| /* |
| * (C) Copyright 2007-2008 |
| * Stelian Pop <stelian@popies.net> |
| * Lead Tech Design <www.leadtechdesign.com> |
| * |
| * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas |
| * |
| * Add Programmable Multibit ECC support for various AT91 SoC |
| * (C) Copyright 2012 ATMEL, Hong Xu |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/arch/hardware.h> |
| #include <asm/arch/gpio.h> |
| #include <asm/arch/at91_pio.h> |
| |
| #include <nand.h> |
| #include <watchdog.h> |
| |
| #ifdef CONFIG_ATMEL_NAND_HWECC |
| |
| /* Register access macros */ |
| #define ecc_readl(add, reg) \ |
| readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg) |
| #define ecc_writel(add, reg, value) \ |
| writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg) |
| |
| #include "atmel_nand_ecc.h" /* Hardware ECC registers */ |
| |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC |
| |
| struct atmel_nand_host { |
| struct pmecc_regs __iomem *pmecc; |
| struct pmecc_errloc_regs __iomem *pmerrloc; |
| void __iomem *pmecc_rom_base; |
| |
| u8 pmecc_corr_cap; |
| u16 pmecc_sector_size; |
| u32 pmecc_index_table_offset; |
| |
| int pmecc_bytes_per_sector; |
| int pmecc_sector_number; |
| int pmecc_degree; /* Degree of remainders */ |
| int pmecc_cw_len; /* Length of codeword */ |
| |
| /* lookup table for alpha_to and index_of */ |
| void __iomem *pmecc_alpha_to; |
| void __iomem *pmecc_index_of; |
| |
| /* data for pmecc computation */ |
| int16_t pmecc_smu[(CONFIG_PMECC_CAP + 2) * (2 * CONFIG_PMECC_CAP + 1)]; |
| int16_t pmecc_partial_syn[2 * CONFIG_PMECC_CAP + 1]; |
| int16_t pmecc_si[2 * CONFIG_PMECC_CAP + 1]; |
| int16_t pmecc_lmu[CONFIG_PMECC_CAP + 1]; /* polynomal order */ |
| int pmecc_mu[CONFIG_PMECC_CAP + 1]; |
| int pmecc_dmu[CONFIG_PMECC_CAP + 1]; |
| int pmecc_delta[CONFIG_PMECC_CAP + 1]; |
| }; |
| |
| static struct atmel_nand_host pmecc_host; |
| static struct nand_ecclayout atmel_pmecc_oobinfo; |
| |
| /* |
| * Return number of ecc bytes per sector according to sector size and |
| * correction capability |
| * |
| * Following table shows what at91 PMECC supported: |
| * Correction Capability Sector_512_bytes Sector_1024_bytes |
| * ===================== ================ ================= |
| * 2-bits 4-bytes 4-bytes |
| * 4-bits 7-bytes 7-bytes |
| * 8-bits 13-bytes 14-bytes |
| * 12-bits 20-bytes 21-bytes |
| * 24-bits 39-bytes 42-bytes |
| */ |
| static int pmecc_get_ecc_bytes(int cap, int sector_size) |
| { |
| int m = 12 + sector_size / 512; |
| return (m * cap + 7) / 8; |
| } |
| |
| static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, |
| int oobsize, int ecc_len) |
| { |
| int i; |
| |
| layout->eccbytes = ecc_len; |
| |
| /* ECC will occupy the last ecc_len bytes continuously */ |
| for (i = 0; i < ecc_len; i++) |
| layout->eccpos[i] = oobsize - ecc_len + i; |
| |
| layout->oobfree[0].offset = 2; |
| layout->oobfree[0].length = |
| oobsize - ecc_len - layout->oobfree[0].offset; |
| } |
| |
| static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) |
| { |
| int table_size; |
| |
| table_size = host->pmecc_sector_size == 512 ? |
| PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024; |
| |
| /* the ALPHA lookup table is right behind the INDEX lookup table. */ |
| return host->pmecc_rom_base + host->pmecc_index_table_offset + |
| table_size * sizeof(int16_t); |
| } |
| |
| static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int i; |
