| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2017 Álvaro Fernández Rojas <noltari@gmail.com> |
| * |
| * Derived from linux/drivers/spi/spi-bcm63xx-hsspi.c: |
| * Copyright (C) 2000-2010 Broadcom Corporation |
| * Copyright (C) 2012-2013 Jonas Gorski <jogo@openwrt.org> |
| */ |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <dm.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <spi.h> |
| #include <reset.h> |
| #include <wait_bit.h> |
| #include <asm/io.h> |
| #include <linux/bitops.h> |
| |
| #define HSSPI_PP 0 |
| |
| /* |
| * The maximum frequency for SPI synchronous mode is 30MHz for some chips and |
| * 25MHz for some others. This depends on the chip layout and SPI signals |
| * distance to the pad. We use the lower of these values to cover all relevant |
| * chips. |
| */ |
| #define SPI_MAX_SYNC_CLOCK 25000000 |
| |
| /* SPI Control register */ |
| #define SPI_CTL_REG 0x000 |
| #define SPI_CTL_CS_POL_SHIFT 0 |
| #define SPI_CTL_CS_POL_MASK (0xff << SPI_CTL_CS_POL_SHIFT) |
| #define SPI_CTL_CLK_GATE_SHIFT 16 |
| #define SPI_CTL_CLK_GATE_MASK (1 << SPI_CTL_CLK_GATE_SHIFT) |
| #define SPI_CTL_CLK_POL_SHIFT 17 |
| #define SPI_CTL_CLK_POL_MASK (1 << SPI_CTL_CLK_POL_SHIFT) |
| |
| /* SPI Interrupts registers */ |
| #define SPI_IR_STAT_REG 0x008 |
| #define SPI_IR_ST_MASK_REG 0x00c |
| #define SPI_IR_MASK_REG 0x010 |
| |
| #define SPI_IR_CLEAR_ALL 0xff001f1f |
| |
| /* SPI Ping-Pong Command registers */ |
| #define SPI_CMD_REG (0x080 + (0x40 * (HSSPI_PP)) + 0x00) |
| #define SPI_CMD_OP_SHIFT 0 |
| #define SPI_CMD_OP_START (0x1 << SPI_CMD_OP_SHIFT) |
| #define SPI_CMD_PFL_SHIFT 8 |
| #define SPI_CMD_PFL_MASK (0x7 << SPI_CMD_PFL_SHIFT) |
| #define SPI_CMD_SLAVE_SHIFT 12 |
| #define SPI_CMD_SLAVE_MASK (0x7 << SPI_CMD_SLAVE_SHIFT) |
| |
| /* SPI Ping-Pong Status registers */ |
| #define SPI_STAT_REG (0x080 + (0x40 * (HSSPI_PP)) + 0x04) |
| #define SPI_STAT_SRCBUSY_SHIFT 1 |
| #define SPI_STAT_SRCBUSY_MASK (1 << SPI_STAT_SRCBUSY_SHIFT) |
| |
| /* SPI Profile Clock registers */ |
| #define SPI_PFL_CLK_REG(x) (0x100 + (0x20 * (x)) + 0x00) |
| #define SPI_PFL_CLK_FREQ_SHIFT 0 |
| #define SPI_PFL_CLK_FREQ_MASK (0x3fff << SPI_PFL_CLK_FREQ_SHIFT) |
| #define SPI_PFL_CLK_RSTLOOP_SHIFT 15 |
| #define SPI_PFL_CLK_RSTLOOP_MASK (1 << SPI_PFL_CLK_RSTLOOP_SHIFT) |
| |
| /* SPI Profile Signal registers */ |
| #define SPI_PFL_SIG_REG(x) (0x100 + (0x20 * (x)) + 0x04) |
| #define SPI_PFL_SIG_LATCHRIS_SHIFT 12 |
| #define SPI_PFL_SIG_LATCHRIS_MASK (1 << SPI_PFL_SIG_LATCHRIS_SHIFT) |
| #define SPI_PFL_SIG_LAUNCHRIS_SHIFT 13 |
| #define SPI_PFL_SIG_LAUNCHRIS_MASK (1 << SPI_PFL_SIG_LAUNCHRIS_SHIFT) |
| #define SPI_PFL_SIG_ASYNCIN_SHIFT 16 |
| #define SPI_PFL_SIG_ASYNCIN_MASK (1 << SPI_PFL_SIG_ASYNCIN_SHIFT) |
| |
