| /* |
| * CODEC |
| */ |
| |
| #include <common.h> |
| #include <post.h> |
| |
| #include "mpc8xx.h" |
| |
| /***********************************************/ |
| |
| #define MAX_DUSLIC 4 |
| |
| #define NUM_CHANNELS 2 |
| #define MAX_SLICS (MAX_DUSLIC * NUM_CHANNELS) |
| |
| /***********************************************/ |
| |
| #define SOP_READ_CH_0 0xC4 /* Read SOP Register for Channel A */ |
| #define SOP_READ_CH_1 0xCC /* Read SOP Register for Channel B */ |
| #define SOP_WRITE_CH_0 0x44 /* Write SOP Register for Channel A */ |
| #define SOP_WRITE_CH_1 0x4C /* Write SOP Register for Channel B */ |
| |
| #define COP_READ_CH_0 0xC5 |
| #define COP_READ_CH_1 0xCD |
| #define COP_WRITE_CH_0 0x45 |
| #define COP_WRITE_CH_1 0x4D |
| |
| #define POP_READ_CH_0 0xC6 |
| #define POP_READ_CH_1 0xCE |
| #define POP_WRITE_CH_0 0x46 |
| #define POP_WRITE_CH_1 0x4E |
| |
| #define RST_CMD_DUSLIC_CHIP 0x40 /* OR 0x48 */ |
| #define RST_CMD_DUSLIC_CH_A 0x41 |
| #define RST_CMD_DUSLIC_CH_B 0x49 |
| |
| #define PCM_RESYNC_CMD_CH_A 0x42 |
| #define PCM_RESYNC_CMD_CH_B 0x4A |
| |
| #define ACTIVE_HOOK_LEV_4 0 |
| #define ACTIVE_HOOK_LEV_12 1 |
| |
| #define SLIC_P_NORMAL 0x01 |
| |
| /************************************************/ |
| |
| #define CODSP_WR 0x00 |
| #define CODSP_RD 0x80 |
| #define CODSP_OP 0x40 |
| #define CODSP_ADR(x) (((unsigned char)(x) & 7) << 3) |
| #define CODSP_M(x) ((unsigned char)(x) & 7) |
| #define CODSP_CMD(x) ((unsigned char)(x) & 7) |
| |
| /************************************************/ |
| |
| /* command indication ops */ |
| #define CODSP_M_SLEEP_PWRDN 7 |
| #define CODSP_M_PWRDN_HIZ 0 |
| #define CODSP_M_ANY_ACT 2 |
| #define CODSP_M_RING 5 |
| #define CODSP_M_ACT_MET 6 |
| #define CODSP_M_GND_START 4 |
| #define CODSP_M_RING_PAUSE 1 |
| |
| /* single byte commands */ |
| #define CODSP_CMD_SOFT_RESET CODSP_CMD(0) |
| #define CODSP_CMD_RESET_CH CODSP_CMD(1) |
| #define CODSP_CMD_RESYNC CODSP_CMD(2) |
| |
| /* two byte commands */ |
| #define CODSP_CMD_SOP CODSP_CMD(4) |
| #define CODSP_CMD_COP CODSP_CMD(5) |
| #define CODSP_CMD_POP CODSP_CMD(6) |
| |
| /************************************************/ |
| |
| /* read as 4-bytes */ |
| #define CODSP_INTREG_INT_CH 0x80000000 |
| #define CODSP_INTREG_HOOK 0x40000000 |
| #define CODSP_INTREG_GNDK 0x20000000 |
| #define CODSP_INTREG_GNDP 0x10000000 |
| #define CODSP_INTREG_ICON 0x08000000 |
| #define CODSP_INTREG_VRTLIM 0x04000000 |
| #define CODSP_INTREG_OTEMP 0x02000000 |
| #define CODSP_INTREG_SYNC_FAIL 0x01000000 |
| #define CODSP_INTREG_LM_THRES 0x00800000 |
| #define CODSP_INTREG_READY 0x00400000 |
| #define CODSP_INTREG_RSTAT 0x00200000 |
| #define CODSP_INTREG_LM_OK 0x00100000 |
| #define CODSP_INTREG_IO4_DU 0x00080000 |
| #define CODSP_INTREG_IO3_DU 0x00040000 |
| #define CODSP_INTREG_IO2_DU 0x00020000 |
| #define CODSP_INTREG_IO1_DU 0x00010000 |
| #define CODSP_INTREG_DTMF_OK 0x00008000 |
| #define CODSP_INTREG_DTMF_KEY4 0x00004000 |
| #define CODSP_INTREG_DTMF_KEY3 0x00002000 |
| #define CODSP_INTREG_DTMF_KEY2 0x00001000 |
| #define CODSP_INTREG_DTMF_KEY1 0x00000800 |
| #define CODSP_INTREG_DTMF_KEY0 0x00000400 |
| #define CODSP_INTREG_UTDR_OK 0x00000200 |
| #define CODSP_INTREG_UTDX_OK 0x00000100 |
| #define CODSP_INTREG_EDSP_FAIL 0x00000080 |
| #define CODSP_INTREG_CIS_BOF 0x00000008 |
| #define CODSP_INTREG_CIS_BUF 0x00000004 |
| #define CODSP_INTREG_CIS_REQ 0x00000002 |
| #define CODSP_INTREG_CIS_ACT 0x00000001 |
| |
| /************************************************/ |
| |
| /* ======== SOP REG ADDRESSES =======*/ |
| |
| #define REVISION_ADDR 0x00 |
| #define PCMC1_ADDR 0x05 |
| #define XCR_ADDR 0x06 |
| #define INTREG1_ADDR 0x07 |
| #define INTREG2_ADDR 0x08 |
| #define INTREG3_ADDR 0x09 |
| #define INTREG4_ADDR 0x0A |
| #define LMRES1_ADDR 0x0D |
| #define MASK_ADDR 0x11 |
| #define IOCTL3_ADDR 0x14 |
| #define BCR1_ADDR 0x15 |
| #define BCR2_ADDR 0x16 |
| #define BCR3_ADDR 0x17 |
| #define BCR4_ADDR 0x18 |
| #define BCR5_ADDR 0x19 |
| #define DSCR_ADDR 0x1A |
| #define LMCR1_ADDR 0x1C |
| #define LMCR2_ADDR 0x1D |
| #define LMCR3_ADDR 0x1E |
| #define OFR1_ADDR 0x1F |
| #define PCMR1_ADDR 0x21 |
| #define PCMX1_ADDR 0x25 |
| #define TSTR3_ADDR 0x2B |
| #define TSTR4_ADDR 0x2C |
| #define TSTR5_ADDR 0x2D |
| |
| /* ========= POP REG ADDRESSES ========*/ |
| |
| #define CIS_DAT_ADDR 0x00 |
| |
| #define LEC_LEN_ADDR 0x3A |
| #define LEC_POWR_ADDR 0x3B |
| #define LEC_DELP_ADDR 0x3C |
| #define LEC_DELQ_ADDR 0x3D |
| #define LEC_GAIN_XI_ADDR 0x3E |
| #define LEC_GAIN_RI_ADDR 0x3F |
| #define LEC_GAIN_XO_ADDR 0x40 |
| #define LEC_RES_1_ADDR 0x41 |
| #define LEC_RES_2_ADDR 0x42 |
| |
| #define NLP_POW_LPF_ADDR 0x30 |
| #define NLP_POW_LPS_ADDR 0x31 |
| #define NLP_BN_LEV_X_ADDR 0x32 |
| #define NLP_BN_LEV_R_ADDR 0x33 |
| #define NLP_BN_INC_ADDR 0x34 |
| #define NLP_BN_DEC_ADDR 0x35 |
| #define NLP_BN_MAX_ADDR 0x36 |
| #define NLP_BN_ADJ_ADDR 0x37 |
| #define NLP_RE_MIN_ERLL_ADDR 0x38 |
| #define NLP_RE_EST_ERLL_ADDR 0x39 |
| #define NLP_SD_LEV_X_ADDR 0x3A |
| #define NLP_SD_LEV_R_ADDR 0x3B |
| #define NLP_SD_LEV_BN_ADDR 0x3C |
| #define NLP_SD_LEV_RE_ADDR 0x3D |
| #define NLP_SD_OT_DT_ADDR 0x3E |
| #define NLP_ERL_LIN_LP_ADDR 0x3F |
| #define NLP_ERL_LEC_LP_ADDR 0x40 |
| #define NLP_CT_LEV_RE_ADDR 0x41 |
| #define NLP_CTRL_ADDR 0x42 |
| |
| #define UTD_CF_H_ADDR 0x4B |
| #define UTD_CF_L_ADDR 0x4C |
| #define UTD_BW_H_ADDR 0x4D |
| #define UTD_BW_L_ADDR 0x4E |
| #define UTD_NLEV_ADDR 0x4F |
| #define UTD_SLEV_H_ADDR 0x50 |
| #define UTD_SLEV_L_ADDR 0x51 |
| #define UTD_DELT_ADDR 0x52 |
| #define UTD_RBRK_ADDR 0x53 |
| #define UTD_RTIME_ADDR 0x54 |
| #define UTD_EBRK_ADDR 0x55 |
| #define UTD_ETIME_ADDR 0x56 |
| |
| #define DTMF_LEV_ADDR 0x30 |
| #define DTMF_TWI_ADDR 0x31 |
| #define DTMF_NCF_H_ADDR 0x32 |
