blob: 6176eabfbfdcbc8813518bd6d7205126eff5e6d1 [file] [log] [blame]
/*
* cpu/ppc4xx/44x_spd_ddr.c
* This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a
* DDR controller. Those are 440GP/GX/EP/GR.
*
* (C) Copyright 2001
* Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
*
* Based on code by:
*
* Kenneth Johansson ,Ericsson AB.
* kenneth.johansson@etx.ericsson.se
*
* hacked up by bill hunter. fixed so we could run before
* serial_init and console_init. previous version avoided this by
* running out of cache memory during serial/console init, then running
* this code later.
*
* (C) Copyright 2002
* Jun Gu, Artesyn Technology, jung@artesyncp.com
* Support for AMCC 440 based on OpenBIOS draminit.c from IBM.
*
* (C) Copyright 2005-2007
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <ppc4xx.h>
#include <asm/mmu.h>
#include "ecc.h"
#if defined(CONFIG_SPD_EEPROM) && \
(defined(CONFIG_440GP) || defined(CONFIG_440GX) || \
defined(CONFIG_440EP) || defined(CONFIG_440GR))
/*
* Set default values
*/
#ifndef CONFIG_SYS_I2C_SPEED
#define CONFIG_SYS_I2C_SPEED 50000
#endif
#define ONE_BILLION 1000000000
/*
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
*/
void __spd_ddr_init_hang (void)
{
hang ();
}
void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
/*-----------------------------------------------------------------------------+
| General Definition
+-----------------------------------------------------------------------------*/
#define DEFAULT_SPD_ADDR1 0x53
#define DEFAULT_SPD_ADDR2 0x52
#define MAXBANKS 4 /* at most 4 dimm banks */
#define MAX_SPD_BYTES 256
#define NUMHALFCYCLES 4
#define NUMMEMTESTS 8
#define NUMMEMWORDS 8
#define MAXBXCR 4
#define TRUE 1
#define FALSE 0
/*
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
* region. Right now the cache should still be disabled in U-Boot because of the
* EMAC driver, that need it's buffer descriptor to be located in non cached
* memory.
*
* If at some time this restriction doesn't apply anymore, just define
* CONFIG_4xx_DCACHE in the board config file and this code should setup
* everything correctly.
*/
#ifdef CONFIG_4xx_DCACHE
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
#else
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
#endif
/* bank_parms is used to sort the bank sizes by descending order */
struct bank_param {
unsigned long cr;
unsigned long bank_size_bytes;
};
typedef struct bank_param BANKPARMS;
#ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
extern const unsigned char cfg_simulate_spd_eeprom[128];
#endif
static unsigned char spd_read(uchar chip, uint addr);
static void get_spd_info(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_mem_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_volt_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_cfg0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_cfg1(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_rtr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_tr0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_tr1(void);
static unsigned long program_bxcr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
/*
* This function is reading data from the DIMM module EEPROM over the SPD bus
* and uses that to program the sdram controller.
*
* This works on boards that has the same schematics that the AMCC walnut has.
*
* BUG: Don't handle ECC memory
* BUG: A few values in the TR register is currently hardcoded
*/
long int spd_sdram(void) {
unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
unsigned long total_size;
unsigned long cfg0;
unsigned long mcsts;
unsigned long num_dimm_banks; /* on board dimm banks */
num_dimm_banks = sizeof(iic0_dimm_addr);
/*
* Make sure I2C controller is initialized
* before continuing.
*/
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
/*
* Read the SPD information using I2C interface. Check to see if the
* DIMM slots are populated.
*/
get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* Check the memory type for the dimms plugged.
*/
check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* Check the voltage type for the dimms plugged.
*/
check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
#if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR)
/*
* Soft-reset SDRAM controller.
*/
mtsdr(SDR0_SRST, SDR0_SRST_DMC);
mtsdr(SDR0_SRST, 0x00000000);
#endif
/*
* program 440GP SDRAM controller options (SDRAM0_CFG0)
*/
program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program 440GP SDRAM controller options (SDRAM0_CFG1)
*/
program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program SDRAM refresh register (SDRAM0_RTR)
*/
program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program SDRAM Timing Register 0 (SDRAM0_TR0)
*/
program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program the BxCR registers to find out total sdram installed
*/
total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
num_dimm_banks);
#ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */
/* and program tlb entries for this size (dynamic) */
program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE);
#endif
/*
* program SDRAM Clock Timing Register (SDRAM0_CLKTR)
*/
mtsdram(SDRAM0_CLKTR, 0x40000000);
/*
* delay to ensure 200 usec has elapsed
*/
udelay(400);
/*
* enable the memory controller
*/
mfsdram(SDRAM0_CFG0, cfg0);
mtsdram(SDRAM0_CFG0, cfg0 | SDRAM_CFG0_DCEN);
/*
* wait for SDRAM_CFG0_DC_EN to complete
*/
while (1) {
mfsdram(SDRAM0_MCSTS, mcsts);
if ((mcsts & SDRAM_MCSTS_MRSC) != 0)
break;
}
/*
* program SDRAM Timing Register 1, adding some delays
*/
program_tr1();
#ifdef CONFIG_DDR_ECC
/*
* If ecc is enabled, initialize the parity bits.
*/
ecc_init(CONFIG_SYS_SDRAM_BASE, total_size);
#endif
return total_size;
}
static unsigned char spd_read(uchar chip, uint addr)
{
unsigned char data[2];
#ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM
if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) {
/*
* Onboard spd eeprom requested -> simulate values
*/
return cfg_simulate_spd_eeprom[addr];
}
#endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */
if (i2c_probe(chip) == 0) {
if (i2c_read(chip, addr, 1, data, 1) == 0) {
return data[0];
}
}
return 0;
}
static void get_spd_info(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_found;
unsigned char num_of_bytes;
unsigned char total_size;
dimm_found = FALSE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
num_of_bytes = 0;
total_size = 0;
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
if ((num_of_bytes != 0) && (total_size != 0)) {
dimm_populated[dimm_num] = TRUE;
dimm_found = TRUE;
debug("DIMM slot %lu: populated\n", dimm_num);
} else {
dimm_populated[dimm_num] = FALSE;
debug("DIMM slot %lu: Not populated\n", dimm_num);
}
}
if (dimm_found == FALSE) {
printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
spd_ddr_init_hang ();
}
}
static void check_mem_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned char dimm_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
switch (dimm_type) {
case 7:
debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
break;
default:
printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
dimm_num);
printf("Only DDR SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
}
}
}
}
static void check_volt_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long voltage_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
if (voltage_type != 0x04) {
printf("ERROR: DIMM %lu with unsupported voltage level.\n",
dimm_num);
spd_ddr_init_hang ();
} else {
debug("DIMM %lu voltage level supported.\n", dimm_num);
}
break;
}
}
}
static void program_cfg0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long cfg0;
unsigned long ecc_enabled;
unsigned char ecc;
unsigned char attributes;
unsigned long data_width;
unsigned long dimm_32bit;
unsigned long dimm_64bit;
/*
* get Memory Controller Options 0 data
*/
mfsdram(SDRAM0_CFG0, cfg0);
/*
* clear bits
*/
cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
SDRAM_CFG0_DMWD_MASK |
SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
/*
* FIXME: assume the DDR SDRAMs in both banks are the same
*/
ecc_enabled = TRUE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
if (ecc != 0x02) {
ecc_enabled = FALSE;
}
/*
* program Registered DIMM Enable
*/
attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
if ((attributes & 0x02) != 0x00) {
cfg0 |= SDRAM_CFG0_RDEN;
}
/*
* program DDR SDRAM Data Width
*/
data_width =
(unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
(((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
if (data_width == 64 || data_width == 72) {
dimm_64bit = TRUE;
cfg0 |= SDRAM_CFG0_DMWD_64;
} else if (data_width == 32 || data_width == 40) {
dimm_32bit = TRUE;
cfg0 |= SDRAM_CFG0_DMWD_32;
} else {
printf("WARNING: DIMM with datawidth of %lu bits.\n",
data_width);
printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
spd_ddr_init_hang ();
}
break;
}
}
/*
* program Memory Data Error Checking
*/
if (ecc_enabled == TRUE) {
cfg0 |= SDRAM_CFG0_MCHK_GEN;
} else {
cfg0 |= SDRAM_CFG0_MCHK_NON;
}
/*
* program Page Management Unit (0 == enabled)
*/
cfg0 &= ~SDRAM_CFG0_PMUD;
/*
* program Memory Controller Options 0
* Note: DCEN must be enabled after all DDR SDRAM controller
* configuration registers get initialized.
*/
mtsdram(SDRAM0_CFG0, cfg0);
}
static void program_cfg1(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long cfg1;
mfsdram(SDRAM0_CFG1, cfg1);
/*
* Self-refresh exit, disable PM
*/
cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
/*
* program Memory Controller Options 1
*/
mtsdram(SDRAM0_CFG1, cfg1);
}
static void program_rtr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long bus_period_x_10;
unsigned long refresh_rate = 0;
unsigned char refresh_rate_type;
unsigned long refresh_interval;
unsigned long sdram_rtr;
PPC4xx_SYS_INFO sys_info;
/*
* get the board info
*/
get_sys_info(&sys_info);
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
switch (refresh_rate_type) {
case 0x00:
refresh_rate = 15625;
break;
case 0x01:
refresh_rate = 15625/4;
break;
case 0x02:
refresh_rate = 15625/2;
break;
case 0x03:
refresh_rate = 15626*2;
break;
case 0x04:
refresh_rate = 15625*4;
break;
case 0x05:
refresh_rate = 15625*8;
break;
default:
printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
dimm_num);
printf("Replace the DIMM module with a supported DIMM.\n");
break;
}
break;
}
}
refresh_interval = refresh_rate * 10 / bus_period_x_10;
sdram_rtr = (refresh_interval & 0x3ff8) << 16;
/*
* program Refresh Timer Register (SDRAM0_RTR)
*/
mtsdram(SDRAM0_RTR, sdram_rtr);
}
static void program_tr0(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long tr0;
unsigned char wcsbc;
unsigned char t_rp_ns;
unsigned char t_rcd_ns;
unsigned char t_ras_ns;
unsigned long t_rp_clk;
unsigned long t_ras_rcd_clk;
unsigned long t_rcd_clk;
unsigned long t_rfc_clk;
unsigned long plb_check;
unsigned char cas_bit;
unsigned long cas_index;
unsigned char cas_2_0_available;
unsigned char cas_2_5_available;
unsigned char cas_3_0_available;
unsigned long cycle_time_ns_x_10[3];
unsigned long tcyc_3_0_ns_x_10;
unsigned long tcyc_2_5_ns_x_10;
unsigned long tcyc_2_0_ns_x_10;
unsigned long tcyc_reg;
unsigned long bus_period_x_10;
PPC4xx_SYS_INFO sys_info;
unsigned long residue;
/*
* get the board info
*/
get_sys_info(&sys_info);
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
/*
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
*/
mfsdram(SDRAM0_TR0, tr0);
tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
/*
* initialization
*/
wcsbc = 0;
t_rp_ns = 0;
t_rcd_ns = 0;
t_ras_ns = 0;
cas_2_0_available = TRUE;
cas_2_5_available = TRUE;
cas_3_0_available = TRUE;
tcyc_2_0_ns_x_10 = 0;
tcyc_2_5_ns_x_10 = 0;
tcyc_3_0_ns_x_10 = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
for (cas_index = 0; cas_index < 3; cas_index++) {
switch (cas_index) {
case 0:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
break;
case 1:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
break;
default:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
break;
}
if ((tcyc_reg & 0x0F) >= 10) {
printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
dimm_num);
spd_ddr_init_hang ();
}
cycle_time_ns_x_10[cas_index] =
(((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
}
cas_index = 0;
if ((cas_bit & 0x80) != 0) {
cas_index += 3;
} else if ((cas_bit & 0x40) != 0) {
cas_index += 2;
} else if ((cas_bit & 0x20) != 0) {
cas_index += 1;
}
if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
} else {
if (cas_index != 0) {
cas_index++;
}
cas_3_0_available = FALSE;
}
if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
} else {
if (cas_index != 0) {
cas_index++;
}
cas_2_5_available = FALSE;
}
if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
} else {
if (cas_index != 0) {
cas_index++;
}
cas_2_0_available = FALSE;
}
break;
}
}
/*
* Program SD_WR and SD_WCSBC fields
*/
tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
switch (wcsbc) {
case 0:
tr0 |= SDRAM_TR0_SDWD_0_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDWD_1_CLK;
break;
}
/*
* Program SD_CASL field
*/
if ((cas_2_0_available == TRUE) &&
(bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
} else if ((cas_2_5_available == TRUE) &&
(bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
} else if ((cas_3_0_available == TRUE) &&
(bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
} else {
printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range.\n");
spd_ddr_init_hang ();
}
/*
* Calculate Trp in clock cycles and round up if necessary
* Program SD_PTA field
*/
t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
if (sys_info.freqPLB != plb_check) {
t_rp_clk++;
}
switch ((unsigned long)t_rp_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDPA_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDPA_3_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDPA_4_CLK;
break;
}
/*
* Program SD_CTP field
*/
t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
if (sys_info.freqPLB != plb_check) {
t_ras_rcd_clk++;
}
switch (t_ras_rcd_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDCP_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDCP_3_CLK;
break;
case 4:
tr0 |= SDRAM_TR0_SDCP_4_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDCP_5_CLK;
break;
}
/*
* Program SD_LDF field
*/
tr0 |= SDRAM_TR0_SDLD_2_CLK;
/*
* Program SD_RFTA field
* FIXME tRFC hardcoded as 75 nanoseconds
*/
t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
residue = sys_info.freqPLB % (ONE_BILLION / 75);
if (residue >= (ONE_BILLION / 150)) {
t_rfc_clk++;
}
switch (t_rfc_clk) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
tr0 |= SDRAM_TR0_SDRA_6_CLK;
break;
case 7:
tr0 |= SDRAM_TR0_SDRA_7_CLK;
break;
case 8:
tr0 |= SDRAM_TR0_SDRA_8_CLK;
break;
case 9:
tr0 |= SDRAM_TR0_SDRA_9_CLK;
break;
case 10:
tr0 |= SDRAM_TR0_SDRA_10_CLK;
break;
case 11:
tr0 |= SDRAM_TR0_SDRA_11_CLK;
break;
case 12:
tr0 |= SDRAM_TR0_SDRA_12_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDRA_13_CLK;
break;
}
/*
* Program SD_RCD field
*/
t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
if (sys_info.freqPLB != plb_check) {
t_rcd_clk++;
}
switch (t_rcd_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDRD_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDRD_3_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDRD_4_CLK;
break;
}
debug("tr0: %x\n", tr0);
mtsdram(SDRAM0_TR0, tr0);
}
static int short_mem_test(void)
{
unsigned long i, j;
unsigned long bxcr_num;
unsigned long *membase;
const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}};
for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bxcr_num << 2));
if ((mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
/* Bank is enabled */
membase = (unsigned long*)
(mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBA_MASK);
/*
* Run the short memory test
*/
for (i = 0; i < NUMMEMTESTS; i++) {
for (j = 0; j < NUMMEMWORDS; j++) {
/* printf("bank enabled base:%x\n", &membase[j]); */
membase[j] = test[i][j];
ppcDcbf((unsigned long)&(membase[j]));
}
for (j = 0; j < NUMMEMWORDS; j++) {
if (membase[j] != test[i][j]) {
ppcDcbf((unsigned long)&(membase[j]));
return 0;
}
ppcDcbf((unsigned long)&(membase[j]));
}
if (j < NUMMEMWORDS)
return 0;
}
/*
* see if the rdclt value passed
*/
if (i < NUMMEMTESTS)
return 0;
}
}
return 1;
}
static void program_tr1(void)
{
unsigned long tr0;
unsigned long tr1;
unsigned long cfg0;
unsigned long ecc_temp;
unsigned long dlycal;
unsigned long dly_val;
unsigned long k;
unsigned long max_pass_length;
unsigned long current_pass_length;
unsigned long current_fail_length;
unsigned long current_start;
unsigned long rdclt;
unsigned long rdclt_offset;
long max_start;
long max_end;
long rdclt_average;
unsigned char window_found;
unsigned char fail_found;
unsigned char pass_found;
PPC4xx_SYS_INFO sys_info;
/*
* get the board info
*/
get_sys_info(&sys_info);
/*
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
*/
mfsdram(SDRAM0_TR1, tr1);
tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
mfsdram(SDRAM0_TR0, tr0);
if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
(sys_info.freqPLB > 100000000)) {
tr1 |= SDRAM_TR1_RDSS_TR2;
tr1 |= SDRAM_TR1_RDSL_STAGE3;
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
} else {
tr1 |= SDRAM_TR1_RDSS_TR1;
tr1 |= SDRAM_TR1_RDSL_STAGE2;
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
}
/*
* save CFG0 ECC setting to a temporary variable and turn ECC off
*/
mfsdram(SDRAM0_CFG0, cfg0);
ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
/*
* get the delay line calibration register value
*/
mfsdram(SDRAM0_DLYCAL, dlycal);
dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
max_pass_length = 0;
max_start = 0;
max_end = 0;
current_pass_length = 0;
current_fail_length = 0;
current_start = 0;
rdclt_offset = 0;
window_found = FALSE;
fail_found = FALSE;
pass_found = FALSE;
debug("Starting memory test ");
for (k = 0; k < NUMHALFCYCLES; k++) {
for (rdclt = 0; rdclt < dly_val; rdclt++) {
/*
* Set the timing reg for the test.
*/
mtsdram(SDRAM0_TR1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
if (short_mem_test()) {
if (fail_found == TRUE) {
pass_found = TRUE;
if (current_pass_length == 0) {
current_start = rdclt_offset + rdclt;
}
current_fail_length = 0;
current_pass_length++;
if (current_pass_length > max_pass_length) {
max_pass_length = current_pass_length;
max_start = current_start;
max_end = rdclt_offset + rdclt;
}
}
} else {
current_pass_length = 0;
current_fail_length++;
if (current_fail_length >= (dly_val>>2)) {
if (fail_found == FALSE) {
fail_found = TRUE;
} else if (pass_found == TRUE) {
window_found = TRUE;
break;
}
}
}
}
debug(".");
if (window_found == TRUE) {
break;
}
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
rdclt_offset += dly_val;
}
debug("\n");
/*
* make sure we find the window
*/
if (window_found == FALSE) {
printf("ERROR: Cannot determine a common read delay.\n");
spd_ddr_init_hang ();
}
/*
* restore the orignal ECC setting
*/
mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
/*
* set the SDRAM TR1 RDCD value
*/
tr1 &= ~SDRAM_TR1_RDCD_MASK;
if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
} else {
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
}
/*
* set the SDRAM TR1 RDCLT value
*/
tr1 &= ~SDRAM_TR1_RDCT_MASK;
while (max_end >= (dly_val << 1)) {
max_end -= (dly_val << 1);
max_start -= (dly_val << 1);
}
rdclt_average = ((max_start + max_end) >> 1);
if (rdclt_average < 0) {
rdclt_average = 0;
}
if (rdclt_average >= dly_val) {
rdclt_average -= dly_val;
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
}
tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
debug("tr1: %x\n", tr1);
/*
* program SDRAM Timing Register 1 TR1
*/
mtsdram(SDRAM0_TR1, tr1);
}
static unsigned long program_bxcr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long bank_base_addr;
unsigned long cr;
unsigned long i;
unsigned long j;
unsigned long temp;
unsigned char num_row_addr;
unsigned char num_col_addr;
unsigned char num_banks;
unsigned char bank_size_id;
unsigned long ctrl_bank_num[MAXBANKS];
unsigned long bx_cr_num;
unsigned long largest_size_index;
unsigned long largest_size;
unsigned long current_size_index;
BANKPARMS bank_parms[MAXBXCR];
unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */
unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/
/*
* Set the BxCR regs. First, wipe out the bank config registers.
*/
for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bx_cr_num << 2));
mtdcr(SDRAM0_CFGDATA, 0x00000000);
bank_parms[bx_cr_num].bank_size_bytes = 0;
}
#ifdef CONFIG_BAMBOO
/*
* This next section is hardware dependent and must be programmed
* to match the hardware. For bamboo, the following holds...
* 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard)
* 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1
* 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1
* 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3
* ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM
*/
ctrl_bank_num[0] = 0;
ctrl_bank_num[1] = 1;
ctrl_bank_num[2] = 3;
#else
/*
* Ocotea, Ebony and the other IBM/AMCC eval boards have
* 2 DIMM slots with each max 2 banks
*/
ctrl_bank_num[0] = 0;
ctrl_bank_num[1] = 2;
#endif
/*
* reset the bank_base address
*/
bank_base_addr = CONFIG_SYS_SDRAM_BASE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
debug("DIMM%d: row=%d col=%d banks=%d\n", dimm_num,
num_row_addr, num_col_addr, num_banks);
/*
* Set the SDRAM0_BxCR regs
*/
cr = 0;
switch (bank_size_id) {
case 0x02:
cr |= SDRAM_BXCR_SDSZ_8;
break;
case 0x04:
cr |= SDRAM_BXCR_SDSZ_16;
break;
case 0x08:
cr |= SDRAM_BXCR_SDSZ_32;
break;
case 0x10:
cr |= SDRAM_BXCR_SDSZ_64;
break;
case 0x20:
cr |= SDRAM_BXCR_SDSZ_128;
break;
case 0x40:
cr |= SDRAM_BXCR_SDSZ_256;
break;
case 0x80:
cr |= SDRAM_BXCR_SDSZ_512;
break;
default:
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
dimm_num);
printf("ERROR: Unsupported value for the banksize: %d.\n",
bank_size_id);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
}
switch (num_col_addr) {
case 0x08:
cr |= SDRAM_BXCR_SDAM_1;
break;
case 0x09:
cr |= SDRAM_BXCR_SDAM_2;
break;
case 0x0A:
cr |= SDRAM_BXCR_SDAM_3;
break;
case 0x0B:
cr |= SDRAM_BXCR_SDAM_4;
break;
default:
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
dimm_num);
printf("ERROR: Unsupported value for number of "
"column addresses: %d.\n", num_col_addr);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
}
/*
* enable the bank
*/
cr |= SDRAM_BXCR_SDBE;
for (i = 0; i < num_banks; i++) {
bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes =
(4 << 20) * bank_size_id;
bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr;
debug("DIMM%d-bank %d (SDRAM0_B%dCR): bank_size_bytes=%d\n",
dimm_num, i, ctrl_bank_num[dimm_num]+i,
bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes);
}
}
}
/* Initialize sort tables */
for (i = 0; i < MAXBXCR; i++) {
sorted_bank_num[i] = i;
sorted_bank_size[i] = bank_parms[i].bank_size_bytes;
}
for (i = 0; i < MAXBXCR-1; i++) {
largest_size = sorted_bank_size[i];
largest_size_index = 255;
/* Find the largest remaining value */
for (j = i + 1; j < MAXBXCR; j++) {
if (sorted_bank_size[j] > largest_size) {
/* Save largest remaining value and its index */
largest_size = sorted_bank_size[j];
largest_size_index = j;
}
}
if (largest_size_index != 255) {
/* Swap the current and largest values */
current_size_index = sorted_bank_num[largest_size_index];
sorted_bank_size[largest_size_index] = sorted_bank_size[i];
sorted_bank_size[i] = largest_size;
sorted_bank_num[largest_size_index] = sorted_bank_num[i];
sorted_bank_num[i] = current_size_index;
}
}
/* Set the SDRAM0_BxCR regs thanks to sort tables */
for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) {
if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) {
mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (sorted_bank_num[bx_cr_num] << 2));
temp = mfdcr(SDRAM0_CFGDATA) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK |
SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE);
temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) |
bank_parms[sorted_bank_num[bx_cr_num]].cr;
mtdcr(SDRAM0_CFGDATA, temp);
bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes;
debug("SDRAM0_B%dCR=0x%08lx\n", sorted_bank_num[bx_cr_num], temp);
}
}
return(bank_base_addr);
}
#endif /* CONFIG_SPD_EEPROM */