| uint32_t value; |
| |
| /* Fill odd syndromes */ |
| for (i = 0; i < host->pmecc_corr_cap; i++) { |
| value = readl(&host->pmecc->rem_port[sector].rem[i / 2]); |
| if (i & 1) |
| value >>= 16; |
| value &= 0xffff; |
| host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; |
| } |
| } |
| |
| static void pmecc_substitute(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int16_t __iomem *alpha_to = host->pmecc_alpha_to; |
| int16_t __iomem *index_of = host->pmecc_index_of; |
| int16_t *partial_syn = host->pmecc_partial_syn; |
| const int cap = host->pmecc_corr_cap; |
| int16_t *si; |
| int i, j; |
| |
| /* si[] is a table that holds the current syndrome value, |
| * an element of that table belongs to the field |
| */ |
| si = host->pmecc_si; |
| |
| memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); |
| |
| /* Computation 2t syndromes based on S(x) */ |
| /* Odd syndromes */ |
| for (i = 1; i < 2 * cap; i += 2) { |
| for (j = 0; j < host->pmecc_degree; j++) { |
| if (partial_syn[i] & (0x1 << j)) |
| si[i] = readw(alpha_to + i * j) ^ si[i]; |
| } |
| } |
| /* Even syndrome = (Odd syndrome) ** 2 */ |
| for (i = 2, j = 1; j <= cap; i = ++j << 1) { |
| if (si[j] == 0) { |
| si[i] = 0; |
| } else { |
| int16_t tmp; |
| |
| tmp = readw(index_of + si[j]); |
| tmp = (tmp * 2) % host->pmecc_cw_len; |
| si[i] = readw(alpha_to + tmp); |
| } |
| } |
| } |
| |
| /* |
| * This function defines a Berlekamp iterative procedure for |
| * finding the value of the error location polynomial. |
| * The input is si[], initialize by pmecc_substitute(). |
| * The output is smu[][]. |
| * |
| * This function is written according to chip datasheet Chapter: |
| * Find the Error Location Polynomial Sigma(x) of Section: |
| * Programmable Multibit ECC Control (PMECC). |
| */ |
| static void pmecc_get_sigma(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| |
| int16_t *lmu = host->pmecc_lmu; |
| int16_t *si = host->pmecc_si; |
| int *mu = host->pmecc_mu; |
| int *dmu = host->pmecc_dmu; /* Discrepancy */ |
| int *delta = host->pmecc_delta; /* Delta order */ |
| int cw_len = host->pmecc_cw_len; |
| const int16_t cap = host->pmecc_corr_cap; |
| const int num = 2 * cap + 1; |
| int16_t __iomem *index_of = host->pmecc_index_of; |
| int16_t __iomem *alpha_to = host->pmecc_alpha_to; |
| int i, j, k; |
| uint32_t dmu_0_count, tmp; |
| int16_t *smu = host->pmecc_smu; |
| |
| /* index of largest delta */ |
| int ro; |
| int largest; |
| int diff; |
| |
| /* Init the Sigma(x) */ |
| memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu)); |
| |
| dmu_0_count = 0; |
| |
| /* First Row */ |
| |
| /* Mu */ |
| mu[0] = -1; |
| |
| smu[0] = 1; |
| |
| /* discrepancy set to 1 */ |
| dmu[0] = 1; |
| /* polynom order set to 0 */ |
| lmu[0] = 0; |
| /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */ |
| delta[0] = -1; |
| |
| /* Second Row */ |
| |
| /* Mu */ |
| mu[1] = 0; |
| /* Sigma(x) set to 1 */ |
| smu[num] = 1; |
| |
| /* discrepancy set to S1 */ |
| dmu[1] = si[1]; |
| |
| /* polynom order set to 0 */ |
| lmu[1] = 0; |
| |
| /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */ |
| delta[1] = 0; |
| |
| for (i = 1; i <= cap; i++) { |
| mu[i + 1] = i << 1; |
| /* Begin Computing Sigma (Mu+1) and L(mu) */ |
| /* check if discrepancy is set to 0 */ |
| if (dmu[i] == 0) { |
| dmu_0_count++; |
| |
| tmp = ((cap - (lmu[i] >> 1) - 1) / 2); |
