| /* |
| * (C) Copyright 2011 |
| * eInfochips Ltd. <www.einfochips.com> |
| * Written-by: Ajay Bhargav <ajay.bhargav@einfochips.com> |
| * |
| * (C) Copyright 2010 |
| * Marvell Semiconductor <www.marvell.com> |
| * Contributor: Mahavir Jain <mjain@marvell.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <net.h> |
| #include <malloc.h> |
| #include <miiphy.h> |
| #include <netdev.h> |
| #include <asm/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/err.h> |
| #include <linux/mii.h> |
| #include <asm/io.h> |
| #include <asm/arch/armada100.h> |
| #include "armada100_fec.h" |
| |
| #define PHY_ADR_REQ 0xFF /* Magic number to read/write PHY address */ |
| |
| #ifdef DEBUG |
| static int eth_dump_regs(struct eth_device *dev) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| unsigned int i = 0; |
| |
| printf("\noffset: phy_adr, value: 0x%x\n", readl(®s->phyadr)); |
| printf("offset: smi, value: 0x%x\n", readl(®s->smi)); |
| for (i = 0x400; i <= 0x4e4; i += 4) |
| printf("offset: 0x%x, value: 0x%x\n", |
| i, readl(ARMD1_FEC_BASE + i)); |
| return 0; |
| } |
| #endif |
| |
| static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond) |
| { |
| u32 timeout = PHY_WAIT_ITERATIONS; |
| u32 reg_val; |
| |
| while (--timeout) { |
| reg_val = readl(reg); |
| if (cond && (reg_val & flag)) |
| break; |
| else if (!cond && !(reg_val & flag)) |
| break; |
| udelay(PHY_WAIT_MICRO_SECONDS); |
| } |
| return !timeout; |
| } |
| |
| static int smi_reg_read(const char *devname, u8 phy_addr, u8 phy_reg, |
| u16 *value) |
| { |
| struct eth_device *dev = eth_get_dev_by_name(devname); |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| u32 val; |
| |
| if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { |
| val = readl(®s->phyadr); |
| *value = val & 0x1f; |
| return 0; |
| } |
| |
| /* check parameters */ |
| if (phy_addr > PHY_MASK) { |
| printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n", |
| __func__, phy_addr); |
| return -EINVAL; |
| } |
| if (phy_reg > PHY_MASK) { |
| printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n", |
| __func__, phy_reg); |
| return -EINVAL; |
| } |
| |
| /* wait for the SMI register to become available */ |
| if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { |
| printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); |
| return -1; |
| } |
| |
| writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, ®s->smi); |
| |
| /* now wait for the data to be valid */ |
| if (armdfec_phy_timeout(®s->smi, SMI_R_VALID, true)) { |
| val = readl(®s->smi); |
| printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n", |
| __func__, val); |
| return -1; |
| } |
| val = readl(®s->smi); |
| *value = val & 0xffff; |
| |
| return 0; |
| } |
| |
| static int smi_reg_write(const char *devname, |
| u8 phy_addr, u8 phy_reg, u16 value) |
| { |
| struct eth_device *dev = eth_get_dev_by_name(devname); |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| |
| if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { |
| clrsetbits_le32(®s->phyadr, 0x1f, value & 0x1f); |
| return 0; |
| } |
| |
| /* check parameters */ |
| if (phy_addr > PHY_MASK) { |
| printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__); |
| return -EINVAL; |
| } |
| if (phy_reg > PHY_MASK) { |
| printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* wait for the SMI register to become available */ |
| if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { |
| printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); |
| return -1; |
| } |
| |
| writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff), |
| ®s->smi); |
| return 0; |
| } |
| |
| /* |
| * Abort any transmit and receive operations and put DMA |
| * in idle state. AT and AR bits are cleared upon entering |
| * in IDLE state. So poll those bits to verify operation. |
| */ |
| static void abortdma(struct eth_device *dev) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| int delay; |
| int maxretries = 40; |
| u32 tmp; |
| |
| while (--maxretries) { |
