| /* ****************************************************************** |
| * FSE : Finite State Entropy codec |
| * Public Prototypes declaration |
| * Copyright (c) Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| #ifndef FSE_H |
| #define FSE_H |
| |
| /*-***************************************** |
| * Dependencies |
| ******************************************/ |
| #include "zstd_deps.h" /* size_t, ptrdiff_t */ |
| |
| /*-***************************************** |
| * FSE_PUBLIC_API : control library symbols visibility |
| ******************************************/ |
| #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) |
| # define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) |
| #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ |
| # define FSE_PUBLIC_API __declspec(dllexport) |
| #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) |
| # define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ |
| #else |
| # define FSE_PUBLIC_API |
| #endif |
| |
| /*------ Version ------*/ |
| #define FSE_VERSION_MAJOR 0 |
| #define FSE_VERSION_MINOR 9 |
| #define FSE_VERSION_RELEASE 0 |
| |
| #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE |
| #define FSE_QUOTE(str) #str |
| #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) |
| #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) |
| |
| #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) |
| FSE_PUBLIC_API unsigned FSE_versionNumber(void); /*< library version number; to be used when checking dll version */ |
| |
| /*-**************************************** |
| * FSE simple functions |
| ******************************************/ |
| /*! FSE_compress() : |
| Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'. |
| 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize). |
| @return : size of compressed data (<= dstCapacity). |
| Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! |
| if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead. |
| if FSE_isError(return), compression failed (more details using FSE_getErrorName()) |
| */ |
| FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize); |
| |
| /*! FSE_decompress(): |
| Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', |
| into already allocated destination buffer 'dst', of size 'dstCapacity'. |
| @return : size of regenerated data (<= maxDstSize), |
| or an error code, which can be tested using FSE_isError() . |
| |
| ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!! |
| Why ? : making this distinction requires a header. |
| Header management is intentionally delegated to the user layer, which can better manage special cases. |
| */ |
| FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity, |
| const void* cSrc, size_t cSrcSize); |
| |
| /*-***************************************** |
| * Tool functions |
| ******************************************/ |
| FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ |
| |
| /* Error Management */ |
| FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ |
| FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ |
| |
| /*-***************************************** |
| * FSE advanced functions |
| ******************************************/ |
| /*! FSE_compress2() : |
| Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog' |
| Both parameters can be defined as '0' to mean : use default value |
| @return : size of compressed data |
| Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!! |
| if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression. |
| if FSE_isError(return), it's an error code. |
| */ |
| FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*-***************************************** |
| * FSE detailed API |
| ******************************************/ |
| /*! |
| FSE_compress() does the following: |
| 1. count symbol occurrence from source[] into table count[] (see hist.h) |
| 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) |
| 3. save normalized counters to memory buffer using writeNCount() |
| 4. build encoding table 'CTable' from normalized counters |
| 5. encode the data stream using encoding table 'CTable' |
| |
| FSE_decompress() does the following: |
| 1. read normalized counters with readNCount() |
| 2. build decoding table 'DTable' from normalized counters |
| 3. decode the data stream using decoding table 'DTable' |
| |
| The following API allows targeting specific sub-functions for advanced tasks. |
| For example, it's possible to compress several blocks using the same 'CTable', |
| or to save and provide normalized distribution using external method. |
| */ |
| |
| /* *** COMPRESSION *** */ |
| |
| /*! FSE_optimalTableLog(): |
| dynamically downsize 'tableLog' when conditions are met. |
| It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. |
| @return : recommended tableLog (necessarily <= 'maxTableLog') */ |
| FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); |
| |
| /*! FSE_normalizeCount(): |
| normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) |
| 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). |
| useLowProbCount is a boolean parameter which trades off compressed size for |
| faster header decoding. When it is set to 1, the compressed data will be slightly |
| smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be |
| faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0 |
| is a good default, since header deserialization makes a big speed difference. |