| if ((cap - (lmu[i] >> 1) - 1) & 0x1) |
| tmp += 2; |
| else |
| tmp += 1; |
| |
| if (dmu_0_count == tmp) { |
| for (j = 0; j <= (lmu[i] >> 1) + 1; j++) |
| smu[(cap + 1) * num + j] = |
| smu[i * num + j]; |
| |
| lmu[cap + 1] = lmu[i]; |
| return; |
| } |
| |
| /* copy polynom */ |
| for (j = 0; j <= lmu[i] >> 1; j++) |
| smu[(i + 1) * num + j] = smu[i * num + j]; |
| |
| /* copy previous polynom order to the next */ |
| lmu[i + 1] = lmu[i]; |
| } else { |
| ro = 0; |
| largest = -1; |
| /* find largest delta with dmu != 0 */ |
| for (j = 0; j < i; j++) { |
| if ((dmu[j]) && (delta[j] > largest)) { |
| largest = delta[j]; |
| ro = j; |
| } |
| } |
| |
| /* compute difference */ |
| diff = (mu[i] - mu[ro]); |
| |
| /* Compute degree of the new smu polynomial */ |
| if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) |
| lmu[i + 1] = lmu[i]; |
| else |
| lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; |
| |
| /* Init smu[i+1] with 0 */ |
| for (k = 0; k < num; k++) |
| smu[(i + 1) * num + k] = 0; |
| |
| /* Compute smu[i+1] */ |
| for (k = 0; k <= lmu[ro] >> 1; k++) { |
| int16_t a, b, c; |
| |
| if (!(smu[ro * num + k] && dmu[i])) |
| continue; |
| a = readw(index_of + dmu[i]); |
| b = readw(index_of + dmu[ro]); |
| c = readw(index_of + smu[ro * num + k]); |
| tmp = a + (cw_len - b) + c; |
| a = readw(alpha_to + tmp % cw_len); |
| smu[(i + 1) * num + (k + diff)] = a; |
| } |
| |
| for (k = 0; k <= lmu[i] >> 1; k++) |
| smu[(i + 1) * num + k] ^= smu[i * num + k]; |
| } |
| |
| /* End Computing Sigma (Mu+1) and L(mu) */ |
| /* In either case compute delta */ |
| delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; |
| |
| /* Do not compute discrepancy for the last iteration */ |
| if (i >= cap) |
| continue; |
| |
| for (k = 0; k <= (lmu[i + 1] >> 1); k++) { |
| tmp = 2 * (i - 1); |
| if (k == 0) { |
| dmu[i + 1] = si[tmp + 3]; |
| } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { |
| int16_t a, b, c; |
| a = readw(index_of + |
| smu[(i + 1) * num + k]); |
| b = si[2 * (i - 1) + 3 - k]; |
| c = readw(index_of + b); |
| tmp = a + c; |
| tmp %= cw_len; |
| dmu[i + 1] = readw(alpha_to + tmp) ^ |
| dmu[i + 1]; |
| } |
| } |
| } |
| } |
| |
| static int pmecc_err_location(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| const int cap = host->pmecc_corr_cap; |
| const int num = 2 * cap + 1; |
| int sector_size = host->pmecc_sector_size; |
| int err_nbr = 0; /* number of error */ |
| int roots_nbr; /* number of roots */ |
| int i; |
| uint32_t val; |
| int16_t *smu = host->pmecc_smu; |
| int timeout = PMECC_MAX_TIMEOUT_US; |
| |
| writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis); |
| |
| for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { |
| writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]); |
| err_nbr++; |
| } |
| |
| val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1); |
| if (sector_size == 1024) |
| val |= PMERRLOC_ELCFG_SECTOR_1024; |
| |
| writel(val, &host->pmerrloc->elcfg); |
| writel(sector_size * 8 + host->pmecc_degree * cap, |
| &host->pmerrloc->elen); |
| |
| while (--timeout) { |
| if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE) |
| break; |
| WATCHDOG_RESET(); |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n"); |
| return -1; |
| } |
| |
| roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK) |
| >> 8; |
| /* Number of roots == degree of smu hence <= cap */ |