| writel(SDMA_CMD_AR | SDMA_CMD_AT, ®s->sdma_cmd); |
| udelay(100); |
| |
| delay = 10; |
| while (--delay) { |
| tmp = readl(®s->sdma_cmd); |
| if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT))) |
| break; |
| udelay(10); |
| } |
| if (delay) |
| break; |
| } |
| |
| if (!maxretries) |
| printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__); |
| } |
| |
| static inline u32 nibble_swapping_32_bit(u32 x) |
| { |
| return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); |
| } |
| |
| static inline u32 nibble_swapping_16_bit(u32 x) |
| { |
| return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4); |
| } |
| |
| static inline u32 flip_4_bits(u32 x) |
| { |
| return ((x & 0x01) << 3) | ((x & 0x002) << 1) |
| | ((x & 0x04) >> 1) | ((x & 0x008) >> 3); |
| } |
| |
| /* |
| * This function will calculate the hash function of the address. |
| * depends on the hash mode and hash size. |
| * Inputs |
| * mach - the 2 most significant bytes of the MAC address. |
| * macl - the 4 least significant bytes of the MAC address. |
| * Outputs |
| * return the calculated entry. |
| */ |
| static u32 hash_function(u32 mach, u32 macl) |
| { |
| u32 hashresult; |
| u32 addrh; |
| u32 addrl; |
| u32 addr0; |
| u32 addr1; |
| u32 addr2; |
| u32 addr3; |
| u32 addrhswapped; |
| u32 addrlswapped; |
| |
| addrh = nibble_swapping_16_bit(mach); |
| addrl = nibble_swapping_32_bit(macl); |
| |
| addrhswapped = flip_4_bits(addrh & 0xf) |
| + ((flip_4_bits((addrh >> 4) & 0xf)) << 4) |
| + ((flip_4_bits((addrh >> 8) & 0xf)) << 8) |
| + ((flip_4_bits((addrh >> 12) & 0xf)) << 12); |
| |
| addrlswapped = flip_4_bits(addrl & 0xf) |
| + ((flip_4_bits((addrl >> 4) & 0xf)) << 4) |
| + ((flip_4_bits((addrl >> 8) & 0xf)) << 8) |
| + ((flip_4_bits((addrl >> 12) & 0xf)) << 12) |
| + ((flip_4_bits((addrl >> 16) & 0xf)) << 16) |
| + ((flip_4_bits((addrl >> 20) & 0xf)) << 20) |
| + ((flip_4_bits((addrl >> 24) & 0xf)) << 24) |
| + ((flip_4_bits((addrl >> 28) & 0xf)) << 28); |
| |
| addrh = addrhswapped; |
| addrl = addrlswapped; |
| |
| addr0 = (addrl >> 2) & 0x03f; |
| addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2); |
| addr2 = (addrl >> 15) & 0x1ff; |
| addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8); |
| |
| hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); |
| hashresult = hashresult & 0x07ff; |
| return hashresult; |
| } |
| |
| /* |
| * This function will add an entry to the address table. |
| * depends on the hash mode and hash size that was initialized. |
| * Inputs |
| * mach - the 2 most significant bytes of the MAC address. |
| * macl - the 4 least significant bytes of the MAC address. |
| * skip - if 1, skip this address. |
| * rd - the RD field in the address table. |
| * Outputs |
| * address table entry is added. |
| * 0 if success. |
| * -ENOSPC if table full |
| */ |
| static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach, |
| u32 macl, u32 rd, u32 skip, int del) |
| { |
| struct addr_table_entry_t *entry, *start; |
| u32 newhi; |
| u32 newlo; |
| u32 i; |
| |
| newlo = (((mach >> 4) & 0xf) << 15) |
| | (((mach >> 0) & 0xf) << 11) |
| | (((mach >> 12) & 0xf) << 7) |
| | (((mach >> 8) & 0xf) << 3) |
| | (((macl >> 20) & 0x1) << 31) |
| | (((macl >> 16) & 0xf) << 27) |
| | (((macl >> 28) & 0xf) << 23) |
| | (((macl >> 24) & 0xf) << 19) |
| | (skip << HTESKIP) | (rd << HTERDBIT) |
| | HTEVALID; |
| |
| newhi = (((macl >> 4) & 0xf) << 15) |
| | (((macl >> 0) & 0xf) << 11) |
| | (((macl >> 12) & 0xf) << 7) |
| | (((macl >> 8) & 0xf) << 3) |
| | (((macl >> 21) & 0x7) << 0); |
| |
| /* |
| * Pick the appropriate table, start scanning for free/reusable |
| * entries at the index obtained by hashing the specified MAC address |
| */ |
| start = (struct addr_table_entry_t *)(darmdfec->htpr); |
| entry = start + hash_function(mach, macl); |
| for (i = 0; i < HOP_NUMBER; i++) { |
| if (!(entry->lo & HTEVALID)) { |
| break; |
| } else { |
| /* if same address put in same position */ |