| #define DTMF_NCF_L_ADDR 0x33 |
| #define DTMF_NBW_H_ADDR 0x34 |
| #define DTMF_NBW_L_ADDR 0x35 |
| #define DTMF_GAIN_ADDR 0x36 |
| #define DTMF_RES1_ADDR 0x37 |
| #define DTMF_RES2_ADDR 0x38 |
| #define DTMF_RES3_ADDR 0x39 |
| |
| #define CIS_LEV_H_ADDR 0x43 |
| #define CIS_LEV_L_ADDR 0x44 |
| #define CIS_BRS_ADDR 0x45 |
| #define CIS_SEIZ_H_ADDR 0x46 |
| #define CIS_SEIZ_L_ADDR 0x47 |
| #define CIS_MARK_H_ADDR 0x48 |
| #define CIS_MARK_L_ADDR 0x49 |
| #define CIS_LEC_MODE_ADDR 0x4A |
| |
| /*=====================================*/ |
| |
| #define HOOK_LEV_ACT_START_ADDR 0x89 |
| #define RO1_START_ADDR 0x70 |
| #define RO2_START_ADDR 0x95 |
| #define RO3_START_ADDR 0x96 |
| |
| #define TG1_FREQ_START_ADDR 0x38 |
| #define TG1_GAIN_START_ADDR 0x39 |
| #define TG1_BANDPASS_START_ADDR 0x3B |
| #define TG1_BANDPASS_END_ADDR 0x3D |
| |
| #define TG2_FREQ_START_ADDR 0x40 |
| #define TG2_GAIN_START_ADDR 0x41 |
| #define TG2_BANDPASS_START_ADDR 0x43 |
| #define TG2_BANDPASS_END_ADDR 0x45 |
| |
| /*====================================*/ |
| |
| #define PCM_HW_B 0x80 |
| #define PCM_HW_A 0x00 |
| #define PCM_TIME_SLOT_0 0x00 /* Byte 0 of PCM Frame (by default is assigned to channel A ) */ |
| #define PCM_TIME_SLOT_1 0x01 /* Byte 1 of PCM Frame (by default is assigned to channel B ) */ |
| #define PCM_TIME_SLOT_4 0x04 /* Byte 4 of PCM Frame (Corresponds to B1 of the Second GCI ) */ |
| |
| #define RX_LEV_ADDR 0x28 |
| #define TX_LEV_ADDR 0x30 |
| #define Ik1_ADDR 0x83 |
| |
| #define AR_ROW 3 /* Is the row (AR Params) of the ac_Coeff array in SMS_CODEC_Defaults struct */ |
| #define AX_ROW 6 /* Is the row (AX Params) of the ac_Coeff array in SMS_CODEC_Defaults struct */ |
| #define DCF_ROW 0 /* Is the row (DCF Params) of the dc_Coeff array in SMS_CODEC_Defaults struct */ |
| |
| /* Mark the start byte of Duslic parameters that we use with configurator */ |
| #define Ik1_START_BYTE 3 |
| #define RX_LEV_START_BYTE 0 |
| #define TX_LEV_START_BYTE 0 |
| |
| /************************************************/ |
| |
| #define INTREG4_CIS_ACT (1 << 0) |
| |
| #define BCR1_SLEEP 0x20 |
| #define BCR1_REVPOL 0x10 |
| #define BCR1_ACTR 0x08 |
| #define BCR1_ACTL 0x04 |
| #define BCR1_SLIC_MASK 0x03 |
| |
| #define BCR2_HARD_POL_REV 0x40 |
| #define BCR2_TTX 0x20 |
| #define BCR2_TTX_12K 0x10 |
| #define BCR2_HIMAN 0x08 |
| #define BCR2_PDOT 0x01 |
| |
| #define BCR3_PCMX_EN (1 << 4) |
| |
| #define BCR5_DTMF_EN (1 << 0) |
| #define BCR5_DTMF_SRC (1 << 1) |
| #define BCR5_LEC_EN (1 << 2) |
| #define BCR5_LEC_OUT (1 << 3) |
| #define BCR5_CIS_EN (1 << 4) |
| #define BCR5_CIS_AUTO (1 << 5) |
| #define BCR5_UTDX_EN (1 << 6) |
| #define BCR5_UTDR_EN (1 << 7) |
| |
| #define DSCR_TG1_EN (1 << 0) |
| #define DSCR_TG2_EN (1 << 1) |
| #define DSCR_PTG (1 << 2) |
| #define DSCR_COR8 (1 << 3) |
| #define DSCR_DG_KEY(x) (((x) & 0x0F) << 4) |
| |
| #define CIS_LEC_MODE_CIS_V23 (1 << 0) |
| #define CIS_LEC_MODE_CIS_FRM (1 << 1) |
| #define CIS_LEC_MODE_NLP_EN (1 << 2) |
| #define CIS_LEC_MODE_UTDR_SUM (1 << 4) |
| #define CIS_LEC_MODE_UTDX_SUM (1 << 5) |
| #define CIS_LEC_MODE_LEC_FREEZE (1 << 6) |
| #define CIS_LEC_MODE_LEC_ADAPT (1 << 7) |
| |
| #define TSTR4_COR_64 (1 << 5) |
| |
| #define TSTR3_AC_DLB_8K (1 << 2) |
| #define TSTR3_AC_DLB_32K (1 << 3) |
| #define TSTR3_AC_DLB_4M (1 << 5) |
| |
| |
| #define LMCR1_TEST_EN (1 << 7) |
| #define LMCR1_LM_EN (1 << 6) |
| #define LMCR1_LM_THM (1 << 5) |
| #define LMCR1_LM_ONCE (1 << 2) |
| #define LMCR1_LM_MASK (1 << 1) |
| |
| #define LMCR2_LM_RECT (1 << 5) |
| #define LMCR2_LM_SEL_VDD 0x0D |
| #define LMCR2_LM_SEL_IO3 0x0A |
| #define LMCR2_LM_SEL_IO4 0x0B |
| #define LMCR2_LM_SEL_IO4_MINUS_IO3 0x0F |
| |
| #define LMCR3_RTR_SEL (1 << 6) |
| |
| #define LMCR3_RNG_OFFSET_NONE 0x00 |
| #define LMCR3_RNG_OFFSET_1 0x01 |
| #define LMCR3_RNG_OFFSET_2 0x02 |
| #define LMCR3_RNG_OFFSET_3 0x03 |
| |
| #define TSTR5_DC_HOLD (1 << 3) |
| |
| /************************************************/ |
| |
| #define TARGET_ONHOOK_BATH_x100 4600 /* 46.0 Volt */ |
| #define TARGET_ONHOOK_BATL_x100 2500 /* 25.0 Volt */ |
| #define TARGET_V_DIVIDER_RATIO_x100 21376L /* (R1+R2)/R2 = 213.76 */ |
| #define DIVIDER_RATIO_ACCURx100 (22 * 100) |
| #define V_AD_x10000 10834L /* VAD = 1.0834 */ |
| #define TARGET_VDDx100 330 /* VDD = 3.3 * 10 */ |
| #define VDD_MAX_DIFFx100 20 /* VDD Accur = 0.2*100 */ |
| |
| #define RMS_MULTIPLIERx100 111 /* pi/(2xsqrt(2)) = 1.11*/ |
| #define K_INTDC_RECT_ON 4 /* When Rectifier is ON this value is necessary(2^4) */ |
| #define K_INTDC_RECT_OFF 2 /* 2^2 */ |
| #define RNG_FREQ 25 |
| #define SAMPLING_FREQ (2000L) |
| #define N_SAMPLES (SAMPLING_FREQ/RNG_FREQ) /* for Ring Freq =25Hz (40ms Integration Period)[Sampling rate 2KHz -->1 Sample every 500us] */ |
| #define HOOK_THRESH_RING_START_ADDR 0x8B |
| #define RING_PARAMS_START_ADDR 0x70 |
| |
| #define V_OUT_BATH_MAX_DIFFx100 300 /* 3.0 x100 */ |
| #define V_OUT_BATL_MAX_DIFFx100 400 /* 4.0 x100 */ |
| #define MAX_V_RING_MEANx100 50 |
| #define TARGET_V_RING_RMSx100 2720 |
| #define V_RMS_RING_MAX_DIFFx100 250 |
| |
| #define LM_OK_SRC_IRG_2 (1 << 4) |
| |
| /************************************************/ |
| |
| #define PORTB (((volatile immap_t *)CONFIG_SYS_IMMR)->im_cpm.cp_pbdat) |
| #define PORTC (((volatile immap_t *)CONFIG_SYS_IMMR)->im_ioport.iop_pcdat) |
| #define PORTD (((volatile immap_t *)CONFIG_SYS_IMMR)->im_ioport.iop_pddat) |
| |
| #define _PORTD_SET(mask, state) \ |
| do { \ |
| if (state) \ |
| PORTD |= mask; \ |
| else \ |
| PORTD &= ~mask; \ |
| } while (0) |
| |
| #define _PORTB_SET(mask, state) \ |
| do { \ |
| if (state) \ |
| PORTB |= mask; \ |
| else \ |
| PORTB &= ~mask; \ |
| } while (0) |
| |
| #define _PORTB_TGL(mask) do { PORTB ^= mask; } while (0) |
| #define _PORTB_GET(mask) (!!(PORTB & mask)) |
| |