| /* SPI Profile Mode registers */ |
| #define SPI_PFL_MODE_REG(x) (0x100 + (0x20 * (x)) + 0x08) |
| #define SPI_PFL_MODE_FILL_SHIFT 0 |
| #define SPI_PFL_MODE_FILL_MASK (0xff << SPI_PFL_MODE_FILL_SHIFT) |
| #define SPI_PFL_MODE_MDRDST_SHIFT 8 |
| #define SPI_PFL_MODE_MDWRST_SHIFT 12 |
| #define SPI_PFL_MODE_MDRDSZ_SHIFT 16 |
| #define SPI_PFL_MODE_MDRDSZ_MASK (1 << SPI_PFL_MODE_MDRDSZ_SHIFT) |
| #define SPI_PFL_MODE_MDWRSZ_SHIFT 18 |
| #define SPI_PFL_MODE_MDWRSZ_MASK (1 << SPI_PFL_MODE_MDWRSZ_SHIFT) |
| #define SPI_PFL_MODE_3WIRE_SHIFT 20 |
| #define SPI_PFL_MODE_3WIRE_MASK (1 << SPI_PFL_MODE_3WIRE_SHIFT) |
| #define SPI_PFL_MODE_PREPCNT_SHIFT 24 |
| #define SPI_PFL_MODE_PREPCNT_MASK (4 << SPI_PFL_MODE_PREPCNT_SHIFT) |
| |
| /* SPI Ping-Pong FIFO registers */ |
| #define HSSPI_FIFO_SIZE 0x200 |
| #define HSSPI_FIFO_BASE (0x200 + \ |
| (HSSPI_FIFO_SIZE * HSSPI_PP)) |
| |
| /* SPI Ping-Pong FIFO OP register */ |
| #define HSSPI_FIFO_OP_SIZE 0x2 |
| #define HSSPI_FIFO_OP_REG (HSSPI_FIFO_BASE + 0x00) |
| #define HSSPI_FIFO_OP_BYTES_SHIFT 0 |
| #define HSSPI_FIFO_OP_BYTES_MASK (0x3ff << HSSPI_FIFO_OP_BYTES_SHIFT) |
| #define HSSPI_FIFO_OP_MBIT_SHIFT 11 |
| #define HSSPI_FIFO_OP_MBIT_MASK (1 << HSSPI_FIFO_OP_MBIT_SHIFT) |
| #define HSSPI_FIFO_OP_CODE_SHIFT 13 |
| #define HSSPI_FIFO_OP_READ_WRITE (1 << HSSPI_FIFO_OP_CODE_SHIFT) |
| #define HSSPI_FIFO_OP_CODE_W (2 << HSSPI_FIFO_OP_CODE_SHIFT) |
| #define HSSPI_FIFO_OP_CODE_R (3 << HSSPI_FIFO_OP_CODE_SHIFT) |
| |
| #define HSSPI_MAX_DATA_SIZE (HSSPI_FIFO_SIZE - HSSPI_FIFO_OP_SIZE) |
| #define HSSPI_MAX_PREPEND_SIZE 15 |
| |
| #define HSSPI_XFER_MODE_PREPEND 0 |
| #define HSSPI_XFER_MODE_DUMMYCS 1 |
| |
| struct bcm63xx_hsspi_priv { |
| void __iomem *regs; |
| ulong clk_rate; |
| uint8_t num_cs; |
| uint8_t cs_pols; |
| uint speed; |
| uint xfer_mode; |
| uint32_t prepend_cnt; |
| uint8_t prepend_buf[HSSPI_MAX_PREPEND_SIZE]; |
| }; |
| |
| static int bcm63xx_hsspi_cs_info(struct udevice *bus, uint cs, |
| struct spi_cs_info *info) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus); |
| |
| if (cs >= priv->num_cs) { |
| printf("no cs %u\n", cs); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int bcm63xx_hsspi_set_mode(struct udevice *bus, uint mode) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus); |
| |
| /* clock polarity */ |
| if (mode & SPI_CPOL) |
| setbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_POL_MASK); |
| else |
| clrbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_POL_MASK); |
| |
| return 0; |
| } |
| |
| static int bcm63xx_hsspi_set_speed(struct udevice *bus, uint speed) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus); |
| |
| priv->speed = speed; |
| |
| return 0; |
| } |
| |
| static void bcm63xx_hsspi_activate_cs(struct bcm63xx_hsspi_priv *priv, |
