blob: 836c550b0bb64bb14ad1ab20c46a835ef0c09194 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Qualcomm QUP SPI controller
* FIFO and Block modes supported, no DMA
* mode support
*
* Copyright (c) 2020 Sartura Ltd.
*
* Author: Robert Marko <robert.marko@sartura.hr>
* Author: Luka Kovacic <luka.kovacic@sartura.hr>
*
* Based on stock U-Boot and Linux drivers
*/
#include <asm/gpio.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <linux/delay.h>
#include <spi.h>
#define QUP_CONFIG 0x0000
#define QUP_STATE 0x0004
#define QUP_IO_M_MODES 0x0008
#define QUP_SW_RESET 0x000c
#define QUP_OPERATIONAL 0x0018
#define QUP_ERROR_FLAGS 0x001c
#define QUP_ERROR_FLAGS_EN 0x0020
#define QUP_OPERATIONAL_MASK 0x0028
#define QUP_HW_VERSION 0x0030
#define QUP_MX_OUTPUT_CNT 0x0100
#define QUP_OUTPUT_FIFO 0x0110
#define QUP_MX_WRITE_CNT 0x0150
#define QUP_MX_INPUT_CNT 0x0200
#define QUP_MX_READ_CNT 0x0208
#define QUP_INPUT_FIFO 0x0218
#define SPI_CONFIG 0x0300
#define SPI_IO_CONTROL 0x0304
#define SPI_ERROR_FLAGS 0x0308
#define SPI_ERROR_FLAGS_EN 0x030c
/* QUP_CONFIG fields */
#define QUP_CONFIG_SPI_MODE BIT(8)
#define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13)
#define QUP_CONFIG_NO_INPUT BIT(7)
#define QUP_CONFIG_NO_OUTPUT BIT(6)
#define QUP_CONFIG_N 0x001f
/* QUP_STATE fields */
#define QUP_STATE_VALID BIT(2)
#define QUP_STATE_RESET 0
#define QUP_STATE_RUN 1
#define QUP_STATE_PAUSE 3
#define QUP_STATE_MASK 3
#define QUP_STATE_CLEAR 2
/* QUP_IO_M_MODES fields */
#define QUP_IO_M_PACK_EN BIT(15)
#define QUP_IO_M_UNPACK_EN BIT(14)
#define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12
#define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10
#define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
#define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
#define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0)
#define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2)
#define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5)
#define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7)
#define QUP_IO_M_MODE_FIFO 0
#define QUP_IO_M_MODE_BLOCK 1
#define QUP_IO_M_MODE_DMOV 2
#define QUP_IO_M_MODE_BAM 3
/* QUP_OPERATIONAL fields */
#define QUP_OP_IN_BLOCK_READ_REQ BIT(13)
#define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12)
#define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11)
#define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10)
#define QUP_OP_IN_SERVICE_FLAG BIT(9)
#define QUP_OP_OUT_SERVICE_FLAG BIT(8)
#define QUP_OP_IN_FIFO_FULL BIT(7)
#define QUP_OP_OUT_FIFO_FULL BIT(6)
#define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5)
#define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4)
/* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
#define QUP_ERROR_OUTPUT_OVER_RUN BIT(5)
#define QUP_ERROR_INPUT_UNDER_RUN BIT(4)
#define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3)
#define QUP_ERROR_INPUT_OVER_RUN BIT(2)
/* SPI_CONFIG fields */
#define SPI_CONFIG_HS_MODE BIT(10)
#define SPI_CONFIG_INPUT_FIRST BIT(9)
#define SPI_CONFIG_LOOPBACK BIT(8)
/* SPI_IO_CONTROL fields */
#define SPI_IO_C_FORCE_CS BIT(11)
#define SPI_IO_C_CLK_IDLE_HIGH BIT(10)
#define SPI_IO_C_MX_CS_MODE BIT(8)
#define SPI_IO_C_CS_N_POLARITY_0 BIT(4)
#define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2)
#define SPI_IO_C_CS_SELECT_MASK 0x000c