| #define _PORTC_GET(mask) (!!(PORTC & mask)) |
| |
| /* port B */ |
| #define SPI_RXD (1 << (31 - 28)) |
| #define SPI_TXD (1 << (31 - 29)) |
| #define SPI_CLK (1 << (31 - 30)) |
| |
| /* port C */ |
| #define COM_HOOK1 (1 << (15 - 9)) |
| #define COM_HOOK2 (1 << (15 - 10)) |
| |
| #ifndef CONFIG_NETTA_SWAPHOOK |
| |
| #define COM_HOOK3 (1 << (15 - 11)) |
| #define COM_HOOK4 (1 << (15 - 12)) |
| |
| #else |
| |
| #define COM_HOOK3 (1 << (15 - 12)) |
| #define COM_HOOK4 (1 << (15 - 11)) |
| |
| #endif |
| |
| /* port D */ |
| #define SPIENC1 (1 << (15 - 9)) |
| #define SPIENC2 (1 << (15 - 10)) |
| #define SPIENC3 (1 << (15 - 11)) |
| #define SPIENC4 (1 << (15 - 14)) |
| |
| #define SPI_DELAY() udelay(1) |
| |
| static inline unsigned int __SPI_Transfer(unsigned int tx) |
| { |
| unsigned int rx; |
| int b; |
| |
| rx = 0; b = 8; |
| while (--b >= 0) { |
| _PORTB_SET(SPI_TXD, tx & 0x80); |
| tx <<= 1; |
| _PORTB_TGL(SPI_CLK); |
| SPI_DELAY(); |
| rx <<= 1; |
| rx |= _PORTB_GET(SPI_RXD); |
| _PORTB_TGL(SPI_CLK); |
| SPI_DELAY(); |
| } |
| |
| return rx; |
| } |
| |
| static const char *codsp_dtmf_map = "D1234567890*#ABC"; |
| |
| static const int spienc_mask_tab[4] = { SPIENC1, SPIENC2, SPIENC3, SPIENC4 }; |
| static const int com_hook_mask_tab[4] = { COM_HOOK1, COM_HOOK2, COM_HOOK3, COM_HOOK4 }; |
| |
| static unsigned int codsp_send(int duslic_id, const unsigned char *cmd, int cmdlen, unsigned char *res, int reslen) |
| { |
| unsigned int rx; |
| int i; |
| |
| /* just some sanity checks */ |
| if (cmd == 0 || cmdlen < 0) |
| return -1; |
| |
| _PORTD_SET(spienc_mask_tab[duslic_id], 0); |
| |
| /* first 2 bytes are without response */ |
| i = 2; |
| while (i-- > 0 && cmdlen-- > 0) |
| __SPI_Transfer(*cmd++); |
| |
| while (cmdlen-- > 0) { |
| rx = __SPI_Transfer(*cmd++); |
| if (res != 0 && reslen-- > 0) |
| *res++ = (unsigned char)rx; |
| } |
| if (res != 0) { |
| while (reslen-- > 0) |
| *res++ = __SPI_Transfer(0xFF); |
| } |
| |
| _PORTD_SET(spienc_mask_tab[duslic_id], 1); |
| |
| return 0; |
| } |
| |
| /****************************************************************************/ |
| |
| void codsp_set_ciop_m(int duslic_id, int channel, unsigned char m) |
| { |
| unsigned char cmd = CODSP_WR | CODSP_ADR(channel) | CODSP_M(m); |
| codsp_send(duslic_id, &cmd, 1, 0, 0); |
| } |
| |
| void codsp_reset_chip(int duslic_id) |
| { |
| static const unsigned char cmd = CODSP_WR | CODSP_OP | CODSP_CMD_SOFT_RESET; |
| codsp_send(duslic_id, &cmd, 1, 0, 0); |
| } |
| |
| void codsp_reset_channel(int duslic_id, int channel) |
| { |
| unsigned char cmd = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_RESET_CH; |
| codsp_send(duslic_id, &cmd, 1, 0, 0); |
| } |
| |
| void codsp_resync_channel(int duslic_id, int channel) |
| { |
| unsigned char cmd = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_RESYNC; |
| codsp_send(duslic_id, &cmd, 1, 0, 0); |
| } |
| |
| /****************************************************************************/ |
| |
| void codsp_write_sop_char(int duslic_id, int channel, unsigned char regno, unsigned char val) |
| { |
| unsigned char cmd[3]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP; |
| cmd[1] = regno; |
| cmd[2] = val; |
| |
| codsp_send(duslic_id, cmd, 3, 0, 0); |
| } |
| |
| void codsp_write_sop_short(int duslic_id, int channel, unsigned char regno, unsigned short val) |
| { |
| unsigned char cmd[4]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP; |
| cmd[1] = regno; |
| cmd[2] = (unsigned char)(val >> 8); |
| cmd[3] = (unsigned char)val; |
| |
| codsp_send(duslic_id, cmd, 4, 0, 0); |
| } |
| |
| void codsp_write_sop_int(int duslic_id, int channel, unsigned char regno, unsigned int val) |
| { |
| unsigned char cmd[6]; |
| |
| cmd[0] = CODSP_WR | CODSP_ADR(channel) | CODSP_CMD_SOP; |
| cmd[1] = regno; |
| cmd[2] = (unsigned char)(val >> 24); |
| cmd[3] = (unsigned char)(val >> 16); |
| cmd[4] = (unsigned char)(val >> 8); |
| cmd[5] = (unsigned char)val; |
| |
| codsp_send(duslic_id, cmd, 6, 0, 0); |
| } |
| |
| unsigned char codsp_read_sop_char(int duslic_id, int channel, unsigned char regno) |
| { |
| unsigned char cmd[3]; |
| unsigned char res[2]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP; |
| cmd[1] = regno; |
| |
| codsp_send(duslic_id, cmd, 2, res, 2); |
| |
| return res[1]; |
| } |
| |
| unsigned short codsp_read_sop_short(int duslic_id, int channel, unsigned char regno) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[3]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP; |
| cmd[1] = regno; |
| |
| codsp_send(duslic_id, cmd, 2, res, 3); |
| |
| return ((unsigned short)res[1] << 8) | res[2]; |
| } |
| |
| unsigned int codsp_read_sop_int(int duslic_id, int channel, unsigned char regno) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[5]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP; |
| cmd[1] = regno; |
| |
| codsp_send(duslic_id, cmd, 2, res, 5); |
| |
| return ((unsigned int)res[1] << 24) | ((unsigned int)res[2] << 16) | ((unsigned int)res[3] << 8) | res[4]; |
| } |
| |
| /****************************************************************************/ |
| |
| void codsp_write_cop_block(int duslic_id, int channel, unsigned char addr, const unsigned char *block) |
| { |
| unsigned char cmd[10]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP; |
| cmd[1] = addr; |
| memcpy(cmd + 2, block, 8); |
| codsp_send(duslic_id, cmd, 10, 0, 0); |
| } |
| |
| void codsp_write_cop_char(int duslic_id, int channel, unsigned char addr, unsigned char val) |
| { |
| unsigned char cmd[3]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP; |
| cmd[1] = addr; |
| cmd[2] = val; |
| codsp_send(duslic_id, cmd, 3, 0, 0); |
| } |
| |
| void codsp_write_cop_short(int duslic_id, int channel, unsigned char addr, unsigned short val) |
| { |