| if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) |
| return err_nbr - 1; |
| |
| /* Number of roots does not match the degree of smu |
| * unable to correct error */ |
| return -1; |
| } |
| |
| static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, |
| int sector_num, int extra_bytes, int err_nbr) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int i = 0; |
| int byte_pos, bit_pos, sector_size, pos; |
| uint32_t tmp; |
| uint8_t err_byte; |
| |
| sector_size = host->pmecc_sector_size; |
| |
| while (err_nbr) { |
| tmp = readl(&host->pmerrloc->el[i]) - 1; |
| byte_pos = tmp / 8; |
| bit_pos = tmp % 8; |
| |
| if (byte_pos >= (sector_size + extra_bytes)) |
| BUG(); /* should never happen */ |
| |
| if (byte_pos < sector_size) { |
| err_byte = *(buf + byte_pos); |
| *(buf + byte_pos) ^= (1 << bit_pos); |
| |
| pos = sector_num * host->pmecc_sector_size + byte_pos; |
| printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", |
| pos, bit_pos, err_byte, *(buf + byte_pos)); |
| } else { |
| /* Bit flip in OOB area */ |
| tmp = sector_num * host->pmecc_bytes_per_sector |
| + (byte_pos - sector_size); |
| err_byte = ecc[tmp]; |
| ecc[tmp] ^= (1 << bit_pos); |
| |
| pos = tmp + nand_chip->ecc.layout->eccpos[0]; |
| printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", |
| pos, bit_pos, err_byte, ecc[tmp]); |
| } |
| |
| i++; |
| err_nbr--; |
| } |
| |
| return; |
| } |
| |
| static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, |
| u8 *ecc) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| int i, err_nbr, eccbytes; |
| uint8_t *buf_pos; |
| |
| eccbytes = nand_chip->ecc.bytes; |
| for (i = 0; i < eccbytes; i++) |
| if (ecc[i] != 0xff) |
| goto normal_check; |
| /* Erased page, return OK */ |
| return 0; |
| |
| normal_check: |
| for (i = 0; i < host->pmecc_sector_number; i++) { |
| err_nbr = 0; |
| if (pmecc_stat & 0x1) { |
| buf_pos = buf + i * host->pmecc_sector_size; |
| |
| pmecc_gen_syndrome(mtd, i); |
| pmecc_substitute(mtd); |
| pmecc_get_sigma(mtd); |
| |
| err_nbr = pmecc_err_location(mtd); |
| if (err_nbr == -1) { |
| printk(KERN_ERR "PMECC: Too many errors\n"); |
| mtd->ecc_stats.failed++; |
| return -EIO; |
| } else { |
| pmecc_correct_data(mtd, buf_pos, ecc, i, |
| host->pmecc_bytes_per_sector, err_nbr); |
| mtd->ecc_stats.corrected += err_nbr; |
| } |
| } |
| pmecc_stat >>= 1; |
| } |
| |
| return 0; |
| } |
| |
| static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int page) |
| { |
| struct atmel_nand_host *host = chip->priv; |
| int eccsize = chip->ecc.size; |
| uint8_t *oob = chip->oob_poi; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint32_t stat; |
| int timeout = PMECC_MAX_TIMEOUT_US; |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); |
| pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg)) |
| & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); |
| |
| chip->read_buf(mtd, buf, eccsize); |
| chip->read_buf(mtd, oob, mtd->oobsize); |
| |
| while (--timeout) { |
| if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) |
| break; |
| WATCHDOG_RESET(); |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n"); |
| return -1; |
| } |
| |
| stat = pmecc_readl(host->pmecc, isr); |
| if (stat != 0) |
| if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void atmel_nand_pmecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf) |
| { |
| struct atmel_nand_host *host = chip->priv; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| int i, j; |