| struct dm_spi_slave_plat *plat) |
| { |
| uint32_t clr, set; |
| uint speed = priv->speed; |
| |
| if (priv->xfer_mode == HSSPI_XFER_MODE_DUMMYCS && |
| speed > SPI_MAX_SYNC_CLOCK) { |
| speed = SPI_MAX_SYNC_CLOCK; |
| debug("Force to dummy cs mode. Reduce the speed to %dHz\n", speed); |
| } |
| |
| /* profile clock */ |
| set = DIV_ROUND_UP(priv->clk_rate, speed); |
| set = DIV_ROUND_UP(2048, set); |
| set &= SPI_PFL_CLK_FREQ_MASK; |
| set |= SPI_PFL_CLK_RSTLOOP_MASK; |
| writel(set, priv->regs + SPI_PFL_CLK_REG(plat->cs)); |
| |
| /* profile signal */ |
| set = 0; |
| clr = SPI_PFL_SIG_LAUNCHRIS_MASK | |
| SPI_PFL_SIG_LATCHRIS_MASK | |
| SPI_PFL_SIG_ASYNCIN_MASK; |
| |
| /* latch/launch config */ |
| if (plat->mode & SPI_CPHA) |
| set |= SPI_PFL_SIG_LAUNCHRIS_MASK; |
| else |
| set |= SPI_PFL_SIG_LATCHRIS_MASK; |
| |
| /* async clk */ |
| if (speed > SPI_MAX_SYNC_CLOCK) |
| set |= SPI_PFL_SIG_ASYNCIN_MASK; |
| |
| clrsetbits_32(priv->regs + SPI_PFL_SIG_REG(plat->cs), clr, set); |
| |
| /* global control */ |
| set = 0; |
| clr = 0; |
| |
| if (priv->xfer_mode == HSSPI_XFER_MODE_PREPEND) { |
| if (priv->cs_pols & BIT(plat->cs)) |
| set |= BIT(plat->cs); |
| else |
| clr |= BIT(plat->cs); |
| } else { |
| /* invert cs polarity */ |
| if (priv->cs_pols & BIT(plat->cs)) |
| clr |= BIT(plat->cs); |
| else |
| set |= BIT(plat->cs); |
| |
| /* invert dummy cs polarity */ |
| if (priv->cs_pols & BIT(!plat->cs)) |
| clr |= BIT(!plat->cs); |
| else |
| set |= BIT(!plat->cs); |
| } |
| |
| clrsetbits_32(priv->regs + SPI_CTL_REG, clr, set); |
| } |
| |
| static void bcm63xx_hsspi_deactivate_cs(struct bcm63xx_hsspi_priv *priv) |
| { |
| /* restore cs polarities */ |
| clrsetbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CS_POL_MASK, |
| priv->cs_pols); |
| } |
| |
| /* |
| * BCM63xx HSSPI driver doesn't allow keeping CS active between transfers |
| * because they are controlled by HW. |
| * However, it provides a mechanism to prepend write transfers prior to read |
| * transfers (with a maximum prepend of 15 bytes), which is usually enough for |
| * SPI-connected flashes since reading requires prepending a write transfer of |
| * 5 bytes. On the other hand it also provides a way to invert each CS |
| * polarity, not only between transfers like the older BCM63xx SPI driver, but |
| * also the rest of the time. |
| * |
| * Instead of using the prepend mechanism, this implementation inverts the |
| * polarity of both the desired CS and another dummy CS when the bus is |
| * claimed. This way, the dummy CS is restored to its inactive value when |
| * transfers are issued and the desired CS is preserved in its active value |
| * all the time. This hack is also used in the upstream linux driver and |