| unsigned char cmd[4]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP; |
| cmd[1] = addr; |
| cmd[2] = (unsigned char)(val >> 8); |
| cmd[3] = (unsigned char)val; |
| |
| codsp_send(duslic_id, cmd, 4, 0, 0); |
| } |
| |
| void codsp_read_cop_block(int duslic_id, int channel, unsigned char addr, unsigned char *block) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[9]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP; |
| cmd[1] = addr; |
| codsp_send(duslic_id, cmd, 2, res, 9); |
| memcpy(block, res + 1, 8); |
| } |
| |
| unsigned char codsp_read_cop_char(int duslic_id, int channel, unsigned char addr) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[2]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP; |
| cmd[1] = addr; |
| codsp_send(duslic_id, cmd, 2, res, 2); |
| return res[1]; |
| } |
| |
| unsigned short codsp_read_cop_short(int duslic_id, int channel, unsigned char addr) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[3]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP; |
| cmd[1] = addr; |
| |
| codsp_send(duslic_id, cmd, 2, res, 3); |
| |
| return ((unsigned short)res[1] << 8) | res[2]; |
| } |
| |
| /****************************************************************************/ |
| |
| #define MAX_POP_BLOCK 50 |
| |
| void codsp_write_pop_block (int duslic_id, int channel, unsigned char addr, |
| const unsigned char *block, int len) |
| { |
| unsigned char cmd[2 + MAX_POP_BLOCK]; |
| |
| if (len > MAX_POP_BLOCK) /* truncate */ |
| len = MAX_POP_BLOCK; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = addr; |
| memcpy (cmd + 2, block, len); |
| codsp_send (duslic_id, cmd, 2 + len, 0, 0); |
| } |
| |
| void codsp_write_pop_char (int duslic_id, int channel, unsigned char regno, |
| unsigned char val) |
| { |
| unsigned char cmd[3]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = regno; |
| cmd[2] = val; |
| |
| codsp_send (duslic_id, cmd, 3, 0, 0); |
| } |
| |
| void codsp_write_pop_short (int duslic_id, int channel, unsigned char regno, |
| unsigned short val) |
| { |
| unsigned char cmd[4]; |
| |
| cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = regno; |
| cmd[2] = (unsigned char) (val >> 8); |
| cmd[3] = (unsigned char) val; |
| |
| codsp_send (duslic_id, cmd, 4, 0, 0); |
| } |
| |
| void codsp_write_pop_int (int duslic_id, int channel, unsigned char regno, |
| unsigned int val) |
| { |
| unsigned char cmd[6]; |
| |
| cmd[0] = CODSP_WR | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = regno; |
| cmd[2] = (unsigned char) (val >> 24); |
| cmd[3] = (unsigned char) (val >> 16); |
| cmd[4] = (unsigned char) (val >> 8); |
| cmd[5] = (unsigned char) val; |
| |
| codsp_send (duslic_id, cmd, 6, 0, 0); |
| } |
| |
| unsigned char codsp_read_pop_char (int duslic_id, int channel, |
| unsigned char regno) |
| { |
| unsigned char cmd[3]; |
| unsigned char res[2]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = regno; |
| |
| codsp_send (duslic_id, cmd, 2, res, 2); |
| |
| return res[1]; |
| } |
| |
| unsigned short codsp_read_pop_short (int duslic_id, int channel, |
| unsigned char regno) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[3]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = regno; |
| |
| codsp_send (duslic_id, cmd, 2, res, 3); |
| |
| return ((unsigned short) res[1] << 8) | res[2]; |
| } |
| |
| unsigned int codsp_read_pop_int (int duslic_id, int channel, |
| unsigned char regno) |
| { |
| unsigned char cmd[2]; |
| unsigned char res[5]; |
| |
| cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP; |
| cmd[1] = regno; |
| |
| codsp_send (duslic_id, cmd, 2, res, 5); |
| |
| return (((unsigned int) res[1] << 24) | |
| ((unsigned int) res[2] << 16) | |
| ((unsigned int) res[3] << 8) | |
| res[4] ); |
| } |
| /****************************************************************************/ |
| |
| struct _coeffs { |
| unsigned char addr; |
| unsigned char values[8]; |
| }; |
| |
| struct _coeffs ac_coeffs[11] = { |
| { 0x60, {0xAD,0xDA,0xB5,0x9B,0xC7,0x2A,0x9D,0x00} }, /* 0x60 IM-Filter part 1 */ |
| { 0x68, {0x10,0x00,0xA9,0x82,0x0D,0x77,0x0A,0x00} }, /* 0x68 IM-Filter part 2 */ |
| { 0x18, {0x08,0xC0,0xD2,0xAB,0xA5,0xE2,0xAB,0x07} }, /* 0x18 FRR-Filter */ |
| { 0x28, {0x44,0x93,0xF5,0x92,0x88,0x00,0x00,0x00} }, /* 0x28 AR-Filter */ |
| { 0x48, {0x96,0x38,0x29,0x96,0xC9,0x2B,0x8B,0x00} }, /* 0x48 LPR-Filter */ |
| { 0x20, {0x08,0xB0,0xDA,0x9D,0xA7,0xFA,0x93,0x06} }, /* 0x20 FRX-Filter */ |
| { 0x30, {0xBA,0xAC,0x00,0x01,0x85,0x50,0xC0,0x1A} }, /* 0x30 AX-Filter */ |
| { 0x50, {0x96,0x38,0x29,0xF5,0xFA,0x2B,0x8B,0x00} }, /* 0x50 LPX-Filter */ |
| { 0x00, {0x00,0x08,0x08,0x81,0x00,0x80,0x00,0x08} }, /* 0x00 TH-Filter part 1 */ |
| { 0x08, {0x81,0x00,0x80,0x00,0xD7,0x33,0xBA,0x01} }, /* 0x08 TH-Filter part 2 */ |
| { 0x10, {0xB3,0x6C,0xDC,0xA3,0xA4,0xE5,0x88,0x00} } /* 0x10 TH-Filter part 3 */ |
| }; |
| |
| struct _coeffs ac_coeffs_0dB[11] = { |
| { 0x60, {0xAC,0x2A,0xB5,0x9A,0xB7,0x2A,0x9D,0x00} }, |
| { 0x68, {0x10,0x00,0xA9,0x82,0x0D,0x83,0x0A,0x00} }, |
| { 0x18, {0x08,0x20,0xD4,0xA4,0x65,0xEE,0x92,0x07} }, |
| { 0x28, {0x2B,0xAB,0x36,0xA5,0x88,0x00,0x00,0x00} }, |
| { 0x48, {0xAB,0xE9,0x4E,0x32,0xAB,0x25,0xA5,0x03} }, |
| { 0x20, {0x08,0x20,0xDB,0x9C,0xA7,0xFA,0xB4,0x07} }, |
| { 0x30, {0xF3,0x10,0x07,0x60,0x85,0x40,0xC0,0x1A} }, |
| { 0x50, {0x96,0x38,0x29,0x97,0x39,0x19,0x8B,0x00} }, |
| { 0x00, {0x00,0x08,0x08,0x81,0x00,0x80,0x00,0x08} }, |
| { 0x08, {0x81,0x00,0x80,0x00,0x47,0x3C,0xD2,0x01} }, |
| { 0x10, {0x62,0xDB,0x4A,0x87,0x73,0x28,0x88,0x00} } |
| }; |
| |
| struct _coeffs dc_coeffs[9] = { |
| { 0x80, {0x25,0x59,0x9C,0x23,0x24,0x23,0x32,0x1C} }, /* 0x80 DC-Parameter */ |
| { 0x70, {0x90,0x30,0x1B,0xC0,0x33,0x43,0xAC,0x02} }, /* 0x70 Ringing */ |
| { 0x90, {0x3F,0xC3,0x2E,0x3A,0x80,0x90,0x00,0x09} }, /* 0x90 LP-Filters */ |