| Otherwise, useLowProbCount=1 is a good default, since the speed difference is small. |
| @return : tableLog, |
| or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, |
| const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount); |
| |
| /*! FSE_NCountWriteBound(): |
| Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. |
| Typically useful for allocation purpose. */ |
| FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_writeNCount(): |
| Compactly save 'normalizedCounter' into 'buffer'. |
| @return : size of the compressed table, |
| or an errorCode, which can be tested using FSE_isError(). */ |
| FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, |
| const short* normalizedCounter, |
| unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! Constructor and Destructor of FSE_CTable. |
| Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ |
| typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ |
| FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog); |
| FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct); |
| |
| /*! FSE_buildCTable(): |
| Builds `ct`, which must be already allocated, using FSE_createCTable(). |
| @return : 0, or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_compress_usingCTable(): |
| Compress `src` using `ct` into `dst` which must be already allocated. |
| @return : size of compressed data (<= `dstCapacity`), |
| or 0 if compressed data could not fit into `dst`, |
| or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); |
| |
| /*! |
| Tutorial : |
| ---------- |
| The first step is to count all symbols. FSE_count() does this job very fast. |
| Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. |
| 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] |
| maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) |
| FSE_count() will return the number of occurrence of the most frequent symbol. |
| This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| The next step is to normalize the frequencies. |
| FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. |
| It also guarantees a minimum of 1 to any Symbol with frequency >= 1. |
| You can use 'tableLog'==0 to mean "use default tableLog value". |
| If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), |
| which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). |
| |
| The result of FSE_normalizeCount() will be saved into a table, |
| called 'normalizedCounter', which is a table of signed short. |
| 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. |
| The return value is tableLog if everything proceeded as expected. |
| It is 0 if there is a single symbol within distribution. |
| If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). |
| 'buffer' must be already allocated. |
| For guaranteed success, buffer size must be at least FSE_headerBound(). |
| The result of the function is the number of bytes written into 'buffer'. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). |
| |
| 'normalizedCounter' can then be used to create the compression table 'CTable'. |
| The space required by 'CTable' must be already allocated, using FSE_createCTable(). |
| You can then use FSE_buildCTable() to fill 'CTable'. |
| If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). |
| Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' |
| The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. |
| If it returns '0', compressed data could not fit into 'dst'. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
| */ |
| |
| /* *** DECOMPRESSION *** */ |
| |
| /*! FSE_readNCount(): |
| Read compactly saved 'normalizedCounter' from 'rBuffer'. |
| @return : size read from 'rBuffer', |
| or an errorCode, which can be tested using FSE_isError(). |
| maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ |
| FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, |
| unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, |
| const void* rBuffer, size_t rBuffSize); |
| |
| /*! FSE_readNCount_bmi2(): |
| * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise. |
| */ |
| FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter, |
| unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, |
| const void* rBuffer, size_t rBuffSize, int bmi2); |
| |
| /*! Constructor and Destructor of FSE_DTable. |
| Note that its size depends on 'tableLog' */ |
| typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ |
| FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog); |
| FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt); |
| |
| /*! FSE_buildDTable(): |
| Builds 'dt', which must be already allocated, using FSE_createDTable(). |
| return : 0, or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_decompress_usingDTable(): |
| Decompress compressed source `cSrc` of size `cSrcSize` using `dt` |
| into `dst` which must be already allocated. |
| @return : size of regenerated data (necessarily <= `dstCapacity`), |
| or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); |
| |
| /*! |
| Tutorial : |
| ---------- |
| (Note : these functions only decompress FSE-compressed blocks. |
| If block is uncompressed, use memcpy() instead |
| If block is a single repeated byte, use memset() instead ) |
| |
| The first step is to obtain the normalized frequencies of symbols. |
| This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). |
| 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. |