| int timeout = PMECC_MAX_TIMEOUT_US; |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); |
| |
| pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) | |
| PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); |
| |
| chip->write_buf(mtd, (u8 *)buf, mtd->writesize); |
| |
| while (--timeout) { |
| if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) |
| break; |
| WATCHDOG_RESET(); |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n"); |
| return; |
| } |
| |
| for (i = 0; i < host->pmecc_sector_number; i++) { |
| for (j = 0; j < host->pmecc_bytes_per_sector; j++) { |
| int pos; |
| |
| pos = i * host->pmecc_bytes_per_sector + j; |
| chip->oob_poi[eccpos[pos]] = |
| readb(&host->pmecc->ecc_port[i].ecc[j]); |
| } |
| } |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| } |
| |
| static void atmel_pmecc_core_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct atmel_nand_host *host = nand_chip->priv; |
| uint32_t val = 0; |
| struct nand_ecclayout *ecc_layout; |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); |
| |
| switch (host->pmecc_corr_cap) { |
| case 2: |
| val = PMECC_CFG_BCH_ERR2; |
| break; |
| case 4: |
| val = PMECC_CFG_BCH_ERR4; |
| break; |
| case 8: |
| val = PMECC_CFG_BCH_ERR8; |
| break; |
| case 12: |
| val = PMECC_CFG_BCH_ERR12; |
| break; |
| case 24: |
| val = PMECC_CFG_BCH_ERR24; |
| break; |
| } |
| |
| if (host->pmecc_sector_size == 512) |
| val |= PMECC_CFG_SECTOR512; |
| else if (host->pmecc_sector_size == 1024) |
| val |= PMECC_CFG_SECTOR1024; |
| |
| switch (host->pmecc_sector_number) { |
| case 1: |
| val |= PMECC_CFG_PAGE_1SECTOR; |
| break; |
| case 2: |
| val |= PMECC_CFG_PAGE_2SECTORS; |
| break; |
| case 4: |
| val |= PMECC_CFG_PAGE_4SECTORS; |
| break; |
| case 8: |
| val |= PMECC_CFG_PAGE_8SECTORS; |
| break; |
| } |
| |
| val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE |
| | PMECC_CFG_AUTO_DISABLE); |
| pmecc_writel(host->pmecc, cfg, val); |
| |
| ecc_layout = nand_chip->ecc.layout; |
| pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1); |
| pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]); |
| pmecc_writel(host->pmecc, eaddr, |
| ecc_layout->eccpos[ecc_layout->eccbytes - 1]); |
| /* See datasheet about PMECC Clock Control Register */ |
| pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ); |
| pmecc_writel(host->pmecc, idr, 0xff); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); |
| } |
| |
| static int atmel_pmecc_nand_init_params(struct nand_chip *nand, |
| struct mtd_info *mtd) |
| { |
| struct atmel_nand_host *host; |
| int cap, sector_size; |
| |
| host = nand->priv = &pmecc_host; |
| |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.calculate = NULL; |
| nand->ecc.correct = NULL; |
| nand->ecc.hwctl = NULL; |
| |
| cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP; |
| sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; |
| host->pmecc_index_table_offset = CONFIG_PMECC_INDEX_TABLE_OFFSET; |
| |
| MTDDEBUG(MTD_DEBUG_LEVEL1, |
| "Initialize PMECC params, cap: %d, sector: %d\n", |
| cap, sector_size); |
| |
| host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC; |
| host->pmerrloc = (struct pmecc_errloc_regs __iomem *) |
| ATMEL_BASE_PMERRLOC; |
| host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM; |
| |
| /* ECC is calculated for the whole page (1 step) */ |
| nand->ecc.size = mtd->writesize; |
