| # |
| # Multifunction miscellaneous devices |
| # |
| |
| menu "Multifunction device drivers" |
| |
| config MISC |
| bool "Enable Driver Model for Misc drivers" |
| depends on DM |
| help |
| Enable driver model for miscellaneous devices. This class is |
| used only for those do not fit other more general classes. A |
| set of generic read, write and ioctl methods may be used to |
| access the device. |
| |
| config ALTERA_SYSID |
| bool "Altera Sysid support" |
| depends on MISC |
| help |
| Select this to enable a sysid for Altera devices. Please find |
| details on the "Embedded Peripherals IP User Guide" of Altera. |
| |
| config CMD_CROS_EC |
| bool "Enable crosec command" |
| depends on CROS_EC |
| help |
| Enable command-line access to the Chrome OS EC (Embedded |
| Controller). This provides the 'crosec' command which has |
| a number of sub-commands for performing EC tasks such as |
| updating its flash, accessing a small saved context area |
| and talking to the I2C bus behind the EC (if there is one). |
| |
| config CROS_EC |
| bool "Enable Chrome OS EC" |
| help |
| Enable access to the Chrome OS EC. This is a separate |
| microcontroller typically available on a SPI bus on Chromebooks. It |
| provides access to the keyboard, some internal storage and may |
| control access to the battery and main PMIC depending on the |
| device. You can use the 'crosec' command to access it. |
| |
| config CROS_EC_I2C |
| bool "Enable Chrome OS EC I2C driver" |
| depends on CROS_EC |
| help |
| Enable I2C access to the Chrome OS EC. This is used on older |
| ARM Chromebooks such as snow and spring before the standard bus |
| changed to SPI. The EC will accept commands across the I2C using |
| a special message protocol, and provide responses. |
| |
| config CROS_EC_LPC |
| bool "Enable Chrome OS EC LPC driver" |
| depends on CROS_EC |
| help |
| Enable I2C access to the Chrome OS EC. This is used on x86 |
| Chromebooks such as link and falco. The keyboard is provided |
| through a legacy port interface, so on x86 machines the main |
| function of the EC is power and thermal management. |
| |
| config CROS_EC_SANDBOX |
| bool "Enable Chrome OS EC sandbox driver" |
| depends on CROS_EC && SANDBOX |
| help |
| Enable a sandbox emulation of the Chrome OS EC. This supports |
| keyboard (use the -l flag to enable the LCD), verified boot context, |
| EC flash read/write/erase support and a few other things. It is |
| enough to perform a Chrome OS verified boot on sandbox. |
| |
| config CROS_EC_SPI |
| bool "Enable Chrome OS EC SPI driver" |
| depends on CROS_EC |
| help |
| Enable SPI access to the Chrome OS EC. This is used on newer |
| ARM Chromebooks such as pit, pi and nyan-big. The SPI interface |
| provides a faster and more robust interface than I2C but the bugs |
| are less interesting. |
| |
| config FSL_SEC_MON |
| bool "Enable FSL SEC_MON Driver" |
| help |
| Freescale Security Monitor block is responsible for monitoring |
| system states. |
| Security Monitor can be transitioned on any security failures, |
| like software violations or hardware security violations. |
| |
| config MXC_OCOTP |
| bool "Enable MXC OCOTP Driver" |
| help |
| If you say Y here, you will get support for the One Time |
| Programmable memory pages that are stored on the some |
| Freescale i.MX processors. |
| |
| config NUVOTON_NCT6102D |
| bool "Enable Nuvoton NCT6102D Super I/O driver" |
| help |
| If you say Y here, you will get support for the Nuvoton |
| NCT6102D Super I/O driver. This can be used to enable or |
| disable the legacy UART, the watchdog or other devices |
| in the Nuvoton Super IO chips on X86 platforms. |
| |
| config PWRSEQ |
| bool "Enable power-sequencing drivers" |
| depends on DM |
| help |
| Power-sequencing drivers provide support for controlling power for |
| devices. They are typically referenced by a phandle from another |
| device. When the device is started up, its power sequence can be |
| initiated. |
| |
| config SPL_PWRSEQ |
| bool "Enable power-sequencing drivers for SPL" |
| depends on PWRSEQ |
| help |
| Power-sequencing drivers provide support for controlling power for |
| devices. They are typically referenced by a phandle from another |
| device. When the device is started up, its power sequence can be |
| initiated. |
| |
| config PCA9551_LED |
| bool "Enable PCA9551 LED driver" |
| help |
| Enable driver for PCA9551 LED controller. This controller |
| is connected via I2C. So I2C needs to be enabled. |
| |
| config PCA9551_I2C_ADDR |
| hex "I2C address of PCA9551 LED controller" |
| depends on PCA9551_LED |
| default 0x60 |
| help |
| The I2C address of the PCA9551 LED controller. |
| |
| config TEGRA186_BPMP |
| bool "Enable support for the Tegra186 BPMP driver" |
| depends on TEGRA186 |
| help |
| The Tegra BPMP (Boot and Power Management Processor) is a separate |
| auxiliary CPU embedded into Tegra to perform power management work, |
| and controls related features such as clocks, resets, power domains, |
| PMIC I2C bus, etc. This driver provides the core low-level |
| communication path by which feature-specific drivers (such as clock) |
| can make requests to the BPMP. This driver is similar to an MFD |
| driver in the Linux kernel. |
| |
| config WINBOND_W83627 |
| bool "Enable Winbond Super I/O driver" |
| help |
| If you say Y here, you will get support for the Winbond |
| W83627 Super I/O driver. This can be used to enable the |
| legacy UART or other devices in the Winbond Super IO chips |
| on X86 platforms. |
| |
| config QFW |
| bool |
| help |
| Hidden option to enable QEMU fw_cfg interface. This will be selected by |
| either CONFIG_CMD_QFW or CONFIG_GENERATE_ACPI_TABLE. |
| |
| config I2C_EEPROM |
| bool "Enable driver for generic I2C-attached EEPROMs" |
| depends on MISC |
| help |
| Enable a generic driver for EEPROMs attached via I2C. |
| endmenu |