| if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8)) |
| && (entry->hi == newhi)) |
| break; |
| } |
| if (entry == start + 0x7ff) |
| entry = start; |
| else |
| entry++; |
| } |
| |
| if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) && |
| (entry->hi != newhi) && del) |
| return 0; |
| |
| if (i == HOP_NUMBER) { |
| if (!del) { |
| printf("ARMD100 FEC: (%s) table section is full\n", |
| __func__); |
| return -ENOSPC; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* |
| * Update the selected entry |
| */ |
| if (del) { |
| entry->hi = 0; |
| entry->lo = 0; |
| } else { |
| entry->hi = newhi; |
| entry->lo = newlo; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Create an addressTable entry from MAC address info |
| * found in the specifed net_device struct |
| * |
| * Input : pointer to ethernet interface network device structure |
| * Output : N/A |
| */ |
| static void update_hash_table_mac_address(struct armdfec_device *darmdfec, |
| u8 *oaddr, u8 *addr) |
| { |
| u32 mach; |
| u32 macl; |
| |
| /* Delete old entry */ |
| if (oaddr) { |
| mach = (oaddr[0] << 8) | oaddr[1]; |
| macl = (oaddr[2] << 24) | (oaddr[3] << 16) | |
| (oaddr[4] << 8) | oaddr[5]; |
| add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE); |
| } |
| |
| /* Add new entry */ |
| mach = (addr[0] << 8) | addr[1]; |
| macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; |
| add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD); |
| } |
| |
| /* Address Table Initialization */ |
| static void init_hashtable(struct eth_device *dev) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE); |
| writel((u32)darmdfec->htpr, ®s->htpr); |
| } |
| |
| /* |
| * This detects PHY chip from address 0-31 by reading PHY status |
| * registers. PHY chip can be connected at any of this address. |
| */ |
| static int ethernet_phy_detect(struct eth_device *dev) |
| { |
| u32 val; |
| u16 tmp, mii_status; |
| u8 addr; |
| |
| for (addr = 0; addr < 32; addr++) { |
| if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0) |
| /* try next phy */ |
| continue; |
| |
| /* invalid MII status. More validation required here... */ |
| if (mii_status == 0 || mii_status == 0xffff) |
| /* try next phy */ |
| continue; |
| |
| if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0) |
| /* try next phy */ |
| continue; |
| |
| val = tmp << 16; |
| if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0) |
| /* try next phy */ |
| continue; |
| |
| val |= tmp; |
| |
| if ((val & 0xfffffff0) != 0) |
| return addr; |
| } |
| return -1; |
| } |
| |
| static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec) |
| { |
| struct rx_desc *p_rx_desc; |
| int i; |
| |
| /* initialize the Rx descriptors ring */ |
| p_rx_desc = darmdfec->p_rxdesc; |
| for (i = 0; i < RINGSZ; i++) { |
| p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; |
| p_rx_desc->buf_size = PKTSIZE_ALIGN; |
| p_rx_desc->byte_cnt = 0; |
| p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN; |
| if (i == (RINGSZ - 1)) { |
| p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc; |
| } else { |
| p_rx_desc->nxtdesc_p = (struct rx_desc *) |
| ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE); |
| p_rx_desc = p_rx_desc->nxtdesc_p; |
| } |
| } |
| darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc; |
| } |
| |
| static int armdfec_init(struct eth_device *dev, bd_t *bd) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| int phy_adr; |
| u32 temp; |
| |
| armdfec_init_rx_desc_ring(darmdfec); |
| |
| /* Disable interrupts */ |
| writel(0, ®s->im); |
| writel(0, ®s->ic); |
| /* Write to ICR to clear interrupts. */ |
| writel(0, ®s->iwc); |
| |
| /* |
| * Abort any transmit and receive operations and put DMA |
| * in idle state. |
| */ |
| abortdma(dev); |
| |
| /* Initialize address hash table */ |
| init_hashtable(dev); |
| |
| /* SDMA configuration */ |
| writel(SDCR_BSZ8 | /* Burst size = 32 bytes */ |
| SDCR_RIFB | /* Rx interrupt on frame */ |
| SDCR_BLMT | /* Little endian transmit */ |