#define SPI_IO_C_TRISTATE_CS BIT(1)
#define SPI_IO_C_NO_TRI_STATE BIT(0)
/* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
#define SPI_ERROR_CLK_OVER_RUN BIT(1)
#define SPI_ERROR_CLK_UNDER_RUN BIT(0)
#define SPI_NUM_CHIPSELECTS 4
#define SPI_DELAY_THRESHOLD 1
#define SPI_DELAY_RETRY 10
#define SPI_RESET_STATE 0
#define SPI_RUN_STATE 1
#define SPI_CORE_RESET 0
#define SPI_CORE_RUNNING 1
#define DUMMY_DATA_VAL 0
#define TIMEOUT_CNT 100
#define QUP_STATE_VALID_BIT 2
#define QUP_CONFIG_MINI_CORE_MSK (0x0F << 8)
#define QUP_CONFIG_MINI_CORE_SPI BIT(8)
#define QUP_CONF_INPUT_MSK BIT(7)
#define QUP_CONF_INPUT_ENA (0 << 7)
#define QUP_CONF_NO_INPUT BIT(7)
#define QUP_CONF_OUTPUT_MSK BIT(6)
#define QUP_CONF_OUTPUT_ENA (0 << 6)
#define QUP_CONF_NO_OUTPUT BIT(6)
#define QUP_STATE_RUN_STATE 0x1
#define QUP_STATE_RESET_STATE 0x0
#define QUP_STATE_PAUSE_STATE 0x3
#define SPI_BIT_WORD_MSK 0x1F
#define SPI_8_BIT_WORD 0x07
#define LOOP_BACK_MSK BIT(8)
#define NO_LOOP_BACK (0 << 8)
#define SLAVE_OPERATION_MSK BIT(5)
#define SLAVE_OPERATION (0 << 5)
#define CLK_ALWAYS_ON (0 << 9)
#define MX_CS_MODE BIT(8)
#define CS_POLARITY_MASK BIT(4)
#define NO_TRI_STATE BIT(0)
#define FORCE_CS_MSK BIT(11)
#define FORCE_CS_EN BIT(11)
#define FORCE_CS_DIS (0 << 11)
#define OUTPUT_BIT_SHIFT_MSK BIT(16)
#define OUTPUT_BIT_SHIFT_EN BIT(16)
#define INPUT_BLOCK_MODE_MSK (0x03 << 12)
#define INPUT_BLOCK_MODE (0x01 << 12)
#define OUTPUT_BLOCK_MODE_MSK (0x03 << 10)
#define OUTPUT_BLOCK_MODE (0x01 << 10)
#define INPUT_BAM_MODE (0x3 << 12)
#define OUTPUT_BAM_MODE (0x3 << 10)
#define PACK_EN (0x1 << 15)
#define UNPACK_EN (0x1 << 14)
#define PACK_EN_MSK (0x1 << 15)
#define UNPACK_EN_MSK (0x1 << 14)
#define OUTPUT_SERVICE_MSK (0x1 << 8)
#define INPUT_SERVICE_MSK (0x1 << 9)
#define OUTPUT_SERVICE_DIS (0x1 << 8)
#define INPUT_SERVICE_DIS (0x1 << 9)
#define BLSP0_SPI_DEASSERT_WAIT_REG 0x0310
#define QUP_DATA_AVAILABLE_FOR_READ BIT(5)
#define SPI_INPUT_BLOCK_SIZE 4
#define SPI_OUTPUT_BLOCK_SIZE 4
#define SPI_BITLEN_MSK 0x07
#define MAX_COUNT_SIZE 0xffff
struct qup_spi_priv {
phys_addr_t base;
struct clk clk;
u32 num_cs;
struct gpio_desc cs_gpios[SPI_NUM_CHIPSELECTS];
bool cs_high;
u32 core_state;
};
static int qup_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
{
struct qup_spi_priv *priv = dev_get_priv(dev);
debug("%s: cs=%d enable=%d\n", __func__, cs, enable);
if (cs >= SPI_NUM_CHIPSELECTS)
return -ENODEV;
if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
return -EINVAL;
if (priv->cs_high)
enable = !enable;
return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
}
/*
* Function to write data to OUTPUT FIFO
*/
static void qup_spi_write_byte(struct udevice *dev, unsigned char data)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
/* Wait for space in the FIFO */
while ((readl(priv->base + QUP_OPERATIONAL) & QUP_OP_OUT_FIFO_FULL))
udelay(1);
/* Write the byte of data */
writel(data, priv->base + QUP_OUTPUT_FIFO);
}
/*
* Function to read data from Input FIFO
*/
static unsigned char qup_spi_read_byte(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
/* Wait for Data in FIFO */
while (!(readl(priv->base + QUP_OPERATIONAL) & QUP_DATA_AVAILABLE_FOR_READ)) {
printf("Stuck at FIFO data wait\n");
udelay(1);
}
/* Read a byte of data */
return readl(priv->base + QUP_INPUT_FIFO) & 0xff;
}
/*
* Function to check whether Input or Output FIFO