| In practice, that means it's necessary to know 'maxSymbolValue' beforehand, |
| or size the table to handle worst case situations (typically 256). |
| FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. |
| The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. |
| Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
| |
| The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. |
| This is performed by the function FSE_buildDTable(). |
| The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
| |
| `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). |
| `cSrcSize` must be strictly correct, otherwise decompression will fail. |
| FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) |
| */ |
| |
| #endif /* FSE_H */ |
| |
| #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY) |
| #define FSE_H_FSE_STATIC_LINKING_ONLY |
| |
| /* *** Dependency *** */ |
| #include "bitstream.h" |
| |
| /* ***************************************** |
| * Static allocation |
| *******************************************/ |
| /* FSE buffer bounds */ |
| #define FSE_NCOUNTBOUND 512 |
| #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) |
| #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ |
| |
| /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ |
| #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2)) |
| #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog))) |
| |
| /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ |
| #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) |
| #define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) |
| |
| /* ***************************************** |
| * FSE advanced API |
| ***************************************** */ |
| |
| unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); |
| /*< same as FSE_optimalTableLog(), which used `minus==2` */ |
| |
| /* FSE_compress_wksp() : |
| * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`). |
| * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable. |
| */ |
| #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) ) |
| size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
| |
| size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits); |
| /*< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ |
| |
| size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); |
| /*< build a fake FSE_CTable, designed to compress always the same symbolValue */ |
| |
| /* FSE_buildCTable_wksp() : |
| * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). |
| * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. |
| * See FSE_buildCTable_wksp() for breakdown of workspace usage. |
| */ |
| #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */) |
| #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) |
| size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
| |
| #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8) |
| #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned)) |
| FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
| /*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */ |
| |
| size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits); |
| /*< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */ |
| |
| size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue); |
| /*< build a fake FSE_DTable, designed to always generate the same symbolValue */ |
| |
| #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1) |
| #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned)) |
| size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize); |
| /*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */ |
| |
| size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2); |
| /*< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */ |
| |
| typedef enum { |
| FSE_repeat_none, /*< Cannot use the previous table */ |
| FSE_repeat_check, /*< Can use the previous table but it must be checked */ |
| FSE_repeat_valid /*< Can use the previous table and it is assumed to be valid */ |
| } FSE_repeat; |
| |
| /* ***************************************** |
| * FSE symbol compression API |
| *******************************************/ |
| /*! |
| This API consists of small unitary functions, which highly benefit from being inlined. |
| Hence their body are included in next section. |
| */ |
| typedef struct { |
| ptrdiff_t value; |
| const void* stateTable; |
| const void* symbolTT; |
| unsigned stateLog; |
| } FSE_CState_t; |
| |
| static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); |
| |
| static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); |
| |
| static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); |
| |
| /*< |
| These functions are inner components of FSE_compress_usingCTable(). |
| They allow the creation of custom streams, mixing multiple tables and bit sources. |
| |
| A key property to keep in mind is that encoding and decoding are done **in reverse direction**. |
| So the first symbol you will encode is the last you will decode, like a LIFO stack. |
| |
| You will need a few variables to track your CStream. They are : |
| |
| FSE_CTable ct; // Provided by FSE_buildCTable() |
| BIT_CStream_t bitStream; // bitStream tracking structure |
| FSE_CState_t state; // State tracking structure (can have several) |
| |
| The first thing to do is to init bitStream and state. |
| size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); |
| FSE_initCState(&state, ct); |
| |
| Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); |
| You can then encode your input data, byte after byte. |
| FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. |
| Remember decoding will be done in reverse direction. |
| FSE_encodeByte(&bitStream, &state, symbol); |
| |
| At any time, you can also add any bit sequence. |
| Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders |
| BIT_addBits(&bitStream, bitField, nbBits); |
| |
| The above methods don't commit data to memory, they just store it into local register, for speed. |
| Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). |
| Writing data to memory is a manual operation, performed by the flushBits function. |
| BIT_flushBits(&bitStream); |
| |
| Your last FSE encoding operation shall be to flush your last state value(s). |
| FSE_flushState(&bitStream, &state); |
| |
| Finally, you must close the bitStream. |
| The function returns the size of CStream in bytes. |
| If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) |
| If there is an error, it returns an errorCode (which can be tested using FSE_isError()). |
| size_t size = BIT_closeCStream(&bitStream); |
| */ |
| |
| /* ***************************************** |
| * FSE symbol decompression API |
| *******************************************/ |
| typedef struct { |
| size_t state; |
| const void* table; /* precise table may vary, depending on U16 */ |
| } FSE_DState_t; |
| |
| static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); |
| |
| static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
| |
| static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); |
| |
| /*< |
| Let's now decompose FSE_decompress_usingDTable() into its unitary components. |
| You will decode FSE-encoded symbols from the bitStream, |
| and also any other bitFields you put in, **in reverse order**. |
| |
| You will need a few variables to track your bitStream. They are : |
| |
| BIT_DStream_t DStream; // Stream context |
| FSE_DState_t DState; // State context. Multiple ones are possible |
| FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() |
| |
| The first thing to do is to init the bitStream. |
| errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); |
| |
| You should then retrieve your initial state(s) |
| (in reverse flushing order if you have several ones) : |
| errorCode = FSE_initDState(&DState, &DStream, DTablePtr); |
| |
| You can then decode your data, symbol after symbol. |
| For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. |
| Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). |
| unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); |
| |
| You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) |
| Note : maximum allowed nbBits is 25, for 32-bits compatibility |
| size_t bitField = BIT_readBits(&DStream, nbBits); |
| |
| All above operations only read from local register (which size depends on size_t). |
| Refueling the register from memory is manually performed by the reload method. |
| endSignal = FSE_reloadDStream(&DStream); |
| |
| BIT_reloadDStream() result tells if there is still some more data to read from DStream. |
| BIT_DStream_unfinished : there is still some data left into the DStream. |
| BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. |
| BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. |
| BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. |
| |
| When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, |
| to properly detect the exact end of stream. |
| After each decoded symbol, check if DStream is fully consumed using this simple test : |
| BIT_reloadDStream(&DStream) >= BIT_DStream_completed |
| |
| When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. |
| Checking if DStream has reached its end is performed by : |
| BIT_endOfDStream(&DStream); |
| Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. |
| FSE_endOfDState(&DState); |
| */ |
| |
| /* ***************************************** |
| * FSE unsafe API |
| *******************************************/ |
| static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
| /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ |
| |
| /* ***************************************** |
| * Implementation of inlined functions |
| *******************************************/ |
| typedef struct { |
| int deltaFindState; |
| U32 deltaNbBits; |
| } FSE_symbolCompressionTransform; /* total 8 bytes */ |
| |
| MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) |
| { |
| const void* ptr = ct; |
| const U16* u16ptr = (const U16*) ptr; |
| const U32 tableLog = MEM_read16(ptr); |
| statePtr->value = (ptrdiff_t)1<<tableLog; |
| statePtr->stateTable = u16ptr+2; |
| statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); |
| statePtr->stateLog = tableLog; |
| } |
| |
| /*! FSE_initCState2() : |
| * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) |
| * uses the smallest state value possible, saving the cost of this symbol */ |
| MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) |
| { |
| FSE_initCState(statePtr, ct); |
| { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; |
| const U16* stateTable = (const U16*)(statePtr->stateTable); |
| U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); |
| statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; |
| statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; |
| } |
| } |
| |
| MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) |