| * allows keeping CS active between transfers even if the HW doesn't give |
| * this possibility. |
| * |
| * This workaround only works when the dummy CS (usually CS1 when the actual |
| * CS is 0) pinmuxed to SPI chip select function if SPI clock is faster than |
| * SPI_MAX_SYNC_CLOCK. In old broadcom chip, CS1 pin is default to chip select |
| * function. But this is not the case for new chips. To make this function |
| * always work, it should be called with maximum clock of SPI_MAX_SYNC_CLOCK. |
| */ |
| static int bcm63xx_hsspi_xfer_dummy_cs(struct udevice *dev, unsigned int data_bytes, |
| const void *dout, void *din, unsigned long flags) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); |
| struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); |
| size_t step_size = HSSPI_FIFO_SIZE; |
| uint16_t opcode = 0; |
| uint32_t val = SPI_PFL_MODE_FILL_MASK; |
| const uint8_t *tx = dout; |
| uint8_t *rx = din; |
| |
| if (flags & SPI_XFER_BEGIN) |
| bcm63xx_hsspi_activate_cs(priv, plat); |
| |
| /* fifo operation */ |
| if (tx && rx) |
| opcode = HSSPI_FIFO_OP_READ_WRITE; |
| else if (rx) |
| opcode = HSSPI_FIFO_OP_CODE_R; |
| else if (tx) |
| opcode = HSSPI_FIFO_OP_CODE_W; |
| |
| if (opcode != HSSPI_FIFO_OP_CODE_R) |
| step_size -= HSSPI_FIFO_OP_SIZE; |
| |
| /* dual mode */ |
| if ((opcode == HSSPI_FIFO_OP_CODE_R && (plat->mode & SPI_RX_DUAL)) || |
| (opcode == HSSPI_FIFO_OP_CODE_W && (plat->mode & SPI_TX_DUAL))) { |
| opcode |= HSSPI_FIFO_OP_MBIT_MASK; |
| |
| /* profile mode */ |
| if (plat->mode & SPI_RX_DUAL) |
| val |= SPI_PFL_MODE_MDRDSZ_MASK; |
| if (plat->mode & SPI_TX_DUAL) |
| val |= SPI_PFL_MODE_MDWRSZ_MASK; |
| } |
| |
| if (plat->mode & SPI_3WIRE) |
| val |= SPI_PFL_MODE_3WIRE_MASK; |
| writel(val, priv->regs + SPI_PFL_MODE_REG(plat->cs)); |
| |
| /* transfer loop */ |
| while (data_bytes > 0) { |
| size_t curr_step = min(step_size, (size_t)data_bytes); |
| int ret; |
| |
| /* copy tx data */ |
| if (tx) { |
| memcpy_toio(priv->regs + HSSPI_FIFO_BASE + |
| HSSPI_FIFO_OP_SIZE, tx, curr_step); |
| tx += curr_step; |
| } |
| |
| /* set fifo operation */ |
| writew(cpu_to_be16(opcode | (curr_step & HSSPI_FIFO_OP_BYTES_MASK)), |
| priv->regs + HSSPI_FIFO_OP_REG); |
| |
| /* issue the transfer */ |
| val = SPI_CMD_OP_START; |
| val |= (plat->cs << SPI_CMD_PFL_SHIFT) & |
| SPI_CMD_PFL_MASK; |
| val |= (!plat->cs << SPI_CMD_SLAVE_SHIFT) & |
| SPI_CMD_SLAVE_MASK; |
| writel(val, priv->regs + SPI_CMD_REG); |
| |
| /* wait for completion */ |
| ret = wait_for_bit_32(priv->regs + SPI_STAT_REG, |
| SPI_STAT_SRCBUSY_MASK, false, |
| 1000, false); |
| if (ret) { |
| printf("interrupt timeout\n"); |
| return ret; |
| } |
| |
| /* copy rx data */ |
| if (rx) { |
| memcpy_fromio(rx, priv->regs + HSSPI_FIFO_BASE, |
