blob: 1e3e20df2e8fed402db7b421957070a83fec09f3 [file] [log] [blame]
/*
* cpu/ppc4xx/4xx_ibm_ddr2_autocalib.c
* This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
* DDR2 controller (non Denali Core). Those currently are:
*
* 405: 405EX
* 440/460: 440SP/440SPe/460EX/460GT/460SX
*
* (C) Copyright 2008 Applied Micro Circuits Corporation
* Adam Graham <agraham@amcc.com>
*
* (C) Copyright 2007-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* COPYRIGHT AMCC CORPORATION 2004
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
/* define DEBUG for debugging output (obviously ;-)) */
#undef DEBUG
#include <common.h>
#include <ppc4xx.h>
#include <asm/io.h>
#include <asm/processor.h>
#if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
/*
* Only compile the DDR auto-calibration code for NOR boot and
* not for NAND boot (NAND SPL and NAND U-Boot - NUB)
*/
#if !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL)
#define MAXBXCF 4
#define SDRAM_RXBAS_SHIFT_1M 20
#if defined(CONFIG_SYS_DECREMENT_PATTERNS)
#define NUMMEMTESTS 24
#else
#define NUMMEMTESTS 8
#endif /* CONFIG_SYS_DECREMENT_PATTERNS */
#define NUMLOOPS 1 /* configure as you deem approporiate */
#define NUMMEMWORDS 16
/* Private Structure Definitions */
struct autocal_regs {
u32 rffd;
u32 rqfd;
};
struct ddrautocal {
u32 rffd;
u32 rffd_min;
u32 rffd_max;
u32 rffd_size;
u32 rqfd;
u32 rqfd_size;
u32 rdcc;
u32 flags;
};
struct sdram_timing {
u32 wrdtr;
u32 clktr;
};
struct sdram_timing_clks {
u32 wrdtr;
u32 clktr;
u32 rdcc;
u32 flags;
};
struct autocal_clks {
struct sdram_timing_clks clocks;
struct ddrautocal autocal;
};
/*--------------------------------------------------------------------------+
* Prototypes
*--------------------------------------------------------------------------*/
#if defined(CONFIG_PPC4xx_DDR_METHOD_A)
static u32 DQS_calibration_methodA(struct ddrautocal *);
static u32 program_DQS_calibration_methodA(struct ddrautocal *);
#else
static u32 DQS_calibration_methodB(struct ddrautocal *);
static u32 program_DQS_calibration_methodB(struct ddrautocal *);
#endif
static int short_mem_test(u32 *);
/*
* To provide an interface for board specific config values in this common
* DDR setup code, we implement he "weak" default functions here. They return
* the default value back to the caller.
*
* Please see include/configs/yucca.h for an example fora board specific
* implementation.
*/
#if !defined(CONFIG_SPD_EEPROM)
u32 __ddr_wrdtr(u32 default_val)
{
return default_val;
}
u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
u32 __ddr_clktr(u32 default_val)
{
return default_val;
}
u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
/*
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
*/
void __spd_ddr_init_hang(void)
{
hang();
}
void
spd_ddr_init_hang(void) __attribute__((weak, alias("__spd_ddr_init_hang")));
#endif /* defined(CONFIG_SPD_EEPROM) */
ulong __ddr_scan_option(ulong default_val)
{
return default_val;
}
ulong ddr_scan_option(ulong) __attribute__((weak, alias("__ddr_scan_option")));
static u32 *get_membase(int bxcr_num)
{
ulong bxcf;
u32 *membase;
#if defined(SDRAM_R0BAS)
/* BAS from Memory Queue rank reg. */
membase =
(u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
bxcf = 0; /* just to satisfy the compiler */
#else
/* BAS from SDRAM_MBxCF mem rank reg. */
mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf);
membase = (u32 *)((bxcf & 0xfff80000) << 3);
#endif
return membase;
}
static inline void ecc_clear_status_reg(void)
{
mtsdram(SDRAM_ECCCR, 0xffffffff);
#if defined(SDRAM_R0BAS)
mtdcr(SDRAM_ERRSTATLL, 0xffffffff);
#endif
}
/*
* Reset and relock memory DLL after SDRAM_CLKTR change
*/
static inline void relock_memory_DLL(void)
{
u32 reg;
mtsdram(SDRAM_MCOPT2, SDRAM_MCOPT2_IPTR_EXECUTE);
do {
mfsdram(SDRAM_MCSTAT, reg);
} while (!(reg & SDRAM_MCSTAT_MIC_COMP));
mfsdram(SDRAM_MCOPT2, reg);
mtsdram(SDRAM_MCOPT2, reg | SDRAM_MCOPT2_DCEN_ENABLE);
}
static int ecc_check_status_reg(void)
{
u32 ecc_status;
/*
* Compare suceeded, now check
* if got ecc error. If got an
* ecc error, then don't count
* this as a passing value
*/
mfsdram(SDRAM_ECCCR, ecc_status);
if (ecc_status != 0x00000000) {
/* clear on error */
ecc_clear_status_reg();
/* ecc check failure */
return 0;
}
ecc_clear_status_reg();
sync();
return 1;
}
/* return 1 if passes, 0 if fail */
static int short_mem_test(u32 *base_address)
{
int i, j, l;
u32 ecc_mode = 0;
ulong test[NUMMEMTESTS][NUMMEMWORDS] = {
/* 0 */ {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
/* 1 */ {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
/* 2 */ {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
/* 3 */ {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