| { 0x88, {0xAF,0x80,0x27,0x7B,0x01,0x4C,0x7B,0x02} }, /* 0x88 Hook Levels */ |
| { 0x78, {0x00,0xC0,0x6D,0x7A,0xB3,0x78,0x89,0x00} }, /* 0x78 Ramp Generator */ |
| { 0x58, {0xA5,0x44,0x34,0xDB,0x0E,0xA2,0x2A,0x00} }, /* 0x58 TTX */ |
| { 0x38, {0x33,0x49,0x9A,0x65,0xBB,0x00,0x00,0x00} }, /* 0x38 TG1 */ |
| { 0x40, {0x33,0x49,0x9A,0x65,0xBB,0x00,0x00,0x00} }, /* 0x40 TG2 */ |
| { 0x98, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} } /* 0x98 Reserved */ |
| }; |
| |
| void program_coeffs(int duslic_id, int channel, struct _coeffs *coeffs, int tab_size) |
| { |
| int i; |
| |
| for (i = 0; i < tab_size; i++) |
| codsp_write_cop_block(duslic_id, channel, coeffs[i].addr, coeffs[i].values); |
| } |
| |
| #define SS_OPEN_CIRCUIT 0 |
| #define SS_RING_PAUSE 1 |
| #define SS_ACTIVE 2 |
| #define SS_ACTIVE_HIGH 3 |
| #define SS_ACTIVE_RING 4 |
| #define SS_RINGING 5 |
| #define SS_ACTIVE_WITH_METERING 6 |
| #define SS_ONHOOKTRNSM 7 |
| #define SS_STANDBY 8 |
| #define SS_MAX 8 |
| |
| static void codsp_set_slic(int duslic_id, int channel, int state) |
| { |
| unsigned char v; |
| |
| v = codsp_read_sop_char(duslic_id, channel, BCR1_ADDR); |
| |
| switch (state) { |
| |
| case SS_ACTIVE: |
| codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, (v & ~BCR1_ACTR) | BCR1_ACTL); |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_ANY_ACT); |
| break; |
| |
| case SS_ACTIVE_HIGH: |
| codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, v & ~(BCR1_ACTR | BCR1_ACTL)); |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_ANY_ACT); |
| break; |
| |
| case SS_ACTIVE_RING: |
| case SS_ONHOOKTRNSM: |
| codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, (v & ~BCR1_ACTL) | BCR1_ACTR); |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_ANY_ACT); |
| break; |
| |
| case SS_STANDBY: |
| codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, v & ~(BCR1_ACTL | BCR1_ACTR)); |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_SLEEP_PWRDN); |
| break; |
| |
| case SS_OPEN_CIRCUIT: |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_PWRDN_HIZ); |
| break; |
| |
| case SS_RINGING: |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_RING); |
| break; |
| |
| case SS_RING_PAUSE: |
| codsp_set_ciop_m(duslic_id, channel, CODSP_M_RING_PAUSE); |
| break; |
| } |
| } |
| |
| const unsigned char Ring_Sin_28Vrms_25Hz[8] = { 0x90, 0x30, 0x1B, 0xC0, 0xC3, 0x9C, 0x88, 0x00 }; |
| const unsigned char Max_HookRingTh[3] = { 0x7B, 0x41, 0x62 }; |
| |
| void retrieve_slic_state(int slic_id) |
| { |
| int duslic_id = slic_id >> 1; |
| int channel = slic_id & 1; |
| |
| /* Retrieve the state of the SLICs */ |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, 0x00); |
| |
| /* wait at least 1000us to clear the LM_OK and 500us to set the LM_OK ==> for the LM to make the first Measurement */ |
| udelay(10000); |
| |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK); |
| codsp_set_slic(duslic_id, channel, SS_ACTIVE_HIGH); |
| codsp_write_sop_char(duslic_id, channel, LMCR3_ADDR, 0x40); |
| |
| /* Program Default Hook Ring thresholds */ |
| codsp_write_cop_block(duslic_id, channel, dc_coeffs[1].addr, dc_coeffs[1].values); |
| |
| /* Now program Hook Threshold while Ring and ac RingTrip to max values */ |
| codsp_write_cop_block(duslic_id, channel, dc_coeffs[3].addr, dc_coeffs[3].values); |
| |
| codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, 0x0000); |
| |
| udelay(40000); |
| } |
| |
| int wait_level_metering_finish(int duslic_id, int channel) |
| { |
| int cnt; |
| |
| for (cnt = 0; cnt < 1000 && |
| (codsp_read_sop_char(duslic_id, channel, INTREG2_ADDR) & LM_OK_SRC_IRG_2) == 0; cnt++) { } |
| |
| return cnt != 1000; |
| } |
| |
| int measure_on_hook_voltages(int slic_id, long *vdd, |
| long *v_oh_H, long *v_oh_L, long *ring_mean_v, long *ring_rms_v) |
| { |
| short LM_Result, Offset_Compensation; /* Signed 16 bit */ |
| long int VDD, VDD_diff, V_in, V_out, Divider_Ratio, Vout_diff ; |
| unsigned char err_mask = 0; |
| int duslic_id = slic_id >> 1; |
| int channel = slic_id & 1; |
| int i; |
| |
| /* measure VDD */ |
| /* Now select the VDD level Measurement (but first of all Hold the DC characteristic) */ |
| codsp_write_sop_char(duslic_id, channel, TSTR5_ADDR, TSTR5_DC_HOLD); |
| |
| /* Activate Test Mode ==> To Enable DC Hold !!! */ |
| /* (else the LMRES is treated as Feeding Current and the Feeding voltage changes */ |
| /* imediatelly (after 500us when the LMRES Registers is updated for the first time after selection of (IO4-IO3) measurement !!!!))*/ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_TEST_EN | LMCR1_LM_THM | LMCR1_LM_MASK); |
| |
| udelay(40000); |
| |
| /* Now I Can select what to measure by DC Level Meter (select IO4-IO3) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, LMCR2_LM_SEL_VDD); |
| |
| /* wait at least 1000us to clear the LM_OK and 500us to set the LM_OK ==> for the LM to make the first Measurement */ |
| udelay(10000); |
| |
| /* Now Read the LM Result Registers */ |
| LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| VDD = (-1)*((((long int)LM_Result) * 390L ) >> 15) ; /* VDDx100 */ |
| |
| *vdd = VDD; |
| |
| VDD_diff = VDD - TARGET_VDDx100; |
| |
| if (VDD_diff < 0) |
| VDD_diff = -VDD_diff; |
| |
| if (VDD_diff > VDD_MAX_DIFFx100) |
| err_mask |= 1; |
| |
| Divider_Ratio = TARGET_V_DIVIDER_RATIO_x100; |
| |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, 0x00); |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK); |
| |
| codsp_set_slic(duslic_id, channel, SS_ACTIVE_HIGH); /* Go back to ONHOOK Voltage */ |
| |
| udelay(40000); |
| |
| codsp_write_sop_char(duslic_id, channel, |
| LMCR1_ADDR, LMCR1_TEST_EN | LMCR1_LM_THM | LMCR1_LM_MASK); |
| |
| udelay(40000); |
| |
| /* Now I Can select what to measure by DC Level Meter (select IO4-IO3) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, LMCR2_LM_SEL_IO4_MINUS_IO3); |