| curr_step); |
| rx += curr_step; |
| } |
| |
| data_bytes -= curr_step; |
| } |
| |
| if (flags & SPI_XFER_END) |
| bcm63xx_hsspi_deactivate_cs(priv); |
| |
| return 0; |
| } |
| |
| static int bcm63xx_prepare_prepend_transfer(struct bcm63xx_hsspi_priv *priv, |
| unsigned int data_bytes, const void *dout, void *din, |
| unsigned long flags) |
| { |
| /* |
| * only support multiple half duplex write transfer + optional |
| * full duplex read/write at the end. |
| */ |
| if (flags & SPI_XFER_BEGIN) { |
| /* clear prepends */ |
| priv->prepend_cnt = 0; |
| } |
| |
| if (din) { |
| /* buffering reads not possible for prepend mode */ |
| if (!(flags & SPI_XFER_END)) { |
| debug("unable to buffer reads\n"); |
| return HSSPI_XFER_MODE_DUMMYCS; |
| } |
| |
| /* check rx size */ |
| if (data_bytes > HSSPI_MAX_DATA_SIZE) { |
| debug("max rx bytes exceeded\n"); |
| return HSSPI_XFER_MODE_DUMMYCS; |
| } |
| } |
| |
| if (dout) { |
| /* check tx size */ |
| if (flags & SPI_XFER_END) { |
| if (priv->prepend_cnt + data_bytes > HSSPI_MAX_DATA_SIZE) { |
| debug("max tx bytes exceeded\n"); |
| return HSSPI_XFER_MODE_DUMMYCS; |
| } |
| } else { |
| if (priv->prepend_cnt + data_bytes > HSSPI_MAX_PREPEND_SIZE) { |
| debug("max prepend bytes exceeded\n"); |
| return HSSPI_XFER_MODE_DUMMYCS; |
| } |
| |
| /* |
| * buffer transfer data in the prepend buf in case we have to fall |
| * back to dummy cs mode. |
| */ |
| memcpy(&priv->prepend_buf[priv->prepend_cnt], dout, data_bytes); |
| priv->prepend_cnt += data_bytes; |
| } |
| } |
| |
| return HSSPI_XFER_MODE_PREPEND; |
| } |
| |
| static int bcm63xx_hsspi_xfer_prepend(struct udevice *dev, unsigned int data_bytes, |
| const void *dout, void *din, unsigned long flags) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); |
| struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); |
| uint16_t opcode = 0; |
| uint32_t val, offset; |
| int ret; |
| |
| if (flags & SPI_XFER_END) { |
| offset = HSSPI_FIFO_BASE + HSSPI_FIFO_OP_SIZE; |
| if (priv->prepend_cnt) { |
| /* copy prepend data */ |
| memcpy_toio(priv->regs + offset, |
| priv->prepend_buf, priv->prepend_cnt); |
| } |
| |
| if (dout && data_bytes) { |
| /* copy tx data */ |
| offset += priv->prepend_cnt; |
| memcpy_toio(priv->regs + offset, dout, data_bytes); |
| } |
| |
| bcm63xx_hsspi_activate_cs(priv, plat); |
| if (dout && !din) { |
| /* all half-duplex write. merge to single write */ |
| data_bytes += priv->prepend_cnt; |
| opcode = HSSPI_FIFO_OP_CODE_W; |
| priv->prepend_cnt = 0; |
| } else if (!dout && din) { |
| /* half-duplex read with prepend write */ |
| opcode = HSSPI_FIFO_OP_CODE_R; |
| } else { |
| /* full duplex read/write */ |
| opcode = HSSPI_FIFO_OP_READ_WRITE; |
| } |
| |
| /* profile mode */ |