/* 4 */ {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
/* 5 */ {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
/* 6 */ {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
/* 7 */ {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55},
#if defined(CONFIG_SYS_DECREMENT_PATTERNS)
/* 8 */ {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff},
/* 9 */ {0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe,
0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe,
0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe,
0xfffefffe, 0xfffefffe, 0xfffefffe, 0xfffefffe},
/* 10 */{0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd,
0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd,
0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd,
0xfffdfffd, 0xfffdfffd, 0xfffdffff, 0xfffdfffd},
/* 11 */{0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc,
0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc,
0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc,
0xfffcfffc, 0xfffcfffc, 0xfffcfffc, 0xfffcfffc},
/* 12 */{0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb,
0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb,
0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb,
0xfffbfffb, 0xfffffffb, 0xfffffffb, 0xfffffffb},
/* 13 */{0xfffafffa, 0xfffafffa, 0xfffffffa, 0xfffafffa,
0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa,
0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa,
0xfffafffa, 0xfffafffa, 0xfffafffa, 0xfffafffa},
/* 14 */{0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9,
0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9,
0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9,
0xfff9fff9, 0xfff9fff9, 0xfff9fff9, 0xfff9fff9},
/* 15 */{0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8,
0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8,
0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8,
0xfff8fff8, 0xfff8fff8, 0xfff8fff8, 0xfff8fff8},
/* 16 */{0xfff7fff7, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7,
0xfff7fff7, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7,
0xfff7fff7, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7,
0xfff7ffff, 0xfff7ffff, 0xfff7fff7, 0xfff7fff7},
/* 17 */{0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7,
0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7,
0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7,
0xfff6fff5, 0xfff6ffff, 0xfff6fff6, 0xfff6fff7},
/* 18 */{0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5,
0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5,
0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5,
0xfff5fff4, 0xfff5ffff, 0xfff5fff5, 0xfff5fff5},
/* 19 */{0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4,
0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4,
0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4,
0xfff4fff3, 0xfff4ffff, 0xfff4fff4, 0xfff4fff4},
/* 20 */{0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3,
0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3,
0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3,
0xfff3fff2, 0xfff3ffff, 0xfff3fff3, 0xfff3fff3},
/* 21 */{0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2,
0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2,
0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2,
0xfff2ffff, 0xfff2ffff, 0xfff2fff2, 0xfff2fff2},
/* 22 */{0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1,
0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1,
0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1,
0xfff1ffff, 0xfff1ffff, 0xfff1fff1, 0xfff1fff1},
/* 23 */{0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0,
0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0,
0xfff0fff0, 0xfff0fff0, 0xfff0fff0, 0xfff0fff0,
0xfff0fff0, 0xfff0fffe, 0xfff0fff0, 0xfff0fff0},
#endif /* CONFIG_SYS_DECREMENT_PATTERNS */
};
mfsdram(SDRAM_MCOPT1, ecc_mode);
if ((ecc_mode & SDRAM_MCOPT1_MCHK_CHK_REP) ==
SDRAM_MCOPT1_MCHK_CHK_REP) {
ecc_clear_status_reg();
sync();
ecc_mode = 1;
} else {
ecc_mode = 0;
}
/*
* Run the short memory test.
*/
for (i = 0; i < NUMMEMTESTS; i++) {
for (j = 0; j < NUMMEMWORDS; j++) {
base_address[j] = test[i][j];
ppcDcbf((ulong)&(base_address[j]));
}
sync();
for (l = 0; l < NUMLOOPS; l++) {
for (j = 0; j < NUMMEMWORDS; j++) {
if (base_address[j] != test[i][j]) {
ppcDcbf((u32)&(base_address[j]));
return 0;
} else {
if (ecc_mode) {
if (!ecc_check_status_reg())
return 0;
}
}
ppcDcbf((u32)&(base_address[j]));
} /* for (j = 0; j < NUMMEMWORDS; j++) */
sync();
} /* for (l=0; l<NUMLOOPS; l++) */
}
return 1;
}
#if defined(CONFIG_PPC4xx_DDR_METHOD_A)
/*-----------------------------------------------------------------------------+
| program_DQS_calibration_methodA.