* has data to be serviced
*/
static int qup_spi_check_fifo_status(struct udevice *dev, u32 reg_addr)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
unsigned int count = TIMEOUT_CNT;
unsigned int status_flag;
unsigned int val;
do {
val = readl(priv->base + reg_addr);
count--;
if (count == 0)
return -ETIMEDOUT;
status_flag = ((val & QUP_OP_OUT_SERVICE_FLAG) | (val & QUP_OP_IN_SERVICE_FLAG));
} while (!status_flag);
return 0;
}
/*
* Function to configure Input and Output enable/disable
*/
static void qup_spi_enable_io_config(struct udevice *dev, u32 write_cnt, u32 read_cnt)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
if (write_cnt) {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA);
} else {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT);
}
if (read_cnt) {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA);
} else {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT);
}
}
static int check_bit_state(struct udevice *dev, u32 reg_addr, int bit_num, int val,
int us_delay)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
unsigned int count = TIMEOUT_CNT;
unsigned int bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01);
while (bit_val != val) {
count--;
if (count == 0)
return -ETIMEDOUT;
udelay(us_delay);
bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01);
}
return 0;
}
/*
* Check whether QUPn State is valid
*/
static int check_qup_state_valid(struct udevice *dev)
{
return check_bit_state(dev, QUP_STATE, QUP_STATE_VALID, 1, 1);
}
/*
* Configure QUPn Core state
*/
static int qup_spi_config_spi_state(struct udevice *dev, unsigned int state)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
u32 val;
int ret;
ret = check_qup_state_valid(dev);
if (ret != 0)
return ret;
switch (state) {
case SPI_RUN_STATE:
/* Set the state to RUN */
val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK)
| QUP_STATE_RUN);
writel(val, priv->base + QUP_STATE);
ret = check_qup_state_valid(dev);
if (ret != 0)
return ret;
priv->core_state = SPI_CORE_RUNNING;
break;
case SPI_RESET_STATE:
/* Set the state to RESET */
val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK)
| QUP_STATE_RESET);
writel(val, priv->base + QUP_STATE);
ret = check_qup_state_valid(dev);
if (ret != 0)
return ret;
priv->core_state = SPI_CORE_RESET;
break;
default:
printf("Unsupported QUP SPI state: %d\n", state);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Function to read bytes number of data from the Input FIFO
*/
static int __qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
u32 val;
unsigned int i;
unsigned int read_bytes = bytes;
unsigned int fifo_count;
int ret = 0;
int state_config;
/* Configure no of bytes to read */
state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
if (state_config)
return state_config;
/* Configure input and output enable */
qup_spi_enable_io_config(dev, 0, read_bytes);
writel(bytes, priv->base + QUP_MX_INPUT_CNT);
state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE);
if (state_config)
return state_config;
while (read_bytes) {
ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL);
if (ret != 0)
goto out;
val = readl(priv->base + QUP_OPERATIONAL);
if (val & QUP_OP_IN_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* read input data
*/
val &= QUP_OP_IN_SERVICE_FLAG;
writel(val, priv->base + QUP_OPERATIONAL);
fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ?