| |
| /* wait at least 1000us to clear the LM_OK and 500us to set the LM_OK ==> for the LM to make the first Measurement */ |
| udelay(10000); |
| |
| /* Now Read the LM Result Registers */ |
| LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| V_in = (-1)* ((((long int)LM_Result) * V_AD_x10000 ) >> 15) ; /* Vin x 10000*/ |
| |
| V_out = (V_in * Divider_Ratio) / 10000L ; /* Vout x100 */ |
| |
| *v_oh_H = V_out; |
| |
| Vout_diff = V_out - TARGET_ONHOOK_BATH_x100; |
| |
| if (Vout_diff < 0) |
| Vout_diff = -Vout_diff; |
| |
| if (Vout_diff > V_OUT_BATH_MAX_DIFFx100) |
| err_mask |= 2; |
| |
| codsp_set_slic(duslic_id, channel, SS_ACTIVE); /* Go back to ONHOOK Voltage */ |
| |
| udelay(40000); |
| |
| /* Now Read the LM Result Registers */ |
| LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| |
| V_in = (-1)* ((((long int)LM_Result) * V_AD_x10000 ) >> 15) ; /* Vin x 10000*/ |
| |
| V_out = (V_in * Divider_Ratio) / 10000L ; /* Vout x100 */ |
| |
| *v_oh_L = V_out; |
| |
| Vout_diff = V_out - TARGET_ONHOOK_BATL_x100; |
| |
| if (Vout_diff < 0) |
| Vout_diff = -Vout_diff; |
| |
| if (Vout_diff > V_OUT_BATL_MAX_DIFFx100) |
| err_mask |= 4; |
| |
| /* perform ring tests */ |
| |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, 0x00); |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK); |
| |
| udelay(40000); |
| |
| codsp_write_sop_char(duslic_id, channel, LMCR3_ADDR, LMCR3_RTR_SEL | LMCR3_RNG_OFFSET_NONE); |
| |
| /* Now program RO1 =0V , Ring Amplitude and frequency and shift factor K = 1 (LMDC=0x0088)*/ |
| codsp_write_cop_block(duslic_id, channel, RING_PARAMS_START_ADDR, Ring_Sin_28Vrms_25Hz); |
| |
| /* By Default RO1 is selected when ringing RNG-OFFSET = 00 */ |
| |
| /* Now program Hook Threshold while Ring and ac RingTrip to max values */ |
| for(i = 0; i < sizeof(Max_HookRingTh); i++) |
| codsp_write_cop_char(duslic_id, channel, HOOK_THRESH_RING_START_ADDR + i, Max_HookRingTh[i]); |
| |
| codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, 0x0000); |
| |
| codsp_set_slic(duslic_id, channel, SS_RING_PAUSE); /* Start Ringing */ |
| |
| /* select source for the levelmeter to be IO4-IO3 */ |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, LMCR2_LM_SEL_IO4_MINUS_IO3); |
| |
| udelay(40000); |
| |
| /* Before Enabling Level Meter Programm the apropriate shift factor K_INTDC=(4 if Rectifier Enabled and 2 if Rectifier Disabled) */ |
| codsp_write_cop_char(duslic_id, channel, RING_PARAMS_START_ADDR + 7, K_INTDC_RECT_OFF); |
| |
| udelay(10000); |
| |
| /* Enable LevelMeter to Integrate only once (Rectifier Disabled) */ |
| codsp_write_sop_char(duslic_id, channel, |
| LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE); |
| |
| udelay(40000); /* Integration Period == Ring Period = 40ms (for 25Hz Ring) */ |
| |
| if (wait_level_metering_finish(duslic_id, channel)) { |
| |
| udelay(10000); /* To be sure that Integration Results are Valid wait at least 500us !!! */ |
| |
| /* Now Read the LM Result Registers (Will be valid until LM_EN becomes zero again( after that the Result is updated every 500us) ) */ |
| Offset_Compensation = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| Offset_Compensation = (-1) * ((Offset_Compensation * (1 << K_INTDC_RECT_OFF)) / N_SAMPLES); |
| |
| /* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_ONCE); |
| |
| /* Now programm Integrator Offset Registers !!! */ |
| codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, Offset_Compensation); |
| |
| codsp_set_slic(duslic_id, channel, SS_RINGING); /* Start Ringing */ |
| |
| udelay(40000); |
| |
| /* Reenable Level Meter Integrator (The Result will be valid after Integration Period=Ring Period and until LN_EN become zero again) */ |
| codsp_write_sop_char(duslic_id, channel, |
| LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE); |
| |
| udelay(40000); /* Integration Period == Ring Period = 40ms (for 25Hz Ring) */ |
| |
| /* Poll the LM_OK bit to see when Integration Result is Ready */ |
| if (wait_level_metering_finish(duslic_id, channel)) { |
| |
| udelay(10000); /* wait at least 500us to be sure that the Integration Result are valid !!! */ |
| |
| /* Now Read the LM Result Registers (They will hold their value until LM_EN become zero again */ |
| /* ==>After that Result Regs will be updated every 500us !!!) */ |
| LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| V_in = (-1) * ( ( (((long int)LM_Result) * V_AD_x10000) / N_SAMPLES) >> (15 - K_INTDC_RECT_OFF)) ; /* Vin x 10000*/ |
| |
| V_out = (V_in * Divider_Ratio) / 10000L ; /* Vout x100 */ |
| |
| if (V_out < 0) |
| V_out= -V_out; |
| |
| if (V_out > MAX_V_RING_MEANx100) |
| err_mask |= 8; |
| |
| *ring_mean_v = V_out; |
| } else { |
| err_mask |= 8; |
| *ring_mean_v = 0; |
| } |
| } else { |
| err_mask |= 8; |
| *ring_mean_v = 0; |
| } |
| |
| /* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, |
| LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_ONCE); |
| codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, 0x0000); |
| |
| codsp_set_slic(duslic_id, channel, SS_RING_PAUSE); /* Start Ringing */ |
| |
| /* Now Enable Rectifier */ |
| /* select source for the levelmeter to be IO4-IO3 */ |
| codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, |
| LMCR2_LM_SEL_IO4_MINUS_IO3 | LMCR2_LM_RECT); |
| |
| /* Program the apropriate shift factor K_INTDC (in order to avoid Overflow at Integtation Result !!!) */ |
| codsp_write_cop_char(duslic_id, channel, RING_PARAMS_START_ADDR + 7, K_INTDC_RECT_ON); |
| |
| udelay(40000); |
| |
| /* Reenable Level Meter Integrator (The Result will be valid after Integration Period=Ring Period and until LN_EN become zero again) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, |
| LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE); |