+-----------------------------------------------------------------------------*/
static u32 program_DQS_calibration_methodA(struct ddrautocal *ddrcal)
{
u32 pass_result = 0;
#ifdef DEBUG
ulong temp;
mfsdram(SDRAM_RDCC, temp);
debug("<%s>SDRAM_RDCC=0x%08x\n", __func__, temp);
#endif
pass_result = DQS_calibration_methodA(ddrcal);
return pass_result;
}
/*
* DQS_calibration_methodA()
*
* Autocalibration Method A
*
* ARRAY [Entire DQS Range] DQS_Valid_Window ; initialized to all zeros
* ARRAY [Entire FDBK Range] FDBK_Valid_Window; initialized to all zeros
* MEMWRITE(addr, expected_data);
* for (i = 0; i < Entire DQS Range; i++) { RQDC.RQFD
* for (j = 0; j < Entire FDBK Range; j++) { RFDC.RFFD
* MEMREAD(addr, actual_data);
* if (actual_data == expected_data) {
* DQS_Valid_Window[i] = 1; RQDC.RQFD
* FDBK_Valid_Window[i][j] = 1; RFDC.RFFD
* }
* }
* }
*/
static u32 DQS_calibration_methodA(struct ddrautocal *cal)
{
ulong rfdc_reg;
ulong rffd;
ulong rqdc_reg;
ulong rqfd;
u32 *membase;
ulong bxcf;
int rqfd_average;
int bxcr_num;
int rffd_average;
int pass;
u32 passed = 0;
int in_window;
struct autocal_regs curr_win_min;
struct autocal_regs curr_win_max;
struct autocal_regs best_win_min;
struct autocal_regs best_win_max;
struct autocal_regs loop_win_min;
struct autocal_regs loop_win_max;
#ifdef DEBUG
ulong temp;
#endif
ulong rdcc;
char slash[] = "\\|/-\\|/-";
int loopi = 0;
/* start */
in_window = 0;
memset(&curr_win_min, 0, sizeof(curr_win_min));
memset(&curr_win_max, 0, sizeof(curr_win_max));
memset(&best_win_min, 0, sizeof(best_win_min));
memset(&best_win_max, 0, sizeof(best_win_max));
memset(&loop_win_min, 0, sizeof(loop_win_min));
memset(&loop_win_max, 0, sizeof(loop_win_max));
rdcc = 0;
/*
* Program RDCC register
* Read sample cycle auto-update enable
*/
mtsdram(SDRAM_RDCC, SDRAM_RDCC_RDSS_T1 | SDRAM_RDCC_RSAE_ENABLE);
#ifdef DEBUG
mfsdram(SDRAM_RDCC, temp);
debug("<%s>SDRAM_RDCC=0x%x\n", __func__, temp);
mfsdram(SDRAM_RTSR, temp);
debug("<%s>SDRAM_RTSR=0x%x\n", __func__, temp);
mfsdram(SDRAM_FCSR, temp);
debug("<%s>SDRAM_FCSR=0x%x\n", __func__, temp);
#endif
/*
* Program RQDC register
* Internal DQS delay mechanism enable
*/
mtsdram(SDRAM_RQDC,
SDRAM_RQDC_RQDE_ENABLE | SDRAM_RQDC_RQFD_ENCODE(0x00));
#ifdef DEBUG
mfsdram(SDRAM_RQDC, temp);
debug("<%s>SDRAM_RQDC=0x%x\n", __func__, temp);
#endif
/*
* Program RFDC register
* Set Feedback Fractional Oversample
* Auto-detect read sample cycle enable
*/
mtsdram(SDRAM_RFDC, SDRAM_RFDC_ARSE_ENABLE |
SDRAM_RFDC_RFOS_ENCODE(0) | SDRAM_RFDC_RFFD_ENCODE(0));
#ifdef DEBUG
mfsdram(SDRAM_RFDC, temp);
debug("<%s>SDRAM_RFDC=0x%x\n", __func__, temp);
#endif
putc(' ');
for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
mfsdram(SDRAM_RQDC, rqdc_reg);
rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
putc('\b');
putc(slash[loopi++ % 8]);
curr_win_min.rffd = 0;
curr_win_max.rffd = 0;
in_window = 0;
for (rffd = 0, pass = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
mfsdram(SDRAM_RFDC, rfdc_reg);
rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
mtsdram(SDRAM_RFDC,
rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf);