| SDCR_BLMR | /* Little endian receive */ |
| SDCR_RC_MAX_RETRANS, /* Max retransmit count */ |
| ®s->sdma_conf); |
| /* Port Configuration */ |
| writel(PCR_HS, ®s->pconf); /* Hash size is 1/2kb */ |
| |
| /* Set extended port configuration */ |
| writel(PCXR_2BSM | /* Two byte suffix aligns IP hdr */ |
| PCXR_DSCP_EN | /* Enable DSCP in IP */ |
| PCXR_MFL_1536 | /* Set MTU = 1536 */ |
| PCXR_FLP | /* do not force link pass */ |
| PCXR_TX_HIGH_PRI, /* Transmit - high priority queue */ |
| ®s->pconf_ext); |
| |
| update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr); |
| |
| /* Update TX and RX queue descriptor register */ |
| temp = (u32)®s->txcdp[TXQ]; |
| writel((u32)darmdfec->p_txdesc, temp); |
| temp = (u32)®s->rxfdp[RXQ]; |
| writel((u32)darmdfec->p_rxdesc, temp); |
| temp = (u32)®s->rxcdp[RXQ]; |
| writel((u32)darmdfec->p_rxdesc_curr, temp); |
| |
| /* Enable Interrupts */ |
| writel(ALL_INTS, ®s->im); |
| |
| /* Enable Ethernet Port */ |
| setbits_le32(®s->pconf, PCR_EN); |
| |
| /* Enable RX DMA engine */ |
| setbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); |
| |
| #ifdef DEBUG |
| eth_dump_regs(dev); |
| #endif |
| |
| #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) |
| |
| #if defined(CONFIG_PHY_BASE_ADR) |
| miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR); |
| #else |
| /* Search phy address from range 0-31 */ |
| phy_adr = ethernet_phy_detect(dev); |
| if (phy_adr < 0) { |
| printf("ARMD100 FEC: PHY not detected at address range 0-31\n"); |
| return -1; |
| } else { |
| debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr); |
| miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr); |
| } |
| #endif |
| |
| #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) |
| /* Wait up to 5s for the link status */ |
| for (i = 0; i < 5; i++) { |
| u16 phy_adr; |
| |
| miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr); |
| /* Return if we get link up */ |
| if (miiphy_link(dev->name, phy_adr)) |
| return 0; |
| udelay(1000000); |
| } |
| |
| printf("ARMD100 FEC: No link on %s\n", dev->name); |
| return -1; |
| #endif |
| #endif |
| return 0; |
| } |
| |
| static void armdfec_halt(struct eth_device *dev) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| |
| /* Stop RX DMA */ |
| clrbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); |
| |
| /* |
| * Abort any transmit and receive operations and put DMA |
| * in idle state. |
| */ |
| abortdma(dev); |
| |
| /* Disable interrupts */ |
| writel(0, ®s->im); |
| writel(0, ®s->ic); |
| writel(0, ®s->iwc); |
| |
| /* Disable Port */ |
| clrbits_le32(®s->pconf, PCR_EN); |
| } |
| |
| static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct armdfec_reg *regs = darmdfec->regs; |
| struct tx_desc *p_txdesc = darmdfec->p_txdesc; |
| void *p = (void *)dataptr; |
| int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS; |
| u32 cmd_sts, temp; |
| |
| /* Copy buffer if it's misaligned */ |
| if ((u32)dataptr & 0x07) { |
| if (datasize > PKTSIZE_ALIGN) { |
| printf("ARMD100 FEC: Non-aligned data too large (%d)\n", |
| datasize); |
| return -1; |
| } |
| memcpy(darmdfec->p_aligned_txbuf, p, datasize); |
| p = darmdfec->p_aligned_txbuf; |
| } |
| |
| p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC; |
| p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC; |
| p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA; |
| p_txdesc->cmd_sts |= TX_EN_INT; |
| p_txdesc->buf_ptr = p; |
| p_txdesc->byte_cnt = datasize; |
| |
| /* Apply send command using high priority TX queue */ |
| temp = (u32)®s->txcdp[TXQ]; |
| writel((u32)p_txdesc, temp); |
| writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, ®s->sdma_cmd); |
| |
| /* |
| * wait for packet xmit completion |
| */ |
| cmd_sts = readl(&p_txdesc->cmd_sts); |
| while (cmd_sts & BUF_OWNED_BY_DMA) { |
| /* return fail if error is detected */ |
| if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) == |
| (TX_ERROR | TX_LAST_DESC)) { |
| printf("ARMD100 FEC: (%s) in xmit packet\n", __func__); |
