |
| return 4 * paddr_apb_from_ctlr; |
| } |