/* Banks enabled */
if (bxcf & SDRAM_BXCF_M_BE_MASK) {
/* Bank is enabled */
membase = get_membase(bxcr_num);
pass = short_mem_test(membase);
} /* if bank enabled */
} /* for bxcr_num */
/* If this value passed update RFFD windows */
if (pass && !in_window) { /* at the start of window */
in_window = 1;
curr_win_min.rffd = curr_win_max.rffd = rffd;
curr_win_min.rqfd = curr_win_max.rqfd = rqfd;
mfsdram(SDRAM_RDCC, rdcc); /*record this value*/
} else if (!pass && in_window) { /* at end of window */
in_window = 0;
} else if (pass && in_window) { /* within the window */
curr_win_max.rffd = rffd;
curr_win_max.rqfd = rqfd;
}
/* else if (!pass && !in_window)
skip - no pass, not currently in a window */
if (in_window) {
if ((curr_win_max.rffd - curr_win_min.rffd) >
(best_win_max.rffd - best_win_min.rffd)) {
best_win_min.rffd = curr_win_min.rffd;
best_win_max.rffd = curr_win_max.rffd;
best_win_min.rqfd = curr_win_min.rqfd;
best_win_max.rqfd = curr_win_max.rqfd;
cal->rdcc = rdcc;
}
passed = 1;
}
} /* RFDC.RFFD */
/*
* save-off the best window results of the RFDC.RFFD
* for this RQDC.RQFD setting
*/
/*
* if (just ended RFDC.RFDC loop pass window) >
* (prior RFDC.RFFD loop pass window)
*/
if ((best_win_max.rffd - best_win_min.rffd) >
(loop_win_max.rffd - loop_win_min.rffd)) {
loop_win_min.rffd = best_win_min.rffd;
loop_win_max.rffd = best_win_max.rffd;
loop_win_min.rqfd = rqfd;
loop_win_max.rqfd = rqfd;
debug("RQFD.min 0x%08x, RQFD.max 0x%08x, "
"RFFD.min 0x%08x, RFFD.max 0x%08x\n",
loop_win_min.rqfd, loop_win_max.rqfd,
loop_win_min.rffd, loop_win_max.rffd);
}
} /* RQDC.RQFD */
putc('\b');
debug("\n");
if ((loop_win_min.rffd == 0) && (loop_win_max.rffd == 0) &&
(best_win_min.rffd == 0) && (best_win_max.rffd == 0) &&
(best_win_min.rqfd == 0) && (best_win_max.rqfd == 0)) {
passed = 0;
}
/*
* Need to program RQDC before RFDC.
*/
debug("<%s> RQFD Min: 0x%x\n", __func__, loop_win_min.rqfd);
debug("<%s> RQFD Max: 0x%x\n", __func__, loop_win_max.rqfd);
rqfd_average = loop_win_max.rqfd;
if (rqfd_average < 0)
rqfd_average = 0;
if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
rqfd_average = SDRAM_RQDC_RQFD_MAX;
debug("<%s> RFFD average: 0x%08x\n", __func__, rqfd_average);
mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
debug("<%s> RFFD Min: 0x%08x\n", __func__, loop_win_min.rffd);
debug("<%s> RFFD Max: 0x%08x\n", __func__, loop_win_max.rffd);
rffd_average = ((loop_win_min.rffd + loop_win_max.rffd) / 2);
if (rffd_average < 0)
rffd_average = 0;
if (rffd_average > SDRAM_RFDC_RFFD_MAX)
rffd_average = SDRAM_RFDC_RFFD_MAX;
debug("<%s> RFFD average: 0x%08x\n", __func__, rffd_average);
mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
/* if something passed, then return the size of the largest window */
if (passed != 0) {
passed = loop_win_max.rffd - loop_win_min.rffd;
cal->rqfd = rqfd_average;
cal->rffd = rffd_average;
cal->rffd_min = loop_win_min.rffd;
cal->rffd_max = loop_win_max.rffd;
}
return (u32)passed;
}
#else /* !defined(CONFIG_PPC4xx_DDR_METHOD_A) */
/*-----------------------------------------------------------------------------+
| program_DQS_calibration_methodB.