| |
| udelay(40000); |
| |
| /* Poll the LM_OK bit to see when Integration Result is Ready */ |
| if (wait_level_metering_finish(duslic_id, channel)) { |
| |
| udelay(10000); |
| |
| /* Now Read the LM Result Registers (They will hold their value until LM_EN become zero again */ |
| /* ==>After that Result Regs will be updated every 500us !!!) */ |
| Offset_Compensation = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| Offset_Compensation = (-1) * ((Offset_Compensation * (1 << K_INTDC_RECT_ON)) / N_SAMPLES); |
| |
| /* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_ONCE); |
| |
| /* Now programm Integrator Offset Registers !!! */ |
| codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, Offset_Compensation); |
| |
| /* Be sure that a Ring is generated !!!! */ |
| codsp_set_slic(duslic_id, channel, SS_RINGING); /* Start Ringing again */ |
| |
| udelay(40000); |
| |
| /* Reenable Level Meter Integrator (The Result will be valid after Integration Period=Ring Period and until LN_EN become zero again) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, |
| LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE); |
| |
| udelay(40000); |
| |
| /* Poll the LM_OK bit to see when Integration Result is Ready */ |
| if (wait_level_metering_finish(duslic_id, channel)) { |
| |
| udelay(10000); |
| |
| /* Now Read the LM Result Registers (They will hold their value until LM_EN become zero again */ |
| /* ==>After that Result Regs will be updated every 500us !!!) */ |
| LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR); |
| V_in = (-1) * ( ( (((long int)LM_Result) * V_AD_x10000) / N_SAMPLES) >> (15 - K_INTDC_RECT_ON) ) ; /* Vin x 10000*/ |
| |
| V_out = (((V_in * Divider_Ratio) / 10000L) * RMS_MULTIPLIERx100) / 100 ; /* Vout_RMS x100 */ |
| if (V_out < 0) |
| V_out = -V_out; |
| |
| Vout_diff = (V_out - TARGET_V_RING_RMSx100); |
| |
| if (Vout_diff < 0) |
| Vout_diff = -Vout_diff; |
| |
| if (Vout_diff > V_RMS_RING_MAX_DIFFx100) |
| err_mask |= 16; |
| |
| *ring_rms_v = V_out; |
| } else { |
| err_mask |= 16; |
| *ring_rms_v = 0; |
| } |
| } else { |
| err_mask |= 16; |
| *ring_rms_v = 0; |
| } |
| /* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */ |
| codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK); |
| |
| retrieve_slic_state(slic_id); |
| |
| return(err_mask); |
| } |
| |
| int test_dtmf(int slic_id) |
| { |
| unsigned char code; |
| unsigned char b; |
| unsigned int intreg; |
| int duslic_id = slic_id >> 1; |
| int channel = slic_id & 1; |
| |
| for (code = 0; code < 16; code++) { |
| b = codsp_read_sop_char(duslic_id, channel, DSCR_ADDR); |
| codsp_write_sop_char(duslic_id, channel, DSCR_ADDR, |
| (b & ~(DSCR_PTG | DSCR_DG_KEY(15))) | DSCR_DG_KEY(code) | DSCR_TG1_EN | DSCR_TG2_EN); |
| udelay(80000); |
| |
| intreg = codsp_read_sop_int(duslic_id, channel, INTREG1_ADDR); |
| if ((intreg & CODSP_INTREG_INT_CH) == 0) |
| break; |
| |
| if ((intreg & CODSP_INTREG_DTMF_OK) == 0 || |
| codsp_dtmf_map[(intreg >> 10) & 15] != codsp_dtmf_map[code]) |
| break; |
| |
| b = codsp_read_sop_char(duslic_id, channel, DSCR_ADDR); |
| codsp_write_sop_char(duslic_id, channel, DSCR_ADDR, |
| b & ~(DSCR_COR8 | DSCR_TG1_EN | DSCR_TG2_EN)); |
| |
| udelay(80000); |
| |
| intreg = codsp_read_sop_int(duslic_id, channel, INTREG1_ADDR); /* for dtmf_pause irq */ |
| } |
| |
| if (code != 16) { |
| b = codsp_read_sop_char(duslic_id, channel, DSCR_ADDR); /* stop dtmf */ |
| codsp_write_sop_char(duslic_id, channel, DSCR_ADDR, |
| b & ~(DSCR_COR8 | DSCR_TG1_EN | DSCR_TG2_EN)); |
| return(1); |
| } |
| |
| return(0); |
| } |
| |
| void data_up_persist_time(int duslic_id, int channel, int time_ms) |
| { |
| unsigned char b; |
| |
| b = codsp_read_sop_char(duslic_id, channel, IOCTL3_ADDR); |
| b = (b & 0x0F) | ((time_ms & 0x0F) << 4); |
| codsp_write_sop_char(duslic_id, channel, IOCTL3_ADDR, b); |
| } |
| |
| static void program_dtmf_params(int duslic_id, int channel) |
| { |
| unsigned char b; |
| |
| codsp_write_pop_char(duslic_id, channel, DTMF_LEV_ADDR, 0x10); |
| codsp_write_pop_char(duslic_id, channel, DTMF_TWI_ADDR, 0x0C); |
| codsp_write_pop_char(duslic_id, channel, DTMF_NCF_H_ADDR, 0x79); |
| codsp_write_pop_char(duslic_id, channel, DTMF_NCF_L_ADDR, 0x10); |
| codsp_write_pop_char(duslic_id, channel, DTMF_NBW_H_ADDR, 0x02); |
| codsp_write_pop_char(duslic_id, channel, DTMF_NBW_L_ADDR, 0xFB); |
| codsp_write_pop_char(duslic_id, channel, DTMF_GAIN_ADDR, 0x91); |
| codsp_write_pop_char(duslic_id, channel, DTMF_RES1_ADDR, 0x00); |
| codsp_write_pop_char(duslic_id, channel, DTMF_RES2_ADDR, 0x00); |
| codsp_write_pop_char(duslic_id, channel, DTMF_RES3_ADDR, 0x00); |
| |
| b = codsp_read_sop_char(duslic_id, channel, BCR5_ADDR); |
| codsp_write_sop_char(duslic_id, channel, BCR5_ADDR, b | BCR5_DTMF_EN); |
| } |
| |
| static void codsp_channel_full_reset(int duslic_id, int channel) |
| { |
| |
| program_coeffs(duslic_id, channel, ac_coeffs, sizeof(ac_coeffs) / sizeof(struct _coeffs)); |
| program_coeffs(duslic_id, channel, dc_coeffs, sizeof(dc_coeffs) / sizeof(struct _coeffs)); |
| |
| /* program basic configuration registers */ |
| codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, 0x01); |
| codsp_write_sop_char(duslic_id, channel, BCR2_ADDR, 0x41); |
| codsp_write_sop_char(duslic_id, channel, BCR3_ADDR, 0x43); |
| codsp_write_sop_char(duslic_id, channel, BCR4_ADDR, 0x00); |
| codsp_write_sop_char(duslic_id, channel, BCR5_ADDR, 0x00); |
| |
| codsp_write_sop_char(duslic_id, channel, DSCR_ADDR, 0x04); /* PG */ |
| |
| program_dtmf_params(duslic_id, channel); |
| |
| codsp_write_sop_char(duslic_id, channel, LMCR3_ADDR, 0x40); /* RingTRip_SEL */ |
| |
| data_up_persist_time(duslic_id, channel, 4); |
| |
| codsp_write_sop_char(duslic_id, channel, MASK_ADDR, 0xFF); /* All interrupts masked */ |