| |
| /* set ECC page size and oob layout */ |
| switch (mtd->writesize) { |
| case 2048: |
| case 4096: |
| host->pmecc_degree = PMECC_GF_DIMENSION_13; |
| host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; |
| host->pmecc_sector_number = mtd->writesize / sector_size; |
| host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( |
| cap, sector_size); |
| host->pmecc_alpha_to = pmecc_get_alpha_to(host); |
| host->pmecc_index_of = host->pmecc_rom_base + |
| host->pmecc_index_table_offset; |
| |
| nand->ecc.steps = 1; |
| nand->ecc.bytes = host->pmecc_bytes_per_sector * |
| host->pmecc_sector_number; |
| if (nand->ecc.bytes > mtd->oobsize - 2) { |
| printk(KERN_ERR "No room for ECC bytes\n"); |
| return -EINVAL; |
| } |
| pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, |
| mtd->oobsize, |
| nand->ecc.bytes); |
| nand->ecc.layout = &atmel_pmecc_oobinfo; |
| break; |
| case 512: |
| case 1024: |
| /* TODO */ |
| printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n"); |
| default: |
| /* page size not handled by HW ECC */ |
| /* switching back to soft ECC */ |
| nand->ecc.mode = NAND_ECC_SOFT; |
| nand->ecc.read_page = NULL; |
| nand->ecc.postpad = 0; |
| nand->ecc.prepad = 0; |
| nand->ecc.bytes = 0; |
| return 0; |
| } |
| |
| nand->ecc.read_page = atmel_nand_pmecc_read_page; |
| nand->ecc.write_page = atmel_nand_pmecc_write_page; |
| |
| atmel_pmecc_core_init(mtd); |
| |
| return 0; |
| } |
| |
| #else |
| |
| /* oob layout for large page size |
| * bad block info is on bytes 0 and 1 |
| * the bytes have to be consecutives to avoid |
| * several NAND_CMD_RNDOUT during read |
| */ |
| static struct nand_ecclayout atmel_oobinfo_large = { |
| .eccbytes = 4, |
| .eccpos = {60, 61, 62, 63}, |
| .oobfree = { |
| {2, 58} |
| }, |
| }; |
| |
| /* oob layout for small page size |
| * bad block info is on bytes 4 and 5 |
| * the bytes have to be consecutives to avoid |
| * several NAND_CMD_RNDOUT during read |
| */ |
| static struct nand_ecclayout atmel_oobinfo_small = { |
| .eccbytes = 4, |
| .eccpos = {0, 1, 2, 3}, |
| .oobfree = { |
| {6, 10} |
| }, |
| }; |
| |
| /* |
| * Calculate HW ECC |
| * |
| * function called after a write |
| * |
| * mtd: MTD block structure |
| * dat: raw data (unused) |
| * ecc_code: buffer for ECC |
| */ |
| static int atmel_nand_calculate(struct mtd_info *mtd, |
| const u_char *dat, unsigned char *ecc_code) |
| { |
| unsigned int ecc_value; |
| |
| /* get the first 2 ECC bytes */ |
| ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR); |
| |
| ecc_code[0] = ecc_value & 0xFF; |
| ecc_code[1] = (ecc_value >> 8) & 0xFF; |
| |
| /* get the last 2 ECC bytes */ |
| ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY; |
| |
| ecc_code[2] = ecc_value & 0xFF; |
| ecc_code[3] = (ecc_value >> 8) & 0xFF; |
| |
| return 0; |
| } |
| |
| /* |
| * HW ECC read page function |
| * |
| * mtd: mtd info structure |
| * chip: nand chip info structure |
| * buf: buffer to store read data |
| */ |
| static int atmel_nand_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int page) |
| { |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| uint8_t *ecc_pos; |
| int stat; |
| |
| /* read the page */ |
| chip->read_buf(mtd, p, eccsize); |
| |
| /* move to ECC position if needed */ |
| if (eccpos[0] != 0) { |
| /* This only works on large pages |
| * because the ECC controller waits for |
| * NAND_CMD_RNDOUTSTART after the |