+-----------------------------------------------------------------------------*/
static u32 program_DQS_calibration_methodB(struct ddrautocal *ddrcal)
{
u32 pass_result = 0;
#ifdef DEBUG
ulong temp;
#endif
/*
* Program RDCC register
* Read sample cycle auto-update enable
*/
mtsdram(SDRAM_RDCC, SDRAM_RDCC_RDSS_T2 | SDRAM_RDCC_RSAE_ENABLE);
#ifdef DEBUG
mfsdram(SDRAM_RDCC, temp);
debug("<%s>SDRAM_RDCC=0x%08x\n", __func__, temp);
#endif
/*
* Program RQDC register
* Internal DQS delay mechanism enable
*/
mtsdram(SDRAM_RQDC,
#if defined(CONFIG_DDR_RQDC_START_VAL)
SDRAM_RQDC_RQDE_ENABLE |
SDRAM_RQDC_RQFD_ENCODE(CONFIG_DDR_RQDC_START_VAL));
#else
SDRAM_RQDC_RQDE_ENABLE | SDRAM_RQDC_RQFD_ENCODE(0x38));
#endif
#ifdef DEBUG
mfsdram(SDRAM_RQDC, temp);
debug("<%s>SDRAM_RQDC=0x%08x\n", __func__, temp);
#endif
/*
* Program RFDC register
* Set Feedback Fractional Oversample
* Auto-detect read sample cycle enable
*/
mtsdram(SDRAM_RFDC, SDRAM_RFDC_ARSE_ENABLE |
SDRAM_RFDC_RFOS_ENCODE(0) |
SDRAM_RFDC_RFFD_ENCODE(0));
#ifdef DEBUG
mfsdram(SDRAM_RFDC, temp);
debug("<%s>SDRAM_RFDC=0x%08x\n", __func__, temp);
#endif
pass_result = DQS_calibration_methodB(ddrcal);
return pass_result;
}
/*
* DQS_calibration_methodB()
*
* Autocalibration Method B
*
* ARRAY [Entire DQS Range] DQS_Valid_Window ; initialized to all zeros
* ARRAY [Entire Feedback Range] FDBK_Valid_Window; initialized to all zeros
* MEMWRITE(addr, expected_data);
* Initialialize the DQS delay to 80 degrees (MCIF0_RRQDC[RQFD]=0x38).
*
* for (j = 0; j < Entire Feedback Range; j++) {
* MEMREAD(addr, actual_data);
* if (actual_data == expected_data) {
* FDBK_Valid_Window[j] = 1;
* }
* }
*
* Set MCIF0_RFDC[RFFD] to the middle of the FDBK_Valid_Window.
*
* for (i = 0; i < Entire DQS Range; i++) {
* MEMREAD(addr, actual_data);
* if (actual_data == expected_data) {
* DQS_Valid_Window[i] = 1;
* }
* }
*
* Set MCIF0_RRQDC[RQFD] to the middle of the DQS_Valid_Window.
*/
/*-----------------------------------------------------------------------------+
| DQS_calibration_methodB.
+-----------------------------------------------------------------------------*/
static u32 DQS_calibration_methodB(struct ddrautocal *cal)
{
ulong rfdc_reg;
ulong rffd;
ulong rqdc_reg;
ulong rqfd;
ulong rdcc;
u32 *membase;
ulong bxcf;
int rqfd_average;
int bxcr_num;
int rffd_average;
int pass;
uint passed = 0;
int in_window;
u32 curr_win_min, curr_win_max;
u32 best_win_min, best_win_max;
u32 size = 0;
/*------------------------------------------------------------------
| Test to determine the best read clock delay tuning bits.
|
| Before the DDR controller can be used, the read clock delay needs to
| be set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
| This value cannot be hardcoded into the program because it changes
| depending on the board's setup and environment.
| To do this, all delay values are tested to see if they
| work or not. By doing this, you get groups of fails with groups of
| passing values. The idea is to find the start and end of a passing
| window and take the center of it to use as the read clock delay.
|
| A failure has to be seen first so that when we hit a pass, we know
| that it is truely the start of the window. If we get passing values
| to start off with, we don't know if we are at the start of the window
|
| The code assumes that a failure will always be found.