| val = SPI_PFL_MODE_FILL_MASK; |
| if (plat->mode & SPI_3WIRE) |
| val |= SPI_PFL_MODE_3WIRE_MASK; |
| |
| /* dual mode */ |
| if ((opcode == HSSPI_FIFO_OP_CODE_R && (plat->mode & SPI_RX_DUAL)) || |
| (opcode == HSSPI_FIFO_OP_CODE_W && (plat->mode & SPI_TX_DUAL))) { |
| opcode |= HSSPI_FIFO_OP_MBIT_MASK; |
| |
| if (plat->mode & SPI_RX_DUAL) { |
| val |= SPI_PFL_MODE_MDRDSZ_MASK; |
| val |= priv->prepend_cnt << SPI_PFL_MODE_MDRDST_SHIFT; |
| } |
| if (plat->mode & SPI_TX_DUAL) { |
| val |= SPI_PFL_MODE_MDWRSZ_MASK; |
| val |= priv->prepend_cnt << SPI_PFL_MODE_MDWRST_SHIFT; |
| } |
| } |
| val |= (priv->prepend_cnt << SPI_PFL_MODE_PREPCNT_SHIFT); |
| writel(val, priv->regs + SPI_PFL_MODE_REG(plat->cs)); |
| |
| /* set fifo operation */ |
| val = opcode | (data_bytes & HSSPI_FIFO_OP_BYTES_MASK); |
| writew(cpu_to_be16(val), |
| priv->regs + HSSPI_FIFO_OP_REG); |
| |
| /* issue the transfer */ |
| val = SPI_CMD_OP_START; |
| val |= (plat->cs << SPI_CMD_PFL_SHIFT) & |
| SPI_CMD_PFL_MASK; |
| val |= (plat->cs << SPI_CMD_SLAVE_SHIFT) & |
| SPI_CMD_SLAVE_MASK; |
| writel(val, priv->regs + SPI_CMD_REG); |
| |
| /* wait for completion */ |
| ret = wait_for_bit_32(priv->regs + SPI_STAT_REG, |
| SPI_STAT_SRCBUSY_MASK, false, |
| 1000, false); |
| if (ret) { |
| bcm63xx_hsspi_deactivate_cs(priv); |
| printf("spi polling timeout\n"); |
| return ret; |
| } |
| |
| /* copy rx data */ |
| if (din) |
| memcpy_fromio(din, priv->regs + HSSPI_FIFO_BASE, |
| data_bytes); |
| bcm63xx_hsspi_deactivate_cs(priv); |
| } |
| |
| return 0; |
| } |
| |
| static int bcm63xx_hsspi_xfer(struct udevice *dev, unsigned int bitlen, |
| const void *dout, void *din, unsigned long flags) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); |
| int ret; |
| u32 data_bytes = bitlen >> 3; |
| |
| if (priv->xfer_mode == HSSPI_XFER_MODE_PREPEND) { |
| priv->xfer_mode = |
| bcm63xx_prepare_prepend_transfer(priv, data_bytes, dout, din, flags); |
| } |
| |
| /* if not prependable, fall back to dummy cs mode with safe clock */ |
| if (priv->xfer_mode == HSSPI_XFER_MODE_DUMMYCS) { |
| /* For pending prepend data from previous transfers, send it first */ |
| if (priv->prepend_cnt) { |
| bcm63xx_hsspi_xfer_dummy_cs(dev, priv->prepend_cnt, |
| priv->prepend_buf, NULL, |
| (flags & ~SPI_XFER_END) | SPI_XFER_BEGIN); |
| priv->prepend_cnt = 0; |
| } |
| ret = bcm63xx_hsspi_xfer_dummy_cs(dev, data_bytes, dout, din, flags); |
| } else { |
| ret = bcm63xx_hsspi_xfer_prepend(dev, data_bytes, dout, din, flags); |
| } |
| |
| if (flags & SPI_XFER_END) |
| priv->xfer_mode = HSSPI_XFER_MODE_PREPEND; |
| |
| return ret; |
| } |
| |
| static const struct dm_spi_ops bcm63xx_hsspi_ops = { |
| .cs_info = bcm63xx_hsspi_cs_info, |
| .set_mode = bcm63xx_hsspi_set_mode, |