| * NAND_CMD_RNDOUT. |
| * anyway, for small pages, the eccpos[0] == 0 |
| */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, |
| mtd->writesize + eccpos[0], -1); |
| } |
| |
| /* the ECC controller needs to read the ECC just after the data */ |
| ecc_pos = oob + eccpos[0]; |
| chip->read_buf(mtd, ecc_pos, eccbytes); |
| |
| /* check if there's an error */ |
| stat = chip->ecc.correct(mtd, p, oob, NULL); |
| |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| |
| /* get back to oob start (end of page) */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); |
| |
| /* read the oob */ |
| chip->read_buf(mtd, oob, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| /* |
| * HW ECC Correction |
| * |
| * function called after a read |
| * |
| * mtd: MTD block structure |
| * dat: raw data read from the chip |
| * read_ecc: ECC from the chip (unused) |
| * isnull: unused |
| * |
| * Detect and correct a 1 bit error for a page |
| */ |
| static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *isnull) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| unsigned int ecc_status; |
| unsigned int ecc_word, ecc_bit; |
| |
| /* get the status from the Status Register */ |
| ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR); |
| |
| /* if there's no error */ |
| if (likely(!(ecc_status & ATMEL_ECC_RECERR))) |
| return 0; |
| |
| /* get error bit offset (4 bits) */ |
| ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR; |
| /* get word address (12 bits) */ |
| ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR; |
| ecc_word >>= 4; |
| |
| /* if there are multiple errors */ |
| if (ecc_status & ATMEL_ECC_MULERR) { |
| /* check if it is a freshly erased block |
| * (filled with 0xff) */ |
| if ((ecc_bit == ATMEL_ECC_BITADDR) |
| && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { |
| /* the block has just been erased, return OK */ |
| return 0; |
| } |
| /* it doesn't seems to be a freshly |
| * erased block. |
| * We can't correct so many errors */ |
| printk(KERN_WARNING "atmel_nand : multiple errors detected." |
| " Unable to correct.\n"); |
| return -EIO; |
| } |
| |
| /* if there's a single bit error : we can correct it */ |
| if (ecc_status & ATMEL_ECC_ECCERR) { |
| /* there's nothing much to do here. |
| * the bit error is on the ECC itself. |
| */ |
| printk(KERN_WARNING "atmel_nand : one bit error on ECC code." |
| " Nothing to correct\n"); |
| return 0; |
| } |
| |
| printk(KERN_WARNING "atmel_nand : one bit error on data." |
| " (word offset in the page :" |
| " 0x%x bit offset : 0x%x)\n", |
| ecc_word, ecc_bit); |
| /* correct the error */ |
| if (nand_chip->options & NAND_BUSWIDTH_16) { |
| /* 16 bits words */ |
| ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); |
| } else { |
| /* 8 bits words */ |
| dat[ecc_word] ^= (1 << ecc_bit); |
| } |
| printk(KERN_WARNING "atmel_nand : error corrected\n"); |
| return 1; |
| } |
| |
| /* |
| * Enable HW ECC : unused on most chips |
| */ |
| static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) |
| { |
| } |
| |
| int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd) |
| { |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.calculate = atmel_nand_calculate; |
| nand->ecc.correct = atmel_nand_correct; |
| nand->ecc.hwctl = atmel_nand_hwctl; |
| nand->ecc.read_page = atmel_nand_read_page; |
| nand->ecc.bytes = 4; |
| |
| if (nand->ecc.mode == NAND_ECC_HW) { |