| If a failure is not found, there is no easy way to get the middle
| of the passing window. I guess we can pretty much pick any value
| but some values will be better than others. Since the lowest speed
| we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
| from experimentation it is safe to say you will always have a failure
+-----------------------------------------------------------------*/
debug("\n\n");
in_window = 0;
rdcc = 0;
curr_win_min = curr_win_max = 0;
best_win_min = best_win_max = 0;
for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
mfsdram(SDRAM_RFDC, rfdc_reg);
rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
pass = 1;
for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf);
/* Banks enabled */
if (bxcf & SDRAM_BXCF_M_BE_MASK) {
/* Bank is enabled */
membase = get_membase(bxcr_num);
pass &= short_mem_test(membase);
} /* if bank enabled */
} /* for bxcf_num */
/* If this value passed */
if (pass && !in_window) { /* start of passing window */
in_window = 1;
curr_win_min = curr_win_max = rffd;
mfsdram(SDRAM_RDCC, rdcc); /* record this value */
} else if (!pass && in_window) { /* end passing window */
in_window = 0;
} else if (pass && in_window) { /* within the passing window */
curr_win_max = rffd;
}
if (in_window) {
if ((curr_win_max - curr_win_min) >
(best_win_max - best_win_min)) {
best_win_min = curr_win_min;
best_win_max = curr_win_max;
cal->rdcc = rdcc;
}
passed = 1;
}
} /* for rffd */
if ((best_win_min == 0) && (best_win_max == 0))
passed = 0;
else
size = best_win_max - best_win_min;
debug("RFFD Min: 0x%x\n", best_win_min);
debug("RFFD Max: 0x%x\n", best_win_max);
rffd_average = ((best_win_min + best_win_max) / 2);
cal->rffd_min = best_win_min;
cal->rffd_max = best_win_max;
if (rffd_average < 0)
rffd_average = 0;
if (rffd_average > SDRAM_RFDC_RFFD_MAX)
rffd_average = SDRAM_RFDC_RFFD_MAX;
mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
rffd = rffd_average;
in_window = 0;
curr_win_min = curr_win_max = 0;
best_win_min = best_win_max = 0;
for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
mfsdram(SDRAM_RQDC, rqdc_reg);
rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
pass = 1;
for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
mfsdram(SDRAM_MB0CF + (bxcr_num<<2), bxcf);
/* Banks enabled */
if (bxcf & SDRAM_BXCF_M_BE_MASK) {
/* Bank is enabled */
membase = get_membase(bxcr_num);
pass &= short_mem_test(membase);
} /* if bank enabled */
} /* for bxcf_num */
/* If this value passed */
if (pass && !in_window) {
in_window = 1;
curr_win_min = curr_win_max = rqfd;
} else if (!pass && in_window) {
in_window = 0;
} else if (pass && in_window) {
curr_win_max = rqfd;
}
if (in_window) {
if ((curr_win_max - curr_win_min) >
(best_win_max - best_win_min)) {
best_win_min = curr_win_min;
best_win_max = curr_win_max;
}
passed = 1;
}
} /* for rqfd */
if ((best_win_min == 0) && (best_win_max == 0))
passed = 0;
debug("RQFD Min: 0x%x\n", best_win_min);
debug("RQFD Max: 0x%x\n", best_win_max);
rqfd_average = ((best_win_min + best_win_max) / 2);
if (rqfd_average < 0)
rqfd_average = 0;
if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
rqfd_average = SDRAM_RQDC_RQFD_MAX;
mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
mfsdram(SDRAM_RQDC, rqdc_reg);
mfsdram(SDRAM_RFDC, rfdc_reg);
/*
* Need to program RQDC before RFDC. The value is read above.
* That is the reason why auto cal not work.
* See, comments below.
*/
mtsdram(SDRAM_RQDC, rqdc_reg);
mtsdram(SDRAM_RFDC, rfdc_reg);
debug("RQDC: 0x%08X\n", rqdc_reg);
debug("RFDC: 0x%08X\n", rfdc_reg);
/* if something passed, then return the size of the largest window */
if (passed != 0) {
passed = size;
cal->rqfd = rqfd_average;
cal->rffd = rffd_average;
}
return (uint)passed;
}
#endif /* defined(CONFIG_PPC4xx_DDR_METHOD_A) */
/*
* Default table for DDR auto-calibration of all
* possible WRDTR and CLKTR values.
* Table format is:
* {SDRAM_WRDTR.[WDTR], SDRAM_CLKTR.[CKTR]}
*
* Table is terminated with {-1, -1} value pair.
*
* Board vendors can specify their own board specific subset of
* known working {SDRAM_WRDTR.[WDTR], SDRAM_CLKTR.[CKTR]} value
* pairs via a board defined ddr_scan_option() function.
*/
struct sdram_timing full_scan_options[] = {
{0, 0}, {0, 1}, {0, 2}, {0, 3},
{1, 0}, {1, 1}, {1, 2}, {1, 3},
{2, 0}, {2, 1}, {2, 2}, {2, 3},
{3, 0}, {3, 1}, {3, 2}, {3, 3},
{4, 0}, {4, 1}, {4, 2}, {4, 3},
{5, 0}, {5, 1}, {5, 2}, {5, 3},
{6, 0}, {6, 1}, {6, 2}, {6, 3},
{-1, -1}
};
/*---------------------------------------------------------------------------+
| DQS_calibration.