| { |
| FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; |
| const U16* const stateTable = (const U16*)(statePtr->stateTable); |
| U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); |
| BIT_addBits(bitC, statePtr->value, nbBitsOut); |
| statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; |
| } |
| |
| MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) |
| { |
| BIT_addBits(bitC, statePtr->value, statePtr->stateLog); |
| BIT_flushBits(bitC); |
| } |
| |
| /* FSE_getMaxNbBits() : |
| * Approximate maximum cost of a symbol, in bits. |
| * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) |
| * note 1 : assume symbolValue is valid (<= maxSymbolValue) |
| * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ |
| MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) |
| { |
| const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; |
| return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; |
| } |
| |
| /* FSE_bitCost() : |
| * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) |
| * note 1 : assume symbolValue is valid (<= maxSymbolValue) |
| * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ |
| MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) |
| { |
| const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; |
| U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; |
| U32 const threshold = (minNbBits+1) << 16; |
| assert(tableLog < 16); |
| assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ |
| { U32 const tableSize = 1 << tableLog; |
| U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); |
| U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ |
| U32 const bitMultiplier = 1 << accuracyLog; |
| assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); |
| assert(normalizedDeltaFromThreshold <= bitMultiplier); |
| return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; |
| } |
| } |
| |
| /* ====== Decompression ====== */ |
| |
| typedef struct { |
| U16 tableLog; |
| U16 fastMode; |
| } FSE_DTableHeader; /* sizeof U32 */ |
| |
| typedef struct |
| { |
| unsigned short newState; |
| unsigned char symbol; |
| unsigned char nbBits; |
| } FSE_decode_t; /* size == U32 */ |
| |
| MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) |
| { |
| const void* ptr = dt; |
| const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; |
| DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); |
| BIT_reloadDStream(bitD); |
| DStatePtr->table = dt + 1; |
| } |
| |
| MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| return DInfo.symbol; |
| } |
| |
| MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| size_t const lowBits = BIT_readBits(bitD, nbBits); |
| DStatePtr->state = DInfo.newState + lowBits; |
| } |
| |
| MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| BYTE const symbol = DInfo.symbol; |
| size_t const lowBits = BIT_readBits(bitD, nbBits); |
| |
| DStatePtr->state = DInfo.newState + lowBits; |
| return symbol; |
| } |
| |
| /*! FSE_decodeSymbolFast() : |
| unsafe, only works if no symbol has a probability > 50% */ |
| MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| BYTE const symbol = DInfo.symbol; |
| size_t const lowBits = BIT_readBitsFast(bitD, nbBits); |
| |
| DStatePtr->state = DInfo.newState + lowBits; |
| return symbol; |
| } |
| |
| MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) |
| { |
| return DStatePtr->state == 0; |
| } |
| |
| #ifndef FSE_COMMONDEFS_ONLY |
| |
| /* ************************************************************** |
| * Tuning parameters |
| ****************************************************************/ |
| /*!MEMORY_USAGE : |
| * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) |
| * Increasing memory usage improves compression ratio |
| * Reduced memory usage can improve speed, due to cache effect |
| * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ |
| #ifndef FSE_MAX_MEMORY_USAGE |
| # define FSE_MAX_MEMORY_USAGE 14 |
| #endif |
| #ifndef FSE_DEFAULT_MEMORY_USAGE |
| # define FSE_DEFAULT_MEMORY_USAGE 13 |
| #endif |
| #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE) |
| # error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE" |
| #endif |
| |
| /*!FSE_MAX_SYMBOL_VALUE : |
| * Maximum symbol value authorized. |
| * Required for proper stack allocation */ |
| #ifndef FSE_MAX_SYMBOL_VALUE |
| # define FSE_MAX_SYMBOL_VALUE 255 |
| #endif |
| |
| /* ************************************************************** |
| * template functions type & suffix |
| ****************************************************************/ |
| #define FSE_FUNCTION_TYPE BYTE |
| #define FSE_FUNCTION_EXTENSION |
| #define FSE_DECODE_TYPE FSE_decode_t |
| |
| #endif /* !FSE_COMMONDEFS_ONLY */ |
| |
| /* *************************************************************** |
| * Constants |
| *****************************************************************/ |
| #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) |
| #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) |
| #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) |
| #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) |
| #define FSE_MIN_TABLELOG 5 |
| |
| #define FSE_TABLELOG_ABSOLUTE_MAX 15 |
| #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX |
| # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" |
| #endif |
| |
| #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3) |
| |
| #endif /* FSE_STATIC_LINKING_ONLY */ |
| |