| /* ECC is calculated for the whole page (1 step) */ |
| nand->ecc.size = mtd->writesize; |
| |
| /* set ECC page size and oob layout */ |
| switch (mtd->writesize) { |
| case 512: |
| nand->ecc.layout = &atmel_oobinfo_small; |
| ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, |
| ATMEL_ECC_PAGESIZE_528); |
| break; |
| case 1024: |
| nand->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, |
| ATMEL_ECC_PAGESIZE_1056); |
| break; |
| case 2048: |
| nand->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, |
| ATMEL_ECC_PAGESIZE_2112); |
| break; |
| case 4096: |
| nand->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, |
| ATMEL_ECC_PAGESIZE_4224); |
| break; |
| default: |
| /* page size not handled by HW ECC */ |
| /* switching back to soft ECC */ |
| nand->ecc.mode = NAND_ECC_SOFT; |
| nand->ecc.calculate = NULL; |
| nand->ecc.correct = NULL; |
| nand->ecc.hwctl = NULL; |
| nand->ecc.read_page = NULL; |
| nand->ecc.postpad = 0; |
| nand->ecc.prepad = 0; |
| nand->ecc.bytes = 0; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #endif /* CONFIG_ATMEL_NAND_HW_PMECC */ |
| |
| #endif /* CONFIG_ATMEL_NAND_HWECC */ |
| |
| static void at91_nand_hwcontrol(struct mtd_info *mtd, |
| int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; |
| IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE |
| | CONFIG_SYS_NAND_MASK_CLE); |
| |
| if (ctrl & NAND_CLE) |
| IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE; |
| if (ctrl & NAND_ALE) |
| IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE; |
| |
| #ifdef CONFIG_SYS_NAND_ENABLE_PIN |
| at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN, |
| !(ctrl & NAND_NCE)); |
| #endif |
| this->IO_ADDR_W = (void *) IO_ADDR_W; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| #ifdef CONFIG_SYS_NAND_READY_PIN |
| static int at91_nand_ready(struct mtd_info *mtd) |
| { |
| return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN); |
| } |
| #endif |
| |
| #ifndef CONFIG_SYS_NAND_BASE_LIST |
| #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } |
| #endif |
| static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; |
| static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; |
| |
| int atmel_nand_chip_init(int devnum, ulong base_addr) |
| { |
| int ret; |
| struct mtd_info *mtd = &nand_info[devnum]; |
| struct nand_chip *nand = &nand_chip[devnum]; |
| |
| mtd->priv = nand; |
| nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr; |
| |
| nand->ecc.mode = NAND_ECC_SOFT; |
| #ifdef CONFIG_SYS_NAND_DBW_16 |
| nand->options = NAND_BUSWIDTH_16; |
| #endif |
| nand->cmd_ctrl = at91_nand_hwcontrol; |
| #ifdef CONFIG_SYS_NAND_READY_PIN |
| nand->dev_ready = at91_nand_ready; |
| #endif |
| nand->chip_delay = 20; |
| |
| ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); |
| if (ret) |
| return ret; |
| |
| #ifdef CONFIG_ATMEL_NAND_HWECC |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC |
| ret = atmel_pmecc_nand_init_params(nand, mtd); |
| #else |
| ret = atmel_hwecc_nand_init_param(nand, mtd); |
| #endif |
| if (ret) |
| return ret; |
| #endif |
| |
| ret = nand_scan_tail(mtd); |
| if (!ret) |
| nand_register(devnum); |
| |
| return ret; |
| } |
| |
| void board_nand_init(void) |
| { |
| int i; |
| for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) |
| if (atmel_nand_chip_init(i, base_addr[i])) |
| printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip", |
| i); |
| } |