+----------------------------------------------------------------------------*/
u32 DQS_autocalibration(void)
{
u32 wdtr;
u32 clkp;
u32 result = 0;
u32 best_result = 0;
u32 best_rdcc;
struct ddrautocal ddrcal;
struct autocal_clks tcal;
ulong rfdc_reg;
ulong rqdc_reg;
u32 val;
int verbose_lvl = 0;
char *str;
char slash[] = "\\|/-\\|/-";
int loopi = 0;
struct sdram_timing *scan_list;
#if defined(DEBUG_PPC4xx_DDR_AUTOCALIBRATION)
int i;
char tmp[64]; /* long enough for environment variables */
#endif
memset(&tcal, 0, sizeof(tcal));
ddr_scan_option((ulong)full_scan_options);
scan_list =
(struct sdram_timing *)ddr_scan_option((ulong)full_scan_options);
mfsdram(SDRAM_MCOPT1, val);
if ((val & SDRAM_MCOPT1_MCHK_CHK_REP) == SDRAM_MCOPT1_MCHK_CHK_REP)
str = "ECC Auto calibration -";
else
str = "Auto calibration -";
puts(str);
#if defined(DEBUG_PPC4xx_DDR_AUTOCALIBRATION)
i = getenv_r("autocalib", tmp, sizeof(tmp));
if (i < 0)
strcpy(tmp, CONFIG_AUTOCALIB);
if (strcmp(tmp, "final") == 0) {
/* display the final autocalibration results only */
verbose_lvl = 1;
} else if (strcmp(tmp, "loop") == 0) {
/* display summary autocalibration info per iteration */
verbose_lvl = 2;
} else if (strcmp(tmp, "display") == 0) {
/* display full debug autocalibration window info. */
verbose_lvl = 3;
}
#endif /* (DEBUG_PPC4xx_DDR_AUTOCALIBRATION) */
best_rdcc = (SDRAM_RDCC_RDSS_T4 >> 30);
while ((scan_list->wrdtr != -1) && (scan_list->clktr != -1)) {
wdtr = scan_list->wrdtr;
clkp = scan_list->clktr;
mfsdram(SDRAM_WRDTR, val);
val &= ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK);
mtsdram(SDRAM_WRDTR, (val |
ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | (wdtr << 25))));
mtsdram(SDRAM_CLKTR, clkp << 30);
relock_memory_DLL();
putc('\b');
putc(slash[loopi++ % 8]);
#ifdef DEBUG
debug("\n");
debug("*** --------------\n");
mfsdram(SDRAM_WRDTR, val);
debug("*** SDRAM_WRDTR set to 0x%08x\n", val);
mfsdram(SDRAM_CLKTR, val);
debug("*** SDRAM_CLKTR set to 0x%08x\n", val);
#endif
debug("\n");
if (verbose_lvl > 2) {
printf("*** SDRAM_WRDTR (wdtr) set to %d\n", wdtr);
printf("*** SDRAM_CLKTR (clkp) set to %d\n", clkp);
}
memset(&ddrcal, 0, sizeof(ddrcal));
/*
* DQS calibration.
*/
/*
* program_DQS_calibration_method[A|B]() returns 0 if no
* passing RFDC.[RFFD] window is found or returns the size
* of the best passing window; in the case of a found passing
* window, the ddrcal will contain the values of the best
* window RQDC.[RQFD] and RFDC.[RFFD].
*/
/*
* Call PPC4xx SDRAM DDR autocalibration methodA or methodB.
* Default is methodB.
* Defined the autocalibration method in the board specific
* header file.
* Please see include/configs/kilauea.h for an example for
* a board specific implementation.
*/
#if defined(CONFIG_PPC4xx_DDR_METHOD_A)
result = program_DQS_calibration_methodA(&ddrcal);
#else
result = program_DQS_calibration_methodB(&ddrcal);
#endif
sync();
/*
* Clear potential errors resulting from auto-calibration.
* If not done, then we could get an interrupt later on when
* exceptions are enabled.
*/
set_mcsr(get_mcsr());
val = ddrcal.rdcc; /* RDCC from the best passing window */
udelay(100);
if (verbose_lvl > 1) {
char *tstr;
switch ((val >> 30)) {
case 0:
if (result != 0)
tstr = "T1";
else
tstr = "N/A";
break;
case 1:
tstr = "T2";
break;
case 2:
tstr = "T3";
break;
case 3:
tstr = "T4";
break;
default:
tstr = "unknown";
break;
}
printf("** WRDTR(%d) CLKTR(%d), Wind (%d), best (%d), "
"max-min(0x%04x)(0x%04x), RDCC: %s\n",
wdtr, clkp, result, best_result,
ddrcal.rffd_min, ddrcal.rffd_max, tstr);
}
/*
* The DQS calibration "result" is either "0"
* if no passing window was found, or is the
* size of the RFFD passing window.