| |
| codsp_set_slic(duslic_id, channel, SS_ACTIVE_HIGH); |
| } |
| |
| static int codsp_chip_full_reset(int duslic_id) |
| { |
| int i, cnt; |
| int intreg[NUM_CHANNELS]; |
| unsigned char pcm_resync; |
| unsigned char revision; |
| |
| codsp_reset_chip(duslic_id); |
| |
| udelay(2000); |
| |
| for (i = 0; i < NUM_CHANNELS; i++) |
| intreg[i] = codsp_read_sop_int(duslic_id, i, INTREG1_ADDR); |
| |
| udelay(1500); |
| |
| if (_PORTC_GET(com_hook_mask_tab[duslic_id]) == 0) { |
| printf("_HOOK(%d) stayed low\n", duslic_id); |
| return -1; |
| } |
| |
| for (pcm_resync = 0, i = 0; i < NUM_CHANNELS; i++) { |
| if (intreg[i] & CODSP_INTREG_SYNC_FAIL) |
| pcm_resync |= 1 << i; |
| } |
| |
| for (cnt = 0; cnt < 5 && pcm_resync; cnt++) { |
| for (i = 0; i < NUM_CHANNELS; i++) |
| codsp_resync_channel(duslic_id, i); |
| |
| udelay(2000); |
| |
| pcm_resync = 0; |
| |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| if (codsp_read_sop_int(duslic_id, i, INTREG1_ADDR) & CODSP_INTREG_SYNC_FAIL) |
| pcm_resync |= 1 << i; |
| } |
| } |
| |
| if (cnt == 5) { |
| printf("PCM_Resync(%u) not completed\n", duslic_id); |
| return -2; |
| } |
| |
| revision = codsp_read_sop_char(duslic_id, 0, REVISION_ADDR); |
| printf("DuSLIC#%d hardware version %d.%d\r\n", duslic_id, (revision & 0xF0) >> 4, revision & 0x0F); |
| |
| codsp_write_sop_char(duslic_id, 0, XCR_ADDR, 0x80); /* EDSP_EN */ |
| |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| codsp_write_sop_char(duslic_id, i, PCMC1_ADDR, 0x01); |
| codsp_channel_full_reset(duslic_id, i); |
| } |
| |
| return 0; |
| } |
| |
| int slic_self_test(int duslic_mask) |
| { |
| int slic; |
| int i; |
| int r; |
| long vdd, v_oh_H, v_oh_L, ring_mean_v, ring_rms_v; |
| const char *err_txt[] = { "VDD", "V_OH_H", "V_OH_L", "V_RING_MEAN", "V_RING_RMS" }; |
| int error = 0; |
| |
| for (slic = 0; slic < MAX_SLICS; slic++) { /* voltages self test */ |
| if (duslic_mask & (1 << (slic >> 1))) { |
| r = measure_on_hook_voltages(slic, &vdd, |
| &v_oh_H, &v_oh_L, &ring_mean_v, &ring_rms_v); |
| |
| printf("SLIC %u measured voltages (x100):\n\t" |
| "VDD = %ld\tV_OH_H = %ld\tV_OH_L = %ld\tV_RING_MEAN = %ld\tV_RING_RMS = %ld\n", |
| slic, vdd, v_oh_H, v_oh_L, ring_mean_v, ring_rms_v); |
| |
| if (r != 0) |
| error |= 1 << slic; |
| |
| for (i = 0; i < 5; i++) |
| if (r & (1 << i)) |
| printf("\t%s out of range\n", err_txt[i]); |
| } |
| } |
| |
| for (slic = 0; slic < MAX_SLICS; slic++) { /* voice path self test */ |
| if (duslic_mask & (1 << (slic >> 1))) { |
| printf("SLIC %u VOICE PATH...CHECKING", slic); |
| printf("\rSLIC %u VOICE PATH...%s\n", slic, |
| (r = test_dtmf(slic)) != 0 ? "FAILED " : "PASSED "); |
| |
| if (r != 0) |
| error |= 1 << slic; |
| } |
| } |
| |
| return(error); |
| } |
| |
| #if defined(CONFIG_NETTA_ISDN) |
| |
| #define SPIENS1 (1 << (31 - 15)) |
| #define SPIENS2 (1 << (31 - 19)) |
| |
| static const int spiens_mask_tab[2] = { SPIENS1, SPIENS2 }; |
| int s_initialized = 0; |
| |
| static inline unsigned int s_transfer_internal(int s_id, unsigned int address, unsigned int value) |
| { |
| unsigned int rx, v; |
| |
| _PORTB_SET(spiens_mask_tab[s_id], 0); |
| |
| rx = __SPI_Transfer(address); |
| |
| switch (address & 0xF0) { |
| case 0x60: /* write byte register */ |
| case 0x70: |
| rx = __SPI_Transfer(value); |
| break; |
| |
| case 0xE0: /* read R6 register */ |
| v = __SPI_Transfer(0); |
| |
| rx = (rx << 8) | v; |
| |
| break; |
| |
| case 0xF0: /* read byte register */ |
| rx = __SPI_Transfer(0); |
| |
| break; |
| } |
| |
| _PORTB_SET(spiens_mask_tab[s_id], 1); |
| |
| return rx; |
| } |
| |
| static void s_write_BR(int s_id, unsigned int regno, unsigned int val) |
| { |
| unsigned int address; |
| |
| address = 0x70 | (regno & 15); |
| val &= 0xff; |
| |
| (void)s_transfer_internal(s_id, address, val); |
| } |
| |
| static void s_write_OR(int s_id, unsigned int regno, unsigned int val) |
| { |
| unsigned int address; |
| |
| address = 0x70 | (regno & 15); |
| val &= 0xff; |
| |
| (void)s_transfer_internal(s_id, address, val); |
| } |
| |
| static void s_write_NR(int s_id, unsigned int regno, unsigned int val) |
| { |
| unsigned int address; |
| |
| address = (regno & 7) << 4; |
| val &= 0xf; |
| |
| (void)s_transfer_internal(s_id, address | val, 0x00); |
| } |
| |
| #define BR7_IFR 0x08 /* IDL2 free run */ |
| #define BR7_ICSLSB 0x04 /* IDL2 clock speed LSB */ |
| |
| #define BR15_OVRL_REG_EN 0x80 |
| #define OR7_D3VR 0x80 /* disable 3V regulator */ |
| |
| #define OR8_TEME 0x10 /* TE mode enable */ |
| #define OR8_MME 0x08 /* master mode enable */ |
| |
| void s_initialize(void) |
| { |
| int s_id; |
| |
| for (s_id = 0; s_id < 2; s_id++) { |
| s_write_BR(s_id, 7, BR7_IFR | BR7_ICSLSB); |
| s_write_BR(s_id, 15, BR15_OVRL_REG_EN); |
| s_write_OR(s_id, 8, OR8_TEME | OR8_MME); |
| s_write_OR(s_id, 7, OR7_D3VR); |
| s_write_OR(s_id, 6, 0); |
| s_write_BR(s_id, 15, 0); |
| s_write_NR(s_id, 3, 0); |
| } |
| } |
| |
| #endif |
| |
| int board_post_codec(int flags) |
| { |
| int j; |
| int r; |
| int duslic_mask; |
| |
| printf("board_post_dsp\n"); |
| |
| #if defined(CONFIG_NETTA_ISDN) |
| if (s_initialized == 0) { |
| s_initialize(); |
| s_initialized = 1; |
| |
| printf("s_initialized\n"); |
| |
| udelay(20000); |
| } |
| #endif |
| duslic_mask = 0; |
| |
| for (j = 0; j < MAX_DUSLIC; j++) { |
| if (codsp_chip_full_reset(j) < 0) |
| printf("Error initializing DuSLIC#%d\n", j); |
| else |
| duslic_mask |= 1 << j; |
| } |
| |
| if (duslic_mask != 0) { |
| printf("Testing SLICs...\n"); |
| |
| r = slic_self_test(duslic_mask); |
| for (j = 0; j < MAX_SLICS; j++) { |
| if (duslic_mask & (1 << (j >> 1))) |
| printf("SLIC %u...%s\n", j, r & (1 << j) ? "FAULTY" : "OK"); |
| } |
| } |
| printf("DuSLIC self test finished\n"); |
| |
| return 0; /* return -1 on error */ |
| } |