| .set_speed = bcm63xx_hsspi_set_speed, |
| .xfer = bcm63xx_hsspi_xfer, |
| }; |
| |
| static const struct udevice_id bcm63xx_hsspi_ids[] = { |
| { .compatible = "brcm,bcm6328-hsspi", }, |
| { .compatible = "brcm,bcmbca-hsspi-v1.0", }, |
| { /* sentinel */ } |
| }; |
| |
| static int bcm63xx_hsspi_child_pre_probe(struct udevice *dev) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); |
| struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); |
| struct spi_slave *slave = dev_get_parent_priv(dev); |
| |
| /* check cs */ |
| if (plat->cs >= priv->num_cs) { |
| printf("no cs %u\n", plat->cs); |
| return -ENODEV; |
| } |
| |
| /* cs polarity */ |
| if (plat->mode & SPI_CS_HIGH) |
| priv->cs_pols |= BIT(plat->cs); |
| else |
| priv->cs_pols &= ~BIT(plat->cs); |
| |
| /* |
| * set the max read/write size to make sure each xfer are within the |
| * prepend limit |
| */ |
| slave->max_read_size = HSSPI_MAX_DATA_SIZE; |
| slave->max_write_size = HSSPI_MAX_DATA_SIZE; |
| |
| return 0; |
| } |
| |
| static int bcm63xx_hsspi_probe(struct udevice *dev) |
| { |
| struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev); |
| struct reset_ctl rst_ctl; |
| struct clk clk; |
| int ret; |
| |
| priv->regs = dev_remap_addr(dev); |
| if (!priv->regs) |
| return -EINVAL; |
| |
| priv->num_cs = dev_read_u32_default(dev, "num-cs", 8); |
| |
| /* enable clock */ |
| ret = clk_get_by_name(dev, "hsspi", &clk); |
| if (ret < 0) |
| return ret; |
| |
| ret = clk_enable(&clk); |
| if (ret < 0 && ret != -ENOSYS) |
| return ret; |
| |
| /* get clock rate */ |
| ret = clk_get_by_name(dev, "pll", &clk); |
| if (ret < 0 && ret != -ENOSYS) |
| return ret; |
| |
| priv->clk_rate = clk_get_rate(&clk); |
| |
| /* perform reset */ |
| ret = reset_get_by_index(dev, 0, &rst_ctl); |
| if (ret >= 0) { |
| ret = reset_deassert(&rst_ctl); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = reset_free(&rst_ctl); |
| if (ret < 0) |
| return ret; |
| |
| /* initialize hardware */ |
| writel(0, priv->regs + SPI_IR_MASK_REG); |
| |
| /* clear pending interrupts */ |
| writel(SPI_IR_CLEAR_ALL, priv->regs + SPI_IR_STAT_REG); |
| |
| /* enable clk gate */ |
| setbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_GATE_MASK); |
| |
| /* read default cs polarities */ |
| priv->cs_pols = readl(priv->regs + SPI_CTL_REG) & |
| SPI_CTL_CS_POL_MASK; |
| |
| /* default in prepend mode */ |
| priv->xfer_mode = HSSPI_XFER_MODE_PREPEND; |
| |
| return 0; |
| } |
| |
| U_BOOT_DRIVER(bcm63xx_hsspi) = { |
| .name = "bcm63xx_hsspi", |
| .id = UCLASS_SPI, |
| .of_match = bcm63xx_hsspi_ids, |
| .ops = &bcm63xx_hsspi_ops, |
| .priv_auto = sizeof(struct bcm63xx_hsspi_priv), |
| .child_pre_probe = bcm63xx_hsspi_child_pre_probe, |
| .probe = bcm63xx_hsspi_probe, |
| }; |