*/
if (result != 0) {
tcal.autocal.flags = 1;
debug("*** (%d)(%d) result passed window size: 0x%08x, "
"rqfd = 0x%08x, rffd = 0x%08x, rdcc = 0x%08x\n",
wdtr, clkp, result, ddrcal.rqfd,
ddrcal.rffd, ddrcal.rdcc);
/*
* Save the SDRAM_WRDTR and SDRAM_CLKTR
* settings for the largest returned
* RFFD passing window size.
*/
if (result > best_result) {
/*
* want the lowest Read Sample Cycle Select
*/
val = (val & SDRAM_RDCC_RDSS_MASK) >> 30;
debug("*** (%d) (%d) current_rdcc, best_rdcc\n",
val, best_rdcc);
if (val <= best_rdcc) {
best_rdcc = val;
tcal.clocks.wrdtr = wdtr;
tcal.clocks.clktr = clkp;
tcal.clocks.rdcc = (val << 30);
tcal.autocal.rqfd = ddrcal.rqfd;
tcal.autocal.rffd = ddrcal.rffd;
best_result = result;
if (verbose_lvl > 2) {
printf("** (%d)(%d) "
"best result: 0x%04x\n",
wdtr, clkp,
best_result);
printf("** (%d)(%d) "
"best WRDTR: 0x%04x\n",
wdtr, clkp,
tcal.clocks.wrdtr);
printf("** (%d)(%d) "
"best CLKTR: 0x%04x\n",
wdtr, clkp,
tcal.clocks.clktr);
printf("** (%d)(%d) "
"best RQDC: 0x%04x\n",
wdtr, clkp,
tcal.autocal.rqfd);
printf("** (%d)(%d) "
"best RFDC: 0x%04x\n",
wdtr, clkp,
tcal.autocal.rffd);
printf("** (%d)(%d) "
"best RDCC: 0x%08x\n",
wdtr, clkp,
(u32)tcal.clocks.rdcc);
mfsdram(SDRAM_RTSR, val);
printf("** (%d)(%d) best "
"loop RTSR: 0x%08x\n",
wdtr, clkp, val);
mfsdram(SDRAM_FCSR, val);
printf("** (%d)(%d) best "
"loop FCSR: 0x%08x\n",
wdtr, clkp, val);
}
} /* if (val <= best_rdcc) */
} /* if (result >= best_result) */
} /* if (result != 0) */
scan_list++;
} /* while ((scan_list->wrdtr != -1) && (scan_list->clktr != -1)) */
if (tcal.autocal.flags == 1) {
if (verbose_lvl > 0) {
printf("*** --------------\n");
printf("*** best_result window size: %d\n",
best_result);
printf("*** best_result WRDTR: 0x%04x\n",
tcal.clocks.wrdtr);
printf("*** best_result CLKTR: 0x%04x\n",
tcal.clocks.clktr);
printf("*** best_result RQFD: 0x%04x\n",
tcal.autocal.rqfd);
printf("*** best_result RFFD: 0x%04x\n",
tcal.autocal.rffd);
printf("*** best_result RDCC: 0x%04x\n",
tcal.clocks.rdcc);
printf("*** --------------\n");
printf("\n");
}
/*
* if got best passing result window, then lock in the
* best CLKTR, WRDTR, RQFD, and RFFD values
*/
mfsdram(SDRAM_WRDTR, val);
mtsdram(SDRAM_WRDTR, (val &
~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC |
(tcal.clocks.wrdtr << 25)));
mtsdram(SDRAM_CLKTR, tcal.clocks.clktr << 30);
relock_memory_DLL();
mfsdram(SDRAM_RQDC, rqdc_reg);
rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
mtsdram(SDRAM_RQDC, rqdc_reg |
SDRAM_RQDC_RQFD_ENCODE(tcal.autocal.rqfd));
mfsdram(SDRAM_RQDC, rqdc_reg);
debug("*** best_result: read value SDRAM_RQDC 0x%08x\n",
rqdc_reg);
mfsdram(SDRAM_RFDC, rfdc_reg);
rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
mtsdram(SDRAM_RFDC, rfdc_reg |
SDRAM_RFDC_RFFD_ENCODE(tcal.autocal.rffd));
mfsdram(SDRAM_RFDC, rfdc_reg);
debug("*** best_result: read value SDRAM_RFDC 0x%08x\n",
rfdc_reg);
mfsdram(SDRAM_RDCC, val);
debug("*** SDRAM_RDCC 0x%08x\n", val);
} else {
/*
* no valid windows were found
*/
printf("DQS memory calibration window can not be determined, "
"terminating u-boot.\n");
ppc4xx_ibm_ddr2_register_dump();
spd_ddr_init_hang();
}
blank_string(strlen(str));
return 0;
}
#else /* defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
u32 DQS_autocalibration(void)
{
return 0;
}
#endif /* !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) */
#endif /* defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) */