blob: 247843891e2491fbae2d44629b9bac47864e0eb6 [file] [log] [blame]
/*
* Enhanced Direct Memory Access (EDMA3) Controller
*
* (C) Copyright 2014
* Texas Instruments Incorporated, <www.ti.com>
*
* Author: Ivan Khoronzhuk <ivan.khoronzhuk@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/io.h>
#include <common.h>
#include <dma.h>
#include <dm/device.h>
#include <asm/omap_common.h>
#include <asm/ti-common/ti-edma3.h>
#define EDMA3_SL_BASE(slot) (0x4000 + ((slot) << 5))
#define EDMA3_SL_MAX_NUM 512
#define EDMA3_SLOPT_FIFO_WIDTH_MASK (0x7 << 8)
#define EDMA3_QCHMAP(ch) 0x0200 + ((ch) << 2)
#define EDMA3_CHMAP_PARSET_MASK 0x1ff
#define EDMA3_CHMAP_PARSET_SHIFT 0x5
#define EDMA3_CHMAP_TRIGWORD_SHIFT 0x2
#define EDMA3_QEMCR 0x314
#define EDMA3_IPR 0x1068
#define EDMA3_IPRH 0x106c
#define EDMA3_ICR 0x1070
#define EDMA3_ICRH 0x1074
#define EDMA3_QEECR 0x1088
#define EDMA3_QEESR 0x108c
#define EDMA3_QSECR 0x1094
struct ti_edma3_priv {
u32 base;
};
/**
* qedma3_start - start qdma on a channel
* @base: base address of edma
* @cfg: pinter to struct edma3_channel_config where you can set
* the slot number to associate with, the chnum, which corresponds
* your quick channel number 0-7, complete code - transfer complete code
* and trigger slot word - which has to correspond to the word number in
* edma3_slot_layout struct for generating event.
*
*/
void qedma3_start(u32 base, struct edma3_channel_config *cfg)
{
u32 qchmap;
/* Clear the pending int bit */
if (cfg->complete_code < 32)
__raw_writel(1 << cfg->complete_code, base + EDMA3_ICR);
else
__raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH);
/* Map parameter set and trigger word 7 to quick channel */
qchmap = ((EDMA3_CHMAP_PARSET_MASK & cfg->slot)
<< EDMA3_CHMAP_PARSET_SHIFT) |
(cfg->trigger_slot_word << EDMA3_CHMAP_TRIGWORD_SHIFT);
__raw_writel(qchmap, base + EDMA3_QCHMAP(cfg->chnum));
/* Clear missed event if set*/
__raw_writel(1 << cfg->chnum, base + EDMA3_QSECR);
__raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR);
/* Enable qdma channel event */
__raw_writel(1 << cfg->chnum, base + EDMA3_QEESR);
}
/**
* edma3_set_dest - set initial DMA destination address in parameter RAM slot
* @base: base address of edma
* @slot: parameter RAM slot being configured
* @dst: physical address of destination (memory, controller FIFO, etc)
* @addressMode: INCR, except in very rare cases
* @width: ignored unless @addressMode is FIFO, else specifies the
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
*
* Note that the destination address is modified during the DMA transfer
* according to edma3_set_dest_index().
*/
void edma3_set_dest(u32 base, int slot, u32 dst, enum edma3_address_mode mode,
enum edma3_fifo_width width)
{
u32 opt;
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
opt = __raw_readl(&rg->opt);
if (mode == FIFO)
opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) |
(EDMA3_SLOPT_DST_ADDR_CONST_MODE |
EDMA3_SLOPT_FIFO_WIDTH_SET(width));
else
opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE;
__raw_writel(opt, &rg->opt);
__raw_writel(dst, &rg->dst);
}
/**
* edma3_set_dest_index - configure DMA destination address indexing
* @base: base address of edma
* @slot: parameter RAM slot being configured
* @bidx: byte offset between destination arrays in a frame
* @cidx: byte offset between destination frames in a block
*
* Offsets are specified to support either contiguous or discontiguous
* memory transfers, or repeated access to a hardware register, as needed.
* When accessing hardware registers, both offsets are normally zero.
*/
void edma3_set_dest_index(u32 base, unsigned slot, int bidx, int cidx)
{
u32 src_dst_bidx;
u32 src_dst_cidx;
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
src_dst_bidx = __raw_readl(&rg->src_dst_bidx);
src_dst_cidx = __raw_readl(&rg->src_dst_cidx);
__raw_writel((src_dst_bidx & 0x0000ffff) | (bidx << 16),
&rg->src_dst_bidx);
__raw_writel((src_dst_cidx & 0x0000ffff) | (cidx << 16),
&rg->src_dst_cidx);
}
/**
* edma3_set_dest_addr - set destination address for slot only
*/
void edma3_set_dest_addr(u32 base, int slot, u32 dst)
{
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
__raw_writel(dst, &rg->dst);
}
/**
* edma3_set_src - set initial DMA source address in parameter RAM slot
* @base: base address of edma
* @slot: parameter RAM slot being configured
* @src_port: physical address of source (memory, controller FIFO, etc)
* @mode: INCR, except in very rare cases
* @width: ignored unless @addressMode is FIFO, else specifies the
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
*
* Note that the source address is modified during the DMA transfer
* according to edma3_set_src_index().
*/
void edma3_set_src(u32 base, int slot, u32 src, enum edma3_address_mode mode,
enum edma3_fifo_width width)
{
u32 opt;
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
opt = __raw_readl(&rg->opt);
if (mode == FIFO)
opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) |
(EDMA3_SLOPT_DST_ADDR_CONST_MODE |
EDMA3_SLOPT_FIFO_WIDTH_SET(width));
else
opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE;
__raw_writel(opt, &rg->opt);
__raw_writel(src, &rg->src);
}
/**
* edma3_set_src_index - configure DMA source address indexing
* @base: base address of edma
* @slot: parameter RAM slot being configured
* @bidx: byte offset between source arrays in a frame
* @cidx: byte offset between source frames in a block
*
* Offsets are specified to support either contiguous or discontiguous
* memory transfers, or repeated access to a hardware register, as needed.
* When accessing hardware registers, both offsets are normally zero.
*/
void edma3_set_src_index(u32 base, unsigned slot, int bidx, int cidx)
{
u32 src_dst_bidx;
u32 src_dst_cidx;
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
src_dst_bidx = __raw_readl(&rg->src_dst_bidx);
src_dst_cidx = __raw_readl(&rg->src_dst_cidx);
__raw_writel((src_dst_bidx & 0xffff0000) | bidx,
&rg->src_dst_bidx);
__raw_writel((src_dst_cidx & 0xffff0000) | cidx,
&rg->src_dst_cidx);
}
/**
* edma3_set_src_addr - set source address for slot only
*/
void edma3_set_src_addr(u32 base, int slot, u32 src)
{
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
__raw_writel(src, &rg->src);
}
/**
* edma3_set_transfer_params - configure DMA transfer parameters
* @base: base address of edma
* @slot: parameter RAM slot being configured
* @acnt: how many bytes per array (at least one)
* @bcnt: how many arrays per frame (at least one)
* @ccnt: how many frames per block (at least one)
* @bcnt_rld: used only for A-Synchronized transfers; this specifies
* the value to reload into bcnt when it decrements to zero
* @sync_mode: ASYNC or ABSYNC
*
* See the EDMA3 documentation to understand how to configure and link
* transfers using the fields in PaRAM slots. If you are not doing it
* all at once with edma3_write_slot(), you will use this routine
* plus two calls each for source and destination, setting the initial
* address and saying how to index that address.
*
* An example of an A-Synchronized transfer is a serial link using a
* single word shift register. In that case, @acnt would be equal to
* that word size; the serial controller issues a DMA synchronization
* event to transfer each word, and memory access by the DMA transfer
* controller will be word-at-a-time.
*
* An example of an AB-Synchronized transfer is a device using a FIFO.
* In that case, @acnt equals the FIFO width and @bcnt equals its depth.
* The controller with the FIFO issues DMA synchronization events when
* the FIFO threshold is reached, and the DMA transfer controller will
* transfer one frame to (or from) the FIFO. It will probably use
* efficient burst modes to access memory.
*/
void edma3_set_transfer_params(u32 base, int slot, int acnt,
int bcnt, int ccnt, u16 bcnt_rld,
enum edma3_sync_dimension sync_mode)
{
u32 opt;
u32 link_bcntrld;
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
link_bcntrld = __raw_readl(&rg->link_bcntrld);
__raw_writel((bcnt_rld << 16) | (0x0000ffff & link_bcntrld),
&rg->link_bcntrld);
opt = __raw_readl(&rg->opt);
if (sync_mode == ASYNC)
__raw_writel(opt & ~EDMA3_SLOPT_AB_SYNC, &rg->opt);
else
__raw_writel(opt | EDMA3_SLOPT_AB_SYNC, &rg->opt);
/* Set the acount, bcount, ccount registers */
__raw_writel((bcnt << 16) | (acnt & 0xffff), &rg->a_b_cnt);
__raw_writel(0xffff & ccnt, &rg->ccnt);
}
/**
* edma3_write_slot - write parameter RAM data for slot
* @base: base address of edma
* @slot: number of parameter RAM slot being modified
* @param: data to be written into parameter RAM slot
*
* Use this to assign all parameters of a transfer at once. This
* allows more efficient setup of transfers than issuing multiple
* calls to set up those parameters in small pieces, and provides
* complete control over all transfer options.
*/
void edma3_write_slot(u32 base, int slot, struct edma3_slot_layout *param)
{
int i;
u32 *p = (u32 *)param;
u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot));
for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4)
__raw_writel(*p++, addr++);
}
/**
* edma3_read_slot - read parameter RAM data from slot
* @base: base address of edma
* @slot: number of parameter RAM slot being copied
* @param: where to store copy of parameter RAM data
*
* Use this to read data from a parameter RAM slot, perhaps to
* save them as a template for later reuse.
*/
void edma3_read_slot(u32 base, int slot, struct edma3_slot_layout *param)
{
int i;
u32 *p = (u32 *)param;
u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot));
for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4)
*p++ = __raw_readl(addr++);
}
void edma3_slot_configure(u32 base, int slot, struct edma3_slot_config *cfg)
{
struct edma3_slot_layout *rg;
rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot));
__raw_writel(cfg->opt, &rg->opt);
__raw_writel(cfg->src, &rg->src);
__raw_writel((cfg->bcnt << 16) | (cfg->acnt & 0xffff), &rg->a_b_cnt);
__raw_writel(cfg->dst, &rg->dst);
__raw_writel((cfg->dst_bidx << 16) |
(cfg->src_bidx & 0xffff), &rg->src_dst_bidx);
__raw_writel((cfg->bcntrld << 16) |
(cfg->link & 0xffff), &rg->link_bcntrld);
__raw_writel((cfg->dst_cidx << 16) |
(cfg->src_cidx & 0xffff), &rg->src_dst_cidx);
__raw_writel(0xffff & cfg->ccnt, &rg->ccnt);
}
/**
* edma3_check_for_transfer - check if transfer coplete by checking
* interrupt pending bit. Clear interrupt pending bit if complete.
* @base: base address of edma
* @cfg: pinter to struct edma3_channel_config which was passed
* to qedma3_start when you started qdma channel
*
* Return 0 if complete, 1 if not.
*/
int edma3_check_for_transfer(u32 base, struct edma3_channel_config *cfg)
{
u32 inum;
u32 ipr_base;
u32 icr_base;
if (cfg->complete_code < 32) {
ipr_base = base + EDMA3_IPR;
icr_base = base + EDMA3_ICR;
inum = 1 << cfg->complete_code;
} else {
ipr_base = base + EDMA3_IPRH;
icr_base = base + EDMA3_ICRH;
inum = 1 << (cfg->complete_code - 32);
}
/* check complete interrupt */
if (!(__raw_readl(ipr_base) & inum))
return 1;
/* clean up the pending int bit */
__raw_writel(inum, icr_base);
return 0;
}
/**
* qedma3_stop - stops dma on the channel passed
* @base: base address of edma
* @cfg: pinter to struct edma3_channel_config which was passed
* to qedma3_start when you started qdma channel
*/
void qedma3_stop(u32 base, struct edma3_channel_config *cfg)
{
/* Disable qdma channel event */
__raw_writel(1 << cfg->chnum, base + EDMA3_QEECR);
/* clean up the interrupt indication */
if (cfg->complete_code < 32)
__raw_writel(1 << cfg->complete_code, base + EDMA3_ICR);
else
__raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH);
/* Clear missed event if set*/
__raw_writel(1 << cfg->chnum, base + EDMA3_QSECR);
__raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR);
/* Clear the channel map */
__raw_writel(0, base + EDMA3_QCHMAP(cfg->chnum));
}
void __edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num,
void *dst, void *src, size_t len)
{
struct edma3_slot_config slot;
struct edma3_channel_config edma_channel;
int b_cnt_value = 1;
int rem_bytes = 0;
int a_cnt_value = len;
unsigned int addr = (unsigned int) (dst);
unsigned int max_acnt = 0x7FFFU;
if (len > max_acnt) {
b_cnt_value = (len / max_acnt);
rem_bytes = (len % max_acnt);
a_cnt_value = max_acnt;
}
slot.opt = 0;
slot.src = ((unsigned int) src);
slot.acnt = a_cnt_value;
slot.bcnt = b_cnt_value;
slot.ccnt = 1;
slot.src_bidx = a_cnt_value;
slot.dst_bidx = a_cnt_value;
slot.src_cidx = 0;
slot.dst_cidx = 0;
slot.link = EDMA3_PARSET_NULL_LINK;
slot.bcntrld = 0;
slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB |
EDMA3_SLOPT_COMP_CODE(0) |
EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC;
edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot);
edma_channel.slot = edma_slot_num;
edma_channel.chnum = 0;
edma_channel.complete_code = 0;
/* set event trigger to dst update */
edma_channel.trigger_slot_word = EDMA3_TWORD(dst);
qedma3_start(edma3_base_addr, &edma_channel);
edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr);
while (edma3_check_for_transfer(edma3_base_addr, &edma_channel))
;
qedma3_stop(edma3_base_addr, &edma_channel);
if (rem_bytes != 0) {
slot.opt = 0;
slot.src =
(b_cnt_value * max_acnt) + ((unsigned int) src);
slot.acnt = rem_bytes;
slot.bcnt = 1;
slot.ccnt = 1;
slot.src_bidx = rem_bytes;
slot.dst_bidx = rem_bytes;
slot.src_cidx = 0;
slot.dst_cidx = 0;
slot.link = EDMA3_PARSET_NULL_LINK;
slot.bcntrld = 0;
slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB |
EDMA3_SLOPT_COMP_CODE(0) |
EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC;
edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot);
edma_channel.slot = edma_slot_num;
edma_channel.chnum = 0;
edma_channel.complete_code = 0;
/* set event trigger to dst update */
edma_channel.trigger_slot_word = EDMA3_TWORD(dst);
qedma3_start(edma3_base_addr, &edma_channel);
edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr +
(max_acnt * b_cnt_value));
while (edma3_check_for_transfer(edma3_base_addr, &edma_channel))
;
qedma3_stop(edma3_base_addr, &edma_channel);
}
}
#ifndef CONFIG_DMA
void edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num,
void *dst, void *src, size_t len)
{
__edma3_transfer(edma3_base_addr, edma_slot_num, dst, src, len);
}
#else
static int ti_edma3_transfer(struct udevice *dev, int direction, void *dst,
void *src, size_t len)
{
struct ti_edma3_priv *priv = dev_get_priv(dev);
/* enable edma3 clocks */
enable_edma3_clocks();
switch (direction) {
case DMA_MEM_TO_MEM:
__edma3_transfer(priv->base, 1, dst, src, len);
break;
default:
error("Transfer type not implemented in DMA driver\n");
break;
}
/* disable edma3 clocks */
disable_edma3_clocks();
return 0;
}
static int ti_edma3_ofdata_to_platdata(struct udevice *dev)
{
struct ti_edma3_priv *priv = dev_get_priv(dev);
priv->base = dev_get_addr(dev);
return 0;
}
static int ti_edma3_probe(struct udevice *dev)
{
struct dma_dev_priv *uc_priv = dev_get_uclass_priv(dev);
uc_priv->supported = DMA_SUPPORTS_MEM_TO_MEM;
return 0;
}
static const struct dma_ops ti_edma3_ops = {
.transfer = ti_edma3_transfer,
};
static const struct udevice_id ti_edma3_ids[] = {
{ .compatible = "ti,edma3" },
{ }
};
U_BOOT_DRIVER(ti_edma3) = {
.name = "ti_edma3",
.id = UCLASS_DMA,
.of_match = ti_edma3_ids,
.ops = &ti_edma3_ops,
.ofdata_to_platdata = ti_edma3_ofdata_to_platdata,
.probe = ti_edma3_probe,
.priv_auto_alloc_size = sizeof(struct ti_edma3_priv),
};
#endif /* CONFIG_DMA */