| return -1; |
| } |
| cmd_sts = readl(&p_txdesc->cmd_sts); |
| if (!(retry--)) { |
| printf("ARMD100 FEC: (%s) xmit packet timeout!\n", |
| __func__); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int armdfec_recv(struct eth_device *dev) |
| { |
| struct armdfec_device *darmdfec = to_darmdfec(dev); |
| struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr; |
| u32 cmd_sts; |
| u32 timeout = 0; |
| u32 temp; |
| |
| /* wait untill rx packet available or timeout */ |
| do { |
| if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) { |
| timeout++; |
| } else { |
| debug("ARMD100 FEC: %s time out...\n", __func__); |
| return -1; |
| } |
| } while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA); |
| |
| if (p_rxdesc_curr->byte_cnt != 0) { |
| debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x" |
| "(cmd_sts= %08x)\n", __func__, |
| (u32)p_rxdesc_curr->byte_cnt, |
| (u32)p_rxdesc_curr->buf_ptr, |
| (u32)p_rxdesc_curr->cmd_sts); |
| } |
| |
| /* |
| * In case received a packet without first/last bits on |
| * OR the error summary bit is on, |
| * the packets needs to be dropeed. |
| */ |
| cmd_sts = readl(&p_rxdesc_curr->cmd_sts); |
| |
| if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != |
| (RX_FIRST_DESC | RX_LAST_DESC)) { |
| printf("ARMD100 FEC: (%s) Dropping packet spread on" |
| " multiple descriptors\n", __func__); |
| } else if (cmd_sts & RX_ERROR) { |
| printf("ARMD100 FEC: (%s) Dropping packet with errors\n", |
| __func__); |
| } else { |
| /* !!! call higher layer processing */ |
| debug("ARMD100 FEC: (%s) Sending Received packet to" |
| " upper layer (NetReceive)\n", __func__); |
| |
| /* |
| * let the upper layer handle the packet, subtract offset |
| * as two dummy bytes are added in received buffer see |
| * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit. |
| */ |
| NetReceive((p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET), |
| (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET)); |
| } |
| /* |
| * free these descriptors and point next in the ring |
| */ |
| p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; |
| p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; |
| p_rxdesc_curr->byte_cnt = 0; |
| |
| temp = (u32)&darmdfec->p_rxdesc_curr; |
| writel((u32)p_rxdesc_curr->nxtdesc_p, temp); |
| |
| return 0; |
| } |
| |
| int armada100_fec_register(unsigned long base_addr) |
| { |
| struct armdfec_device *darmdfec; |
| struct eth_device *dev; |
| |
| darmdfec = malloc(sizeof(struct armdfec_device)); |
| if (!darmdfec) |
| goto error; |
| |
| memset(darmdfec, 0, sizeof(struct armdfec_device)); |
| |
| darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE); |
| if (!darmdfec->htpr) |
| goto error1; |
| |
| darmdfec->p_rxdesc = memalign(PKTALIGN, |
| ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1); |
| |
| if (!darmdfec->p_rxdesc) |
| goto error1; |
| |
| darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1); |
| if (!darmdfec->p_rxbuf) |
| goto error1; |
| |
| darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN); |
| if (!darmdfec->p_aligned_txbuf) |
| goto error1; |
| |
| darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1); |
| if (!darmdfec->p_txdesc) |
| goto error1; |
| |
| dev = &darmdfec->dev; |
| /* Assign ARMADA100 Fast Ethernet Controller Base Address */ |
| darmdfec->regs = (void *)base_addr; |
| |
| /* must be less than sizeof(dev->name) */ |
| strcpy(dev->name, "armd-fec0"); |
| |
| dev->init = armdfec_init; |
| dev->halt = armdfec_halt; |
| dev->send = armdfec_send; |
| dev->recv = armdfec_recv; |
| |
| eth_register(dev); |
| |
| #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) |
| miiphy_register(dev->name, smi_reg_read, smi_reg_write); |
| #endif |
| return 0; |
| |
| error1: |
| free(darmdfec->p_aligned_txbuf); |
| free(darmdfec->p_rxbuf); |
| free(darmdfec->p_rxdesc); |
| free(darmdfec->htpr); |
| error: |
| free(darmdfec); |
| printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__); |
| return -1; |
| } |