SPI_INPUT_BLOCK_SIZE : read_bytes);
for (i = 0; i < fifo_count; i++) {
*data_buffer = qup_spi_read_byte(dev);
data_buffer++;
read_bytes--;
}
}
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)qup_spi_config_spi_state(dev, SPI_RESET_STATE);
return ret;
}
static int qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __qup_spi_blsp_spi_read(dev, data_buffer, length);
if (ret != 0)
return ret;
data_buffer += length;
bytes -= length;
}
return 0;
}
/*
* Function to write data to the Output FIFO
*/
static int __qup_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
u32 val;
unsigned int i;
unsigned int write_len = bytes;
unsigned int read_len = bytes;
unsigned int fifo_count;
int ret = 0;
int state_config;
state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
if (state_config)
return state_config;
writel(bytes, priv->base + QUP_MX_OUTPUT_CNT);
writel(bytes, priv->base + QUP_MX_INPUT_CNT);
state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE);
if (state_config)
return state_config;
/* Configure input and output enable */
qup_spi_enable_io_config(dev, write_len, read_len);
/*
* read_len considered to ensure that we read the dummy data for the
* write we performed. This is needed to ensure with WR-RD transaction
* to get the actual data on the subsequent read cycle that happens
*/
while (write_len || read_len) {
ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL);
if (ret != 0)
goto out;
val = readl(priv->base + QUP_OPERATIONAL);
if (val & QUP_OP_OUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will write
* expected output data
*/
val &= QUP_OP_OUT_SERVICE_FLAG;
writel(val, priv->base + QUP_OPERATIONAL);
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
else
fifo_count = write_len;
for (i = 0; i < fifo_count; i++) {
/* Write actual data to output FIFO */
qup_spi_write_byte(dev, *cmd_buffer);
cmd_buffer++;
write_len--;
}
}
if (val & QUP_OP_IN_SERVICE_FLAG) {
/*
* acknowledge to hw that software
* will read input data
*/
val &= QUP_OP_IN_SERVICE_FLAG;
writel(val, priv->base + QUP_OPERATIONAL);
if (read_len > SPI_INPUT_BLOCK_SIZE)
fifo_count = SPI_INPUT_BLOCK_SIZE;
else
fifo_count = read_len;
for (i = 0; i < fifo_count; i++) {
/* Read dummy data for the data written */
(void)qup_spi_read_byte(dev);
/* Decrement the write count after reading the
* dummy data from the device. This is to make
* sure we read dummy data before we write the
* data to fifo
*/
read_len--;
}
}
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)qup_spi_config_spi_state(dev, SPI_RESET_STATE);
return ret;
}
static int qup_spi_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __qup_blsp_spi_write(dev, cmd_buffer, length);
if (ret != 0)
return ret;
cmd_buffer += length;
bytes -= length;
}
return 0;
}
static int qup_spi_set_speed(struct udevice *dev, uint speed)
{
return 0;
}
static int qup_spi_set_mode(struct udevice *dev, uint mode)
{
struct qup_spi_priv *priv = dev_get_priv(dev);
unsigned int clk_idle_state;
unsigned int input_first_mode;
u32 val;
switch (mode) {
case SPI_MODE_0:
clk_idle_state = 0;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE_1:
clk_idle_state = 0;
input_first_mode = 0;
break;
case SPI_MODE_2:
clk_idle_state = 1;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE_3:
clk_idle_state = 1;
input_first_mode = 0;
break;
default:
printf("Unsupported spi mode: %d\n", mode);
return -EINVAL;
}
if (mode & SPI_CS_HIGH)
priv->cs_high = true;
else
priv->cs_high = false;
val = readl(priv->base + SPI_CONFIG);
val |= input_first_mode;
writel(val, priv->base + SPI_CONFIG);
val = readl(priv->base + SPI_IO_CONTROL);
if (clk_idle_state)
val |= SPI_IO_C_CLK_IDLE_HIGH;
else
val &= ~SPI_IO_C_CLK_IDLE_HIGH;
writel(val, priv->base + SPI_IO_CONTROL);
return 0;
}
static void qup_spi_reset(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
/* Driver may not be probed yet */
if (!priv)
return;
writel(0x1, priv->base + QUP_SW_RESET);
udelay(5);
}
static int qup_spi_hw_init(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
int ret;
/* QUPn module configuration */
qup_spi_reset(dev);
/* Set the QUPn state */
ret = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
if (ret)
return ret;
/*
* Configure Mini core to SPI core with Input Output enabled,
* SPI master, N = 8 bits
*/
clrsetbits_le32(priv->base + QUP_CONFIG, (QUP_CONFIG_MINI_CORE_MSK |
QUP_CONF_INPUT_MSK |
QUP_CONF_OUTPUT_MSK |
SPI_BIT_WORD_MSK),
(QUP_CONFIG_MINI_CORE_SPI |
QUP_CONF_INPUT_ENA |
QUP_CONF_OUTPUT_ENA |
SPI_8_BIT_WORD));
/*
* Configure Input first SPI protocol,
* SPI master mode and no loopback
*/
clrsetbits_le32(priv->base + SPI_CONFIG, (LOOP_BACK_MSK |
SLAVE_OPERATION_MSK),
(NO_LOOP_BACK |
SLAVE_OPERATION));
/*
* Configure SPI IO Control Register
* CLK_ALWAYS_ON = 0
* MX_CS_MODE = 0
* NO_TRI_STATE = 1
*/
writel((CLK_ALWAYS_ON | NO_TRI_STATE), priv->base + SPI_IO_CONTROL);
/*
* Configure SPI IO Modes.
* OUTPUT_BIT_SHIFT_EN = 1
* INPUT_MODE = Block Mode
* OUTPUT MODE = Block Mode
*/
clrsetbits_le32(priv->base + QUP_IO_M_MODES, (OUTPUT_BIT_SHIFT_MSK |
INPUT_BLOCK_MODE_MSK |
OUTPUT_BLOCK_MODE_MSK),
(OUTPUT_BIT_SHIFT_EN |
INPUT_BLOCK_MODE |
OUTPUT_BLOCK_MODE));
/* Disable Error mask */
writel(0, priv->base + SPI_ERROR_FLAGS_EN);
writel(0, priv->base + QUP_ERROR_FLAGS_EN);
writel(0, priv->base + BLSP0_SPI_DEASSERT_WAIT_REG);
return ret;
}
static int qup_spi_claim_bus(struct udevice *dev)
{
int ret;
ret = qup_spi_hw_init(dev);
if (ret)
return -EIO;
return 0;
}
static int qup_spi_release_bus(struct udevice *dev)
{
/* Reset the SPI hardware */
qup_spi_reset(dev);
return 0;
}
static int qup_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(dev);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
unsigned int len;
const u8 *txp = dout;
u8 *rxp = din;
int ret = 0;
if (bitlen & SPI_BITLEN_MSK) {
printf("Invalid bit length\n");
return -EINVAL;
}
len = bitlen >> 3;
if (flags & SPI_XFER_BEGIN) {
ret = qup_spi_hw_init(dev);
if (ret != 0)
return ret;
ret = qup_spi_set_cs(bus, slave_plat->cs, false);
if (ret != 0)
return ret;
}
if (dout != NULL) {
ret = qup_spi_blsp_spi_write(dev, txp, len);
if (ret != 0)
return ret;
}
if (din != NULL) {
ret = qup_spi_blsp_spi_read(dev, rxp, len);
if (ret != 0)
return ret;
}
if (flags & SPI_XFER_END) {
ret = qup_spi_set_cs(bus, slave_plat->cs, true);
if (ret != 0)
return ret;
}
return ret;
}
static int qup_spi_probe(struct udevice *dev)
{
struct qup_spi_priv *priv = dev_get_priv(dev);
int ret;
priv->base = dev_read_addr(dev);
if (priv->base == FDT_ADDR_T_NONE)
return -EINVAL;
ret = clk_get_by_index(dev, 0, &priv->clk);
if (ret)
return ret;
ret = clk_enable(&priv->clk);
if (ret < 0)
return ret;
priv->num_cs = dev_read_u32_default(dev, "num-cs", 1);
ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
priv->num_cs, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
if (ret < 0) {
printf("Can't get %s cs gpios: %d\n", dev->name, ret);
return -EINVAL;
}
return 0;
}
static const struct dm_spi_ops qup_spi_ops = {
.claim_bus = qup_spi_claim_bus,
.release_bus = qup_spi_release_bus,
.xfer = qup_spi_xfer,
.set_speed = qup_spi_set_speed,
.set_mode = qup_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id qup_spi_ids[] = {
{ .compatible = "qcom,spi-qup-v1.1.1", },
{ .compatible = "qcom,spi-qup-v2.1.1", },
{ .compatible = "qcom,spi-qup-v2.2.1", },
{ }
};
U_BOOT_DRIVER(spi_qup) = {
.name = "spi_qup",
.id = UCLASS_SPI,
.of_match = qup_spi_ids,
.ops = &qup_spi_ops,
.priv_auto = sizeof(struct qup_spi_priv),
.probe = qup